Conservation Ecology of Tidal Marsh Sparrows In

Total Page:16

File Type:pdf, Size:1020Kb

Conservation Ecology of Tidal Marsh Sparrows In CONSERVATION ECOLOGY OF TIDAL MARSH SPARROWS IN NEW JERSEY by Rebecca A. Kern A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Spring 2015 © 2015 Rebecca Kern All Rights Reserved CONSERVATION ECOLOGY OF TIDAL MARSH SPARROWS IN NEW JERSEY by Rebecca A. Kern Approved: __________________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: __________________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ W. Gregory Shriver, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Jacob L. Bowman, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Kyle P. McCarthy, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Brian J. Olsen, Ph.D. Member of dissertation committee ACKNOWLEDGMENTS Throughout the past four and a half years, this work has been influenced, directed, and occasionally wrestled from stagnation by numerous individuals; although space prevents me from fully acknowledging and appreciating your crucial roles, please know this process truly would not have been possible without you! First and foremost, my deepest thanks to my advisor, Greg Shriver. Thank you for giving me the opportunity to join SHARP (Saltmarsh Habitat and Avian Research Program) and for your excellent mentorship throughout two advanced degrees. Thank you for challenging me to think critically and creatively, to present clearly and confidently, and to passionately pursue conservation. I also thank my dissertation committee, Dr. Jake Bowman, Dr. Kyle McCarthy, and Dr. Brian Olsen, for their input and guidance. My excellent field technicians deserve special acknowledgement for their diligence and great senses of humor throughout long and hot summers: A. Anholt, N. Banet, D. Faith, M. Grasso, A. Mankofsky, T. Pitcher, M. Rhode, and J. Warner. The staff at Edwin B. Forsythe NWR provided invaluable support for field work with trucks, boats, and housing. Forsythe NWR staff P. Castelli, B. Crouch, V. Turner, J. Heise, and M. Schvetz were especially key to the success of this project. I thank the graduate students, past and present, in the Department of Entomology and Wildlife Ecology for their support and for providing a great community in which to spend these past seven years. Many thanks also goes to the members of SHARP, whose cooperative collaboration has made this process more fulfilling, enriching, and exciting than I ever expected. Being a part of this “extended lab group” has truly been a highlight of my iv graduate career! Finally, a very special thanks to Whitney Wiest, fellow Shriver- labmate, co-instructor, and saltmarsh enthusiast since 2008. This experience has been infinitely more constructive, educational, humorous, and memorable because you’ve been a part of it. There’s no one else I would rather have shared this wild ride with! This work would not have been completed without the support and love of my family and friends. Thanks, Mom and Dad, for always encouraging me, checking in about “the paper,” and helping me to stay grounded through it all. I’m grateful for the wonderful community at Evangelical Presbyterian Church of Newark, which has been like a second family to me. Thank you, Jon, Meghan, and Olivia for your support and for helping me take time to relax. And special thanks to Anne for your steadfast friendship and comradery. This dissertation is dedicated in memorium to Dr. Russell Greenberg and Dr. William Glanz, who made invaluable contributions as early committee members. Their passion and ideas provided the foundation for my thinking in many of the following chapters, and they will be deeply missed in the conservation community. Funding for the research was provided by a Competitive State Wildlife Grant (US-5-R-1) via Federal Aid in Sportfish and Wildlife Restoration to the states of Delaware, Maryland, Connecticut, and Maine. v TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... viii LIST OF FIGURES ........................................................................................................ x ABSTRACT ................................................................................................................. xii Chapter 1 AVIAN ADAPTATION TO TIDAL MARSHES: NICHE DIMENSIONS AND TRADEOFFS ............................................................................................ 1 Introduction ........................................................................................................ 1 Methods .............................................................................................................. 5 Study Area .................................................................................................... 5 Field Methodology ....................................................................................... 6 Data Analysis ................................................................................................ 8 Results .............................................................................................................. 13 Discussion ......................................................................................................... 16 TABLES ........................................................................................................... 21 FIGURES ......................................................................................................... 26 REFERENCES ................................................................................................. 32 2 SHORT-TERM RESILIENCE OF NEW JERSEY TIDAL MARSHES TO HURRICANE SANDY .................................................................................... 38 Introduction ...................................................................................................... 38 Methods ............................................................................................................ 40 Study Area .................................................................................................. 40 Field Data Collection .................................................................................. 41 Statistical Analyses ..................................................................................... 45 Results .............................................................................................................. 48 Vegetation ................................................................................................... 48 Small Mammal Abundance ........................................................................ 48 Sparrow Abundance ................................................................................... 49 vi Sparrow Nest Survival ................................................................................ 49 Discussion ......................................................................................................... 51 TABLES ........................................................................................................... 55 FIGURES ......................................................................................................... 60 REFERENCES ................................................................................................. 63 3 IMPROVING SEASIDE SPARROW POPULATION VIABILITY IN THE MIDST OF SEA-LEVEL RISE ....................................................................... 69 Introduction ...................................................................................................... 69 Methods ............................................................................................................ 71 Study Site and Scenarios ............................................................................ 71 Field Data Collection .................................................................................. 73 Stages, Survival, and Recruitment .............................................................. 74 Initial Abundance, Carrying Capacity, and Dispersal ................................ 76 Density-Dependence, Quasi-Extinction, and Stochasticity .......................
Recommended publications
  • Cape Sable Seaside Sparrow Ammodramus Maritimus Mirabilis
    Cape Sable Seaside Sparrow Ammodramus maritimus mirabilis ape Sable seaside sparrows (Ammodramus Federal Status: Endangered (March 11, 1967) maritimus mirabilis) are medium-sized sparrows Critical Habitat: Designated (August 11, 1977) Crestricted to the Florida peninsula. They are non- Florida Status: Endangered migratory residents of freshwater to brackish marshes. The Cape Sable seaside sparrow has the distinction of being the Recovery Plan Status: Revision (May 18, 1999) last new bird species described in the continental United Geographic Coverage: Rangewide States prior to its reclassification to subspecies status. The restricted range of the Cape Sable seaside sparrow led to its initial listing in 1969. Changes in habitat that have Figure 1. County distribution of the Cape Sable seaside sparrrow. occurred as a result of changes in the distribution, timing, and quantity of water flows in South Florida, continue to threaten the subspecies with extinction. This account represents a revision of the existing recovery plan for the Cape Sable seaside sparrow (FWS 1983). Description The Cape Sable seaside sparrow is a medium-sized sparrow, 13 to 14 cm in length (Werner 1975). Of all the seaside sparrows, it is the lightest in color (Curnutt 1996). The dorsal surface is dark olive-grey and the tail and wings are olive- brown (Werner 1975). Adult birds are light grey to white ventrally, with dark olive grey streaks on the breast and sides. The throat is white with a dark olive-grey or black whisker on each side. Above the whisker is a white line along the lower jaw. A grey ear patch outlined by a dark line sits behind each eye.
    [Show full text]
  • Emergency Management Action Plan for the Endangered Cape Sable Seaside Sparrow Ammodramus Maritimus Mirabilis
    Emergency Management Action Plan for the endangered Cape Sable Seaside Sparrow Ammodramus maritimus mirabilis Federal Status Endangered (March 11, 1967) Florida Status Endangered Range Endemic to Florida Everglades Population Estimate ~ 2,000 to 3,500 birds Current Population Trend Stable Habitat Marl prairie Major Threats Habitat loss and degradation, altered hydrology and fire regimes Recovery Plan Objective Down listing from ‘Endangered’ to ‘Threatened’ Develop a decision framework to help rapidly guide sparrow EMAP Goal emergency management actions Identify the situations or events that would trigger an emergency EMAP Objective management action and provide the details for each action. Gary L. Slater1,2 Rebecca L. Boulton1,3 Clinton N. Jenkins4 Julie L. Lockwood3 Stuart L. Pimm4 A report to: U.S. Fish and Wildlife Service South Florida Ecological Services Office Vero Beach, FL 32960 1 Authors contributed equally to report 2 Ecostudies Institute, Mount Vernon, WA 98273; Corresponding author ([email protected]) 3 Department of Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ 08901 4 Environmental Sciences & Policy, Duke University, Durham, NC 27708 Ecostudies Institute committed to ecological research and conservation AUTHORS GARY SLATER; is the founder and research director of Ecostudies Institute, a non-profit organization dedicated to conducting sound science and conservation. Gary's qualifications and experience span two important areas in conservation science: administrative/program management and independent research. Since 1993, he has conducted research on the avifauna of the south Florida pine rocklands, including the last 10 years planning, implementing, and monitoring the reintroduction of the Brown-headed Nuthatch (Sitta pusilla) and Eastern Bluebird (Sialia sialis) to Everglades National Park.
    [Show full text]
  • L O U I S I a N A
    L O U I S I A N A SPARROWS L O U I S I A N A SPARROWS Written by Bill Fontenot and Richard DeMay Photography by Greg Lavaty and Richard DeMay Designed and Illustrated by Diane K. Baker What is a Sparrow? Generally, sparrows are characterized as New World sparrows belong to the bird small, gray or brown-streaked, conical-billed family Emberizidae. Here in North America, birds that live on or near the ground. The sparrows are divided into 13 genera, which also cryptic blend of gray, white, black, and brown includes the towhees (genus Pipilo), longspurs hues which comprise a typical sparrow’s color (genus Calcarius), juncos (genus Junco), and pattern is the result of tens of thousands of Lark Bunting (genus Calamospiza) – all of sparrow generations living in grassland and which are technically sparrows. Emberizidae is brushland habitats. The triangular or cone- a large family, containing well over 300 species shaped bills inherent to most all sparrow species are perfectly adapted for a life of granivory – of crushing and husking seeds. “Of Louisiana’s 33 recorded sparrows, Sparrows possess well-developed claws on their toes, the evolutionary result of so much time spent on the ground, scratching for seeds only seven species breed here...” through leaf litter and other duff. Additionally, worldwide, 50 of which occur in the United most species incorporate a substantial amount States on a regular basis, and 33 of which have of insect, spider, snail, and other invertebrate been recorded for Louisiana. food items into their diets, especially during Of Louisiana’s 33 recorded sparrows, Opposite page: Bachman Sparrow the spring and summer months.
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Environmental Sensitivity Index Guidelines Version 2.0
    NOAA Technical Memorandum NOS ORCA 115 Environmental Sensitivity Index Guidelines Version 2.0 October 1997 Seattle, Washington noaa NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Ocean Service Office of Ocean Resources Conservation and Assessment National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce The Office of Ocean Resources Conservation and Assessment (ORCA) provides decisionmakers comprehensive, scientific information on characteristics of the oceans, coastal areas, and estuaries of the United States of America. The information ranges from strategic, national assessments of coastal and estuarine environmental quality to real-time information for navigation or hazardous materials spill response. Through its National Status and Trends (NS&T) Program, ORCA uses uniform techniques to monitor toxic chemical contamination of bottom-feeding fish, mussels and oysters, and sediments at about 300 locations throughout the United States. A related NS&T Program of directed research examines the relationships between contaminant exposure and indicators of biological responses in fish and shellfish. Through the Hazardous Materials Response and Assessment Division (HAZMAT) Scientific Support Coordination program, ORCA provides critical scientific support for planning and responding to spills of oil or hazardous materials into coastal environments. Technical guidance includes spill trajectory predictions, chemical hazard analyses, and assessments of the sensitivity of marine and estuarine environments to spills. To fulfill the responsibilities of the Secretary of Commerce as a trustee for living marine resources, HAZMAT’s Coastal Resource Coordination program provides technical support to the U.S. Environmental Protection Agency during all phases of the remedial process to protect the environment and restore natural resources at hundreds of waste sites each year.
    [Show full text]
  • Chapter 2 Delaware's Wildlife Habitats
    CHAPTER 2 DELAWARE’S WILDLIFE HABITATS 2 - 1 Delaware Wildlife Action Plan Contents Chapter 2, Part 1: DELAWARE’S ECOLOGICAL SETTING ................................................................. 8 Introduction .................................................................................................................................. 9 Delaware Habitats in a Regional Context ..................................................................................... 10 U.S. Northeast Region ............................................................................................................. 10 U.S. Southeast Region .............................................................................................................. 11 Delaware Habitats in a Watershed Context ................................................................................. 12 Delaware River Watershed .......................................................................................................13 Chesapeake Bay Watershed .....................................................................................................13 Inland Bays Watershed ............................................................................................................ 14 Geology and Soils ......................................................................................................................... 17 Soils .......................................................................................................................................... 17 EPA
    [Show full text]
  • Scott's Seaside Sparrow Biological Status Review Report
    Scott’s Seaside Sparrow Biological Status Review Report March 31, 2011 FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION 620 South Meridian Street Tallahassee, Florida 32399-1600 Biological Status Review Report for the Scott’s Seaside Sparrow (Ammodramus maritimus peninsulae) March 31, 2011 EXECUTIVE SUMMARY The Florida Fish and Wildlife Conservation Commission (FWC) directed staff to evaluate all species listed as Threatened or Species of Special Concern as of November 8, 2010 that had not undergone a status review in the past decade. Public information on the status of the Scott’s seaside sparrow was sought from September 17 to November 1, 2010. The three-member Biological Review Group (BRG) met on November 3 - 4, 2010. Group members were Michael F. Delany (FWC lead), Katy NeSmith (Florida Natural Areas Inventory), and Bill Pranty (Avian Ecologist Contractor) (Appendix 1). In accordance with rule 68A-27.0012, Florida Administrative Code (F.A.C.), the BRG was charged with evaluating the biological status of the Scott’s seaside sparrow using criteria included in definitions in 68A-27.001, F.A.C., and following the protocols in the Guidelines for Application of the IUCN Red List Criteria at Regional Levels (Version 3.0) and Guidelines for Using the IUCN Red List Categories and Criteria (Version 8.1). Please visit http://myfwc.com/wildlifehabitats/imperiled/listing-action- petitions/ to view the listing process rule and the criteria found in the definitions. In late 2010, staff developed the initial draft of this report which included BRG findings and a preliminary listing recommendation from staff. The draft was sent out for peer review and the reviewers’ input has been incorporated to create this final report.
    [Show full text]
  • Natural Epigenetic Variation Within and Among Six Subspecies of the House Sparrow, Passer Domesticus Sepand Riyahi1,*,‡, Roser Vilatersana2,*, Aaron W
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 4016-4023 doi:10.1242/jeb.169268 RESEARCH ARTICLE Natural epigenetic variation within and among six subspecies of the house sparrow, Passer domesticus Sepand Riyahi1,*,‡, Roser Vilatersana2,*, Aaron W. Schrey3, Hassan Ghorbani Node4,5, Mansour Aliabadian4,5 and Juan Carlos Senar1 ABSTRACT methylation is one of several epigenetic processes (such as histone Epigenetic modifications can respond rapidly to environmental modification and chromatin structure) that can influence an ’ changes and can shape phenotypic variation in accordance with individual s phenotype. Many recent studies show the relevance environmental stimuli. One of the most studied epigenetic marks is of DNA methylation in shaping phenotypic variation within an ’ DNA methylation. In the present study, we used the methylation- individual s lifetime (e.g. Herrera et al., 2012), such as the effect of sensitive amplified polymorphism (MSAP) technique to investigate larval diet on the methylation patterns and phenotype of social the natural variation in DNA methylation within and among insects (Kucharski et al., 2008). subspecies of the house sparrow, Passer domesticus. We focused DNA methylation is a crucial process in natural selection on five subspecies from the Middle East because they show great and evolution because it allows organisms to adapt rapidly to variation in many ecological traits and because this region is the environmental fluctuations by modifying phenotypic traits, either probable origin for the house sparrow’s commensal relationship with via phenotypic plasticity or through developmental flexibility humans. We analysed house sparrows from Spain as an outgroup. (Schlichting and Wund, 2014).
    [Show full text]
  • New Insights Into the Phylogenetics and Population Structure of the Prairie Falcon (Falco Mexicanus) Jacqueline M
    Doyle et al. BMC Genomics (2018) 19:233 https://doi.org/10.1186/s12864-018-4615-z RESEARCH ARTICLE Open Access New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus) Jacqueline M. Doyle1,2*, Douglas A. Bell3,4, Peter H. Bloom5, Gavin Emmons6, Amy Fesnock7, Todd E. Katzner8, Larry LaPré9, Kolbe Leonard10, Phillip SanMiguel11, Rick Westerman11 and J. Andrew DeWoody2,12 Abstract Background: Management requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely- related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge. Results: We sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker.
    [Show full text]
  • Community Structure and Food-Web Dynamics in Northeastern U.S
    COMMUNITY STRUCTURE AND FOOD-WEB DYNAMICS IN NORTHEASTERN U.S. TIDAL MARSHES By Laura Kay Garey B.S. Truman State University, 2010 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Sciences) The Graduate School The University of Maine May 2017 Advisory Committee: Brian J. Olsen, Associate Professor, School of Biology and Ecology, Co-advisor Thomas P. Hodgman, Non-game Bird Biologist, Retired, Maine Department of Inland Fisheries and Wildlife, Co-advisor Hamish S. Greig, Assistant Professor, School of Biology and Ecology Adrienne I. Kovach, Assistant Professor, Department of Natural Resources and the Environment, University of New Hampshire COMMUNITY STRUCTURE AND FOOD-WEB DYNAMICS IN NORTHEASTERN U.S. TIDAL MARSHES By Laura Kay Garey Thesis Advisors: Dr. Brian J. Olsen and Thomas P. Hodgman An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Sciences) May 2017 Tidal marshes represent one of the most productive natural systems on the globe, but because they are so physiologically stressful, they have low species richness. Consequently, tidal marsh communities are relatively homogenous across large spatial scales. Within saltmarshes, scale-dependent processes and patterns can be identified with the reduction of variation in community dynamics due to low species turnover. I conducted two studies in tidal marshes along the northeastern U.S. coast to explore the abiotic and biotic factors that influence food-web dynamics and community structure. I explored the effect of temporal and spatial variables on community composition of tidal-marsh invertebrates.
    [Show full text]
  • Ecological and Genetic Diversity in the Seaside Sparrow
    BIOLOGY OF THE EMBERIZIDAE Ecological and Genetic Diversity in the Seaside Sparrow he Seaside Sparrow (Ammodramus maritimus), a sparrow that is almost T always found in salt and brackish marshes, occurs along the Atlantic Coast of the United States from New Hampshire to central Florida (where it is now extirpated as a breeder), and along the Gulf Coast from central Florida to central Texas. As a species that can be common in maritime wetlands, the Seaside Sparrow has the potential to be a good “indicator species” of the health of salt- marshes: Where the marshes are in good condition, the birds are abundant; where the marshes are degraded, they are less common or absent. Degradation of habi- tat—walling, diking, draining, and pollution—are the principal threats to this species, having resulted in the extirpation of multiple populations, including sev- eral named taxa. Along the Atlantic coast, where the species has been closely studied (Woolfenden 1956; Norris 1968; Post 1970, 1981; Post et James D. Rising al. 1983; DeRagon 1988 in Post and Greenlaw 1994), densities, measured Department of Zoology as males per hectare, range from 0.6–1.0 in degraded habitats to 0.3–20.0 in undrained and unaltered marshes. University of Toronto First described and named by Alexander Wilson, the “Father of Ameri- Toronto ON M53 3G5 can Ornithology”, in 1811, on the basis of specimens from southern New Jersey (Great Egg Harbor), the Seaside Sparrow is a polytypic species (i.e., [email protected] a species showing geographic variation, with more than one named sub- species) with a complex taxonomic history (Austin 1983).
    [Show full text]
  • Montifringilla Nivalis
    Report under the Article 12 of the Birds Directive European Environment Agency Period 2008-2012 European Topic Centre on Biological Diversity Montifringilla nivalis Annex I No International action plan No White-winged Snowfinch, Montifringilla nivalis, is a species of passerine bird in the sparrow family found in unvegetated or sparsely vegetated land ecosystems. Montifringilla nivalis has a breeding population size of 16900-29900 pairs and a breeding range size of 122000 square kilometres in the EU27. The breeding population trend in the EU27 is Unknown in the short term and Unknown in the long term. The EU population status for Montifringilla nivalis is Unknown, as the data reported were not sufficient to assess the population status of the species. Page 1 Montifringilla nivalis Report under the Article 12 of the Birds Directive Assessment of status at the European level Breeding Breeding range Winter population Winter Breeding population trend Range trend trend Population population population size area status Short Long Short Long size Short Long term term term term term term 16900 - 29900 p x x 122000 Unknown See the endnotes for more informationi Page 2 Montifringilla nivalis Report under the Article 12 of the Birds Directive Page 3 Montifringilla nivalis Report under the Article 12 of the Birds Directive Trends at the Member State level Breeding Breeding range Winter population Winter % in Breeding population trend Range trend trend MS/Ter. population EU27 population size area Short Long Short Long size Short Long term term term term term term AT 24.2 6000 - 11000 p 0 x 36377 0 0 DE 2.6 140 - 270 p 0 0 1132 0 0 ES 11.8 4500 - 6000 p x 0 11136 x 0 FR 15.3 2000 - 4000 p x x 22400 x 0 GR IT 45.1 4000 - 8000 p x x 50400 + - SI 0.9 100 - 300 p x x 666 0 0 See the endnotes for more informationii Page 4 Montifringilla nivalis Report under the Article 12 of the Birds Directive Page 5 Montifringilla nivalis Report under the Article 12 of the Birds Directive Short-term winter population trend was not reported for this species.
    [Show full text]