Evicore Cardiac Imaging Guidelines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Perfusion-Weighted Magnetic Resonance Imaging in The
» Rev Bras Neurol, 46 (2): 29-36, 2010 Perfusion-weighted magnetic resonance imaging in the evaluation of focal neoplastic and infectious brain lesions Perfusão por ressonância magnética na avaliação das lesões focais neoplásicas e infecciosas do encéfalo Valdeci Hélio Floriano1, José Roberto Lopes Ferraz-Filho2, Antonio Ronaldo Spotti 3, Waldir Antônio Tognola4 Resumo A ressonância magnética (RM) é o método de diagnóstico por imagem de escolha na avaliação encefálica, entretanto as técnicas convencionais de RM podem apresentar limitações por fornecerem somente parâmetros qualitativos ou anatômicos. Nas últimas décadas, têm surgido novas técnicas complementares de RM que fornecem parâmetros quantitativos proporcionando informações funcionais ou metabólico-bioquímicas. A perfusão é atualmente uma destas técnicas que vem se apresentando como uma importante ferramenta na neurorradiologia. O objetivo deste artigo é apresentar uma revisão sobre o papel da seqüência de perfusão por RM na avaliação das lesões focais neoplásicas e infecciosas, únicas ou múltiplas, do encéfalo. O estudo da perfusão encefálica pode ser realizado como método complementar às técnicas convencionais de RM, permitindo o acesso aos parâmetros hemodinâmicos de uma maneira não invasiva e demonstrando o grau de angiogênese das lesões sendo, portanto, útil na diferenciação entre lesões neoplásicas e infecciosas, tumor primário e metástase única e no seguimento pós-tratamento para a diferenciação entre recidiva tumoral e radionecrose, através da demonstração da presença ou ausência de hiperperfusão. Palavras-chave: perfusão, ressonância magnética, encéfalo, neoplasias, infecção. Abstract Magnetic resonance imaging (MRI) is the gold standard method for brain assessment however the conventional MRI techniques may present limitations by only providing qualitative or anatomic parameters. -
Cardiac CT - Quantitative Evaluation of Coronary Calcification
Clinical Appropriateness Guidelines: Advanced Imaging Appropriate Use Criteria: Imaging of the Heart Effective Date: January 1, 2018 Proprietary Date of Origin: 03/30/2005 Last revised: 11/14/2017 Last reviewed: 11/14/2017 8600 W Bryn Mawr Avenue South Tower - Suite 800 Chicago, IL 60631 P. 773.864.4600 Copyright © 2018. AIM Specialty Health. All Rights Reserved www.aimspecialtyhealth.com Table of Contents Description and Application of the Guidelines ........................................................................3 Administrative Guidelines ........................................................................................................4 Ordering of Multiple Studies ...................................................................................................................................4 Pre-test Requirements ...........................................................................................................................................5 Cardiac Imaging ........................................................................................................................6 Myocardial Perfusion Imaging ................................................................................................................................6 Cardiac Blood Pool Imaging .................................................................................................................................12 Infarct Imaging .....................................................................................................................................................15 -
Resting Coronary Flow Velocity in The
European Heart Journal – Cardiovascular Imaging (2012) 13,79–85 CLINICAL/ORIGINAL PAPERS doi:10.1093/ehjci/jer153 Resting coronary flow velocity in the functional evaluation of coronary artery stenosis: study on sequential use of computed tomography angiography and transthoracic Doppler Downloaded from https://academic.oup.com/ehjcimaging/article/13/1/79/2397059 by guest on 30 September 2021 echocardiography Esa Joutsiniemi 1, Antti Saraste 1,2*, Mikko Pietila¨ 1, Heikki Ukkonen 1,2, Sami Kajander 2, Maija Ma¨ki 2,3, Juha Koskenvuo 3, Juhani Airaksinen 1, Jaakko Hartiala 3, Markku Saraste 3, and Juhani Knuuti 2 1Department of Cardiology, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland; 2Turku PET Centre, Kiinamyllynkatu 4-8, 20520 Turku, Finland; and 3Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, 20520 Turku, Finland Received 10 March 2011; accepted after revision 2 August 2011; online publish-ahead-of-print 30 August 2011 Aims Accelerated flow at the site of flow-limiting stenosis can be detected by transthoracic Doppler echocardiography (TTDE). We studied feasibility and accuracy of sequential coronary computed tomography angiography (CTA) and TTDE in detection of haemodynamically significant coronary artery disease (CAD). ..................................................................................................................................................................................... Methods We prospectively enrolled 107 patients with intermediate (30–70%) pre-test likelihood of CAD. All patients under- and results went CTA using a 64-slice scanner. Using TTDE, the ratio of maximal diastolic flow velocity to pre-stenotic flow velocity (M/P ratio) was measured in the coronary segments with stenosis in CTA. In all patients, the results were compared with invasive coronary angiography, including measurement of fractional flow reserve when appropriate. -
The Role of Multimodality Cardiac Imaging in the Management Of
CVIA The Role of Multimodality Cardiac REVIEW ARTICLE pISSN 2508-707X / eISSN 2508-7088 Imaging in the Management https://doi.org/10.22468/cvia.2017.00038 CVIA 2017;1(3):177-192 of Patients with Atrial Fibrillation Jung Im Jung Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea Received: March 6, 2017 Atrial fibrillation (AF) is the most common arrhythmia and is an independent risk factor for Revised: June 22, 2017 stroke, heart failure, and death. The prevalence of AF is expected to increase in the future Accepted: June 28, 2017 due to increasing life expectancy. In this review, we describe and evaluate the utility of ad- Corresponding author vanced cardiovascular imaging modalities, including echocardiography, cardiac computed Jung Im Jung, MD, PhD tomography, and cardiac magnetic resonance imaging, to provide novel insights into the Department of Radiology, pathogenesis, prediction, and natural history of AF. Moreover, cardiovascular imaging has Seoul St. Mary’s Hospital, become an integral part of the pre-procedural assessment, procedural management, and College of Medicine, follow-up of patients undergoing catheter-based ablation. We believe that knowledge and The Catholic University of Korea, proper use of these cardiovascular imaging modalities will enhance the successful treatment 222 Banpo-daero, Seocho-gu, and management of patients with AF. Seoul 06591, Korea Tel: 82-2-2258-1435 Key words Atrial fibrillation · Catheter ablation · Echocardiography · Fax: 82-2-599-6771 Multidetector computed tomography · Magnetic resonance Imaging. E-mail: [email protected] INTRODUCTION treat AF. Cardiovascular imaging has become an integral part of the pre-procedural assessment, procedural management, and Atrial fibrillation (AF) is the most common arrhythmia man- follow-up of patients undergoing catheter-based left atrium (LA) aged in clinical practice. -
2018 Guideline Document on Chagas Disease
GUIDELINES AND STANDARDS Recommendations for Multimodality Cardiac Imaging in Patients with Chagas Disease: A Report from the American Society of Echocardiography in Collaboration With the InterAmerican Association of Echocardiography (ECOSIAC) and the Cardiovascular Imaging Department of the Brazilian Society of Cardiology (DIC-SBC) Harry Acquatella, MD, FASE (Chair), Federico M. Asch, MD, FASE (Co-Chair), Marcia M. Barbosa, MD, PhD, FASE, Marcio Barros, MD, PhD, Caryn Bern, MD, MPH, Joao L. Cavalcante, MD, FASE, Luis Eduardo Echeverria Correa, MD, Joao Lima, MD, Rachel Marcus, MD, Jose Antonio Marin-Neto, MD, PhD, Ricardo Migliore, MD, PhD, Jose Milei, MD, PhD, Carlos A. Morillo, MD, Maria Carmo Pereira Nunes, MD, PhD, Marcelo Luiz Campos Vieira, MD, PhD, and Rodolfo Viotti, MD*, Caracas, Venezuela; Washington, District of Columbia; Belo Horizonte and Sao~ Paulo, Brazil; San Francisco, California; Pittsburgh, Pennsylvania; Floridablanca, Colombia; Baltimore, Maryland; San Martin and Buenos Aires, Argentina; and Hamilton, Ontario, Canada In addition to the collaborating societies listed in the title, this document is endorsed by the following American Society of Echocardiography International Alliance Partners: the Argentinian Federation of Cardiology, the Argentinian Society of Cardiology, the British Society of Echocardiography, the Chinese Society of Echocardiography, the Echocardiography Section of the Cuban Society of Cardiology, the Echocardiography Section of the Venezuelan Society of Cardiology, the Indian Academy of Echocardiography, -
Addition of Arterial Spin- Labelled MR Perfusion To
Open access Original research BMJ Open: first published as 10.1136/bmjopen-2020-036785 on 11 June 2020. Downloaded from Addition of arterial spin- labelled MR perfusion to conventional brain MRI: clinical experience in a retrospective cohort study Puneet Belani,1 Shingo Kihira ,1 Felipe Pacheco,1 Puneet Pawha,1 Giuseppe Cruciata,1 Kambiz Nael2 To cite: Belani P, Kihira S, ABSTRACT Strengths and limitations of this study Pacheco F, et al. Addition Objective The usage of arterial spin labelling (ASL) of arterial spin- labelled MR perfusion has exponentially increased due to improved ► To our knowledge, this is the first study to assess perfusion to conventional and faster acquisition time and ease of postprocessing. We brain MRI: clinical additional findings from arterial spin labelling (ASL) aimed to report potential additional findings obtained by experience in a retrospective MRI compared with conventional MRI for a variety adding ASL to routine unenhanced brain MRI for patients cohort study. BMJ Open of neurological pathology seen in routine clinical being scanned in a hospital setting for various neurological 2020;10:e036785. doi:10.1136/ practice. bmjopen-2020-036785 indications. ► The study consists of a relatively large patient co- Design Retrospective. hort, which strengthens the validity of the study. ► Prepublication history for Setting Large tertiary hospital. this paper is available online. ► There was only one observer in the study, which lim- Participants 676 patients. To view these files, please visit its the assessment of reproducibility. Primary outcome Additional findings fromASL sequence the journal online (http:// dx. doi. ► This is a retrospective cohort study, which limits the compared with conventional MRI. -
Myocardial Perfusion Imaging (Revised Edition)
Publications · Brochures Myocardial Perfusion Imaging (Revised Edition) A Technologist’s Guide Produced with the kind Support of Editors Ryder, Helen (Dublin) Testanera, Giorgio (Rozzano, Milan) Veloso Jerónimo, Vanessa (Almada) Vidovič, Borut (Munich) Contributors Abreu, Carla (London) Koziorowski, Jacek (Linköping) Acampa, Wanda (Naples) Lezaic, Luka (Ljubljana) Assante, Roberta (Naples) Mann, April (South Hadley) Ballinger, James (London) Medolago, Giuseppe (Bergamo) Fragoso Costa, Pedro (Oldenburg) Pereira, Edgar (Almada) Figueredo, Sergio (Lisbon) Santos, Andrea (Alverca do Ribatejo) Geão, Ana (Lisbon) Vara, Anil (Brighton) Ghilardi, Adriana (Bergamo) Zampella, Emilia (Naples) Holbrook, Scott (Gray) Contents Foreword 4 Introduction 5 Borut Vidovič Chapter 1 State of the Art in Myocardial Imaging 6 Wanda Acampa, Emilia Zampella and Roberta Assante Chapter 2 Clinical Indications 16 Luka Lezaic Chapter 3 Patient Preparation and Stress Protocols 23 Giuseppe Medolago and Adriana Ghilardi EANM Chapter 4 Multidisciplinary Approach and Advanced Practice 35 Anil Vara Chapter 5 Advances in Radiopharmaceuticals for Myocardial Perfusion Imaging 42 James R. Ballinger and Jacek Koziorowski Chapter 6 SPECT and SPECT/CT Protocols and New Imaging Equipment 54 Andrea Santos and Edgar Lemos Pereira Chapter 7 PET/CT Protocols and Imaging Equipment (*) 62 April Mann and Scott Holbrook Chapter 8 Image Processing and Software 77 Sérgio Figueiredo and Pedro Fragoso Costa Chapter 9 Artefacts and Pitfalls in Myocardial Imaging (SPECT, SPECT/CT and PET/CT) 109 Ana Geão and Carla Abreu Imprint 126 n accordance with the Austrian Eco-Label for printed matters. Eco-Label with the Austrian for n accordance (*) Articles were written with the kind support Printed i Printed of and in cooperation with: 3 Foreword The EANM Technologist Committee was dural workflow and need to cooperate with created more than 20 years ago. -
The Challenge of Assessing Heart Valve Prostheses by Doppler Echocardiography
Editorial Comment The Challenge of Assessing Heart Valve Prostheses by Doppler Echocardiography Helmut Baumgartner, MD, Muenster, Germany The assessment of prosthetic valve function remains challenging. by continuous-wave Doppler measurement. Using these velocities Echocardiography has become the key diagnostic tool not only be- for the calculation of transvalvular gradients results in marked overes- cause of its noninvasive nature and wide availability but also because timation of the actual pressure drop across the prostheses.6 The fact of limitations inherent in alternative diagnostic techniques. Invasive that this phenomenon more or less disappears in malfunctioning bi- evaluation is limited particularly in mechanical valves that cannot leaflet prostheses when the funnel-shaped central flow channel ceases be crossed with a catheter, and in patients with both aortic and mitral to exist because of restricted leaflet motion makes the interpretation valve replacements, full hemodynamic assessment would even of Doppler data and their use for accurate detection of prosthesis mal- require left ventricular puncture. Although fluoroscopy and more function even more complicated.7 Furthermore, the lack of a flat ve- recently computed tomography allow the visualization of mechanical locity profile and the central high velocities described above cause valves and the motion of their occluders, the evaluation of prosthetic erroneous calculations of valve areas when the continuity equation valves typically relies on Doppler echocardiography. incorporates such measurements.8 For these reasons, the analysis of Although Doppler echocardiography has become an ideal nonin- occluder motion using fluoroscopy (in mitral prostheses, this may vasive technique for the evaluation of native heart valves and their also be obtained on transesophageal echocardiography) remains es- function, the assessment of prosthetic valves has remained more dif- sential to avoid the misinterpretation of high Doppler velocities across ficult. -
Adenosine-Stress Dynamic Myocardial CT Perfusion Imaging Initial Clinical Experience
Color Figure(s): F1-3 Art: RLI200544/4 3:36 10/2/4 1؍balt6/z7l-ir/z7l-ir/z7l00610/z7l3090-10z xppws S ORIGINAL ARTICLE AQ:1 Adenosine-Stress Dynamic Myocardial CT Perfusion Imaging Initial Clinical Experience Gorka Bastarrika, MD, PhD,*† Luis Ramos-Duran, MD,* Michael A. Rosenblum, MD,‡ Doo Kyoung Kang, MD,*§ Garrett W. Rowe, BS,* and U. Joseph Schoepf, MD*‡ Single photon emission computed tomography1 is the most widely Objective: To evaluate the feasibility of adenosine-stress dynamic myocardial used modality, although cardiac magnetic resonance imaging volume perfusion imaging with dual source computed tomography (CT) for the (MRI)2 has demonstrated its superiority for detecting nontransmural qualitative and quantitative assessment of myocardial blood flow (MBF) com- perfusion defects mainly because ofits higher spatial resolution.3 pared with stress perfusion and viability magnetic resonance imaging (MRI). Ϯ The usefulness of multi detector-row CT (MDCT) for ruling Material and Methods: Ten patients (8 male, 2 female, mean age 62.7 out significant coronary artery stenosis4–6 and for providing prog- 7.1 years) underwent stress/rest perfusion and delayed-enhancement MRI, nostic information in patients with suspected coronary artery dis- and a cardiac CT protocol comprising prospectively electrocardiogram -trig- ease7–10 has repeatedly been demonstrated. Moreover, recent liter- gered coronary CT angiography, dynamic adenosine-stress myocardial per- ature suggests the feasibility of using MDCT as a standalone fusion imaging using a “shuttle” mode, and delayed enhancement acquisi- technology for integrative evaluation of coronary heart disease.11–15 tions. Two independent observers visually assessed myocardial perfusion The standard spiral acquisition mode of MDCT, however, cannot defects. -
2Nd Quarter 2001 Medicare Part a Bulletin
In This Issue... From the Intermediary Medical Director Medical Review Progressive Corrective Action ......................................................................... 3 General Information Medical Review Process Revision to Medical Record Requests ................................................ 5 General Coverage New CLIA Waived Tests ............................................................................................................. 8 Outpatient Hospital Services Correction to the Outpatient Services Fee Schedule ................................................................. 9 Skilled Nursing Facility Services Fee Schedule and Consolidated Billing for Skilled Nursing Facility (SNF) Services ............. 12 Fraud and Abuse Justice Recovers Record $1.5 Billion in Fraud Payments - Highest Ever for One Year Period ........................................................................................... 20 Bulletin Medical Policies Use of the American Medical Association’s (AMA’s) Current Procedural Terminology (CPT) Codes on Contractors’ Web Sites ................................................................................. 21 Outpatient Prospective Payment System January 2001 Update: Coding Information for Hospital Outpatient Prospective Payment System (OPPS) ......................................................................................................................... 93 he Medicare A Bulletin Providers Will Be Asked to Register Tshould be shared with all to Receive Medicare Bulletins and health care -
Evicore Cardiac Imaging Guidelines
CLINICAL GUIDELINES Cardiac Imaging Policy Version 1.0 Effective February 14, 2020 eviCore healthcare Clinical Decision Support Tool Diagnostic Strategies: This tool addresses common symptoms and symptom complexes. Imaging requests for individuals with atypical symptoms or clinical presentations that are not specifically addressed will require physician review. Consultation with the referring physician, specialist and/or individual’s Primary Care Physician (PCP) may provide additional insight. CPT® (Current Procedural Terminology) is a registered trademark of the American Medical Association (AMA). CPT® five digit codes, nomenclature and other data are copyright 2017 American Medical Association. All Rights Reserved. No fee schedules, basic units, relative values or related listings are included in the CPT® book. AMA does not directly or indirectly practice medicine or dispense medical services. AMA assumes no liability for the data contained herein or not contained herein. © 2019 eviCore healthcare. All rights reserved. Cardiac Imaging Guidelines V1.0 Cardiac Imaging Guidelines Abbreviations for Cardiac Imaging Guidelines 3 Glossary 4 CD-1: General Guidelines 5 CD-2: Echocardiography (ECHO) 15 CD-3: Nuclear Cardiac Imaging 26 CD-4: Cardiac CT, Coronary CTA, and CT for Coronary Calcium (CAC) 33 CD-5: Cardiac MRI 40 CD-6: Cardiac PET 45 CD-7: Diagnostic Heart Catheterization 49 CD-8: Pulmonary Artery and Vein Imaging 56 CD-9: Congestive Heart Failure 59 CD-10: Cardiac Trauma 62 CD-11: Adult Congenital Heart Disease 64 CD-12: Cancer Therapeutics-Related -
Philips Announces Collaboration with Medtronic
Philips announces collaboration with Medtronic 14 May 2019 | News | By Kalyani Sharma Philips will bring to market the novel KODEX-EPD cardiac imaging and navigation system with cryoablation specific features Royal Philips has announced a collaboration with Medtronic to further advance treatment of paroxysmal atrial fibrillation (PAF), a common heart rhythm disorder. Through the agreement, Medtronic will facilitate sales of products on behalf of Philips to provide an innovative, integrated image guidance solution for cryoablation procedures. Philips will bring to market the novel KODEX-EPD cardiac imaging and navigation system with cryoablation specific features to enable electrophysiologists to perform cryoablation procedures with reduced need for X-ray imaging. Atrial fibrillation (AF) affects more than 33 million people worldwide. Cryoballoon ablation is used in a minimally invasive procedure to isolate the pulmonary veins, which are a source of erratic electrical signals that cause AF. The technology uses cold energy rather than heat (radio frequency (RF) ablation) to create scar tissue and interrupt these irregular electrical pathways in the heart. Marlou Janssen, Business Leader Philips EPD Solutions said, “This integrated solution can guide physicians during the treatment of AF patients with ablation, as they can view detailed, CT-like 3D anatomy, reducing the need for X-ray imaging. Partnering with Medtronic extends the reach of our KODEX-EPD cardiac imaging and navigation system. Today, this technology is simplifying navigation,