Redalyc.Habitat Conditions Drive Phylogenetic Structure of Dominant

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Habitat Conditions Drive Phylogenetic Structure of Dominant Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Centeno, Carla M.; Mejía, Omar; Falcón, Luisa I. Habitat conditions drive phylogenetic structure of dominant bacterial phyla of microbialite communities from several locations in Mexico Revista de Biología Tropical, vol. 64, núm. 3, septiembre, 2016, pp. 1057-1065 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44946472011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Habitat conditions drive phylogenetic structure of dominant bacterial phyla of microbialite communities from several locations in Mexico Carla M. Centeno 1, Omar Mejía 1 & Luisa I. Falcón 2 1. Departamento de Zoología, Escuela Nacional de Ciencias Biológicas- Instituto Politécnico Nacional , Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, C.P. 11340, Distrito Federal, México; [email protected], [email protected] 2. Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito exterior s/n., Ciudad Universitaria, C.P. 04510, Distrito Federal, México; [email protected] Received 16- IV -2015. Corrected 19- II -2016. Accepted 16- III -2016. Abstract: Community structure and composition are dictated by evolutionary and ecological assembly pro - cesses which are manifested in signals of, species diversity, species abundance and species relatedness. Analysis of species coexisting relatedness, has received attention as a tool to identify the processes that influence the com - position of a community within a particular habitat. In this study, we tested if microbialite genetic composition is dependent on random events versus biological/abiotical factors. This study was based on a large genetic data set of two hypervariable regions (V5 and V6) from previously generated barcoded 16S rRNA amplicons from nine microbialite communities distributed in Northeastern, Central and Southeastern Mexico collected in May and June of 2009. Genetic data of the most abundant phyla (Proteobacteria, Planctomycetes, Verrucomicrobia, Bacteroidetes, and Cyanobacteria) were investigated in order to state the phylogenetic structure of the complete communities as well as each phylum. For the complete dataset, Webb NTI index showed positive and significant values in the nine communities analysed, where values ranged from 31.5 in Pozas Azules I to 57.2 in Bacalar Pirate Channel; meanwhile, NRI index were positive and significant in six of the nine communities analysed with values ranging from 18.1 in Pozas Azules I to 45.1 in Río Mesquites. On the other hand, when compar - ing each individual phylum, NTI index were positive and significant in all groups, except in Cyanobacteria for which positive and significant values were only found in three localities; finally, NRI index was significant in only a few of the comparisons performed. The results suggest that habitat filtering is the main process that drives phylogenetic structure in bacterial communities associated to microbialites with the exception of Cyanobacteria where different lineages can contribute to microbialite formation and growth. Rev. Biol. Trop. 64 (3): 1057- 1065. Epub 2016 September 01. Key words: community assembly, community composition, Cyanobacteria, heterotrophic bacteria, microbial - ites, NRI, NTI. Microbialites are organo-sedimentary which first appeared during the Archaean eon structures formed by the interaction of resident (Allwood, Walter, Kamber, Marshall, & Burch, benthic microorganisms (bacteria, archaea and 2006). Nowadays, these biogenic fabrics devel - a few eukaryotes) (Burne & Moore, 1987) and op in different kinds of aquatic systems world - surrounding environmental factors (Foster et wide, from fully marine conditions (Reid et al., 2009; Westphal, Heindel, Brandano, & al., 2000) to freshwater desert ponds (Dinger, Peckman, 2010), which allow the precipita - Hendrickson, Winsborough, & Marks, 2006). tion of carbonates and / or in situ calcification, The active growing microbial-portion is verti - with the subsequent formation of lithified hori - cally stratified and represents diverse (Bolhuis zons that shape microbialite fabric (Dupraz & & Stal, 2011; Centeno et al., 2012; Mobberley, Vischer, 2005). Microbialites are considered Ortega, & Foster, 2012) and highly produc - living representatives of ancient stromatolites, tive multi-trophic microbial self-controlling Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 64 (3): 1057-1065, September 2016 1057 ecosystems (Pringault, De Wit, & Camoin, In other words, both indices tend to reveal 2005; Schneider, Arp, Reimer, Reitner, & phylogenetic clustering in two levels, NTI at Daniel, 2013), where slight changes in depth the tips of the branches in a lower taxonomical correspond to marked niche boundaries (Armit - resolution, and NRI to the base of the tree at a age, Gallagher, Youngblut, Buckley, & Zinder, deep taxonomical level (Letcher, 2010). 2012). To date, it is well known that micro - The degree of phylogenetic relatedness bial communities associated to microbialites computed by NRI and NTI allows the under - are dominated by bacterial phyla including: standing of the processes (biotic or abiotic) Proteobacteria, Bacteroidetes, Cyanobacteria, that determine community composition (Bry - Planctomycetes, Verrucomicrobia and Acti - ant et al., 2008). Hence, the goal of this study nobacteria, among others (Papineau, Walker, was to evaluate if dominant bacterial phyla that Mojzsis, & Pace, 2005; Baumgartner et al., form and maintain microbialites in different 2009, Foster et al., 2009; Centeno et al., 2012; geographic locations exhibit patterns of phylo - Saghaï et al., 2015). Nevertheless, it is unclear genetic structure and if so, to elucidate if biotic if these bacterial assemblages differ between or abiotic factors are their main causal factors. locations (Martiny et al., 2006), as well as To test this, we considered a large genetic data the factors that are responsible for their com - set of two hypervariable regions (V5 and V6), munity structure and composition (Fierer & from previously generated barcoded 16S ribo - Lennon, 2011; Chong, Pearce, Convey, Yew, somal (rDNA) amplicons from microbialite & Tan, 2012). communities distributed in different geographi - Community structure and composition are cal regions of Mexico. It has been suggested driven by ecological and evolutionary pro - that environment drives biogeographic pat - cesses (Hanson, Fuhrman, Horner-Devine, & terns at a large scale, whereas competition Martiny, 2012; Pontarp, Ripa, & Lundberg, determines diversity in small neighbourhoods 2012) that can either facilitate or inhibit that (HilleRisLambers, Adler, Harpole, Levine, & a particular taxon colonizes a local habitat; Mayfield, 2012), thus we hypothesize that and can be manifested in signals of species biological ensembles present in each location relatedness, species diversity and species abun - will be driven by abiotic factors, due that each dance (Pontarp, Sjöstedt, & Lundberg, 2013). environment has different conditions of pH, Species relatedness has received attention to temperature, conductivity and available nutri - try to identify the processes that influence the ents (Centeno et al., 2012). composition of a biological ensemble. Hanson et al., (2012) proposed that selection, drift, dis - MATERIAL AND METHODS persal and mutation, are the main processes that rule microbial biogeographic patterns. In this The abundance of each microbialite phyla phylogenetic context, the use of net relatedness in each locality has been previously described index (NRI) and nearest taxon index (NTI) in Centeno et al. (2012). (Webb, 2000) has proven useful for the analy - sis of microbial phylogenetic structure within Microbialites 16S rDNA sequence selec - different communities and environments. NRI tion: Sequences of nine localities from dif - measures the overall phylogenetic distance ferent geographical regions of Mexico where between paired taxa of a particular location rel - microbialites develop were included. A perma - ative to the total gene pool (Chong et al., 2012), nent stream (RM) and two freshwater ponds (PI whereas NTI is based on the average phyloge - and PII) in Cuatro Cienegas basin, Northeastern netic distance to the nearest neighbor, and it is Mexico; Alchichica crater-lake, an athalosaline used to determine whether closely related taxa soda-lake in Central Mexico, where two micro - in a community are more related than expected bialite morphotypes develop: a spongy type by chance (Horner-Devine & Bohannan, 2006). (AS) that is widely distributed, and a columnar 1058 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 64 (3): 1057-1065, September 2016 type (AC) with a restricted distribution in the were obtained and aligned with Clustal X v.2.1 lake; and two costal lagoons sites, Sian Ka´an (Thompson, Gibson, Plewniak, Jeanmougin, (S) and Bacalar (BP, BM and BR), Southeast - Higgins, 1997) using default parameters. Maxi - ern Mexico (Fig. 1). In each locality, a total mum likelihood phylogenetic reconstructions of six microbialites were sampled manually were analyzed for different datasets: the first in May and June (summer) of 2009. In order contained all phyla, and the rest was
Recommended publications
  • Microbiology of Endodontic Infections
    Scient Open Journal of Dental and Oral Health Access Exploring the World of Science ISSN: 2369-4475 Short Communication Microbiology of Endodontic Infections This article was published in the following Scient Open Access Journal: Journal of Dental and Oral Health Received August 30, 2016; Accepted September 05, 2016; Published September 12, 2016 Harpreet Singh* Abstract Department of Conservative Dentistry & Endodontics, Gian Sagar Dental College, Patiala, Punjab, India Root canal system acts as a ‘privileged sanctuary’ for the growth and survival of endodontic microbiota. This is attributed to the special environment which the microbes get inside the root canals and several other associated factors. Although a variety of microbes have been isolated from the root canal system, bacteria are the most common ones found to be associated with Endodontic infections. This article gives an in-depth view of the microbiology involved in endodontic infections during its different stages. Keywords: Bacteria, Endodontic, Infection, Microbiology Introduction Microorganisms play an unequivocal role in infecting root canal system. Endodontic infections are different from the other oral infections in the fact that they occur in an environment which is closed to begin with since the root canal system is an enclosed one, surrounded by hard tissues all around [1,2]. Most of the diseases of dental pulp and periradicular tissues are associated with microorganisms [3]. Endodontic infections occur and progress when the root canal system gets exposed to the oral environment by one reason or the other and simultaneously when there is fall in the body’s immune when the ingress is from a carious lesion or a traumatic injury to the coronal tooth structure.response [4].However, To begin the with, issue the if notmicrobes taken arecare confined of, ultimately to the leadsintra-radicular to the egress region of pathogensIn total, and bacteria their by-productsdetected from from the the oral apical cavity foramen fall into to 13 the separate periradicular phyla, tissues.
    [Show full text]
  • Prokaryotic Diversity and Biogeochemical Characteristics of Benthic Microbial Ecosystems at La Brava, a Hypersaline Lake at Salar De Atacama, Chile
    RESEARCH ARTICLE Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile Maria Eugenia Farias1*, Maria Cecilia Rasuk1, Kimberley L. Gallagher4, Manuel Contreras2, Daniel Kurth1, Ana Beatriz Fernandez1, Daniel Poire 3, Fernando Novoa2, Pieter T. Visscher4,5 a1111111111 1 Laboratorio de Investigaciones MicrobioloÂgicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales MicrobioloÂgicos (PROIMI), CCT-TucumaÂn, CONICET, TucumaÂn, Argentina, 2 Centro de a1111111111 EcologõÂa Aplicada (CEA), NÄ uñoa, Santiago, Chile, 3 Centro de Investigaciones GeoloÂgicas, Universidad a1111111111 Nacional de La Plata-Conicet, La Plata, Argentina, 4 Department of Marine Sciences, University of a1111111111 Connecticut, Groton, Connecticut, United States of America, 5 Australian Centre for Astrobiology, University a1111111111 of New South Wales, Sydney, New South Wales, Australia * [email protected] OPEN ACCESS Abstract Citation: Farias ME, Rasuk MC, Gallagher KL, Contreras M, Kurth D, Fernandez AB, et al. (2017) Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hyper- Prokaryotic diversity and biogeochemical saline lake, were characterized in terms of bacterial and archaeal diversity, biogeochem- characteristics of benthic microbial ecosystems at istry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical La Brava, a hypersaline lake at Salar de Atacama, characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial Chile. PLoS ONE 12(11): e0186867. https://doi.org/ 10.1371/journal.pone.0186867 communities are growing in extreme conditions, including high salinity, high solar insolation, and high levels of metals such as lithium, arsenic, magnesium, and calcium. Evaporation Editor: Stefan J.
    [Show full text]
  • Microbialite Genetic Diversity and Composition Relate to Environmental Variables Carla M
    RESEARCH ARTICLE Microbialite genetic diversity and composition relate to environmental variables Carla M. Centeno1, Pierre Legendre2, Yislem Beltra´ n1, Rocı´o J. Alca´ ntara-Herna´ ndez1, Ulrika E. Lidstro¨ m3, Matthew N. Ashby3 & Luisa I. Falco´ n1 1Instituto de Ecologı´a, Universidad Nacional Auto´ noma de Me´ xico, Mexico City, Mexico; 2De´ partement de Sciences Biologiques, Universite´ de Montre´ al, Montre´ al, QC, Canada; and 3Taxon Biosciences, Inc., Tiburon, CA, USA Correspondence: Luisa I. Falco´ n, Instituto de Abstract Ecologı´a, Universidad Nacional Auto´ noma de Me´ xico, 3er Circuito Exterior sn, Ciudad Microbialites have played an important role in the early history of life on Universitaria, Del. Coyoaca´ n, Mexico D.F. Earth. Their fossilized forms represent the oldest evidence of life on our planet 04510. Tel.: +52 55 5622 8222, ext. 46869; dating back to 3500 Ma. Extant microbialites have been suggested to be highly fax: 52 55 5622 8995; e-mail: productive and diverse communities with an evident role in the cycling of [email protected] major elements, and in contributing to carbonate precipitation. Although their ecological and evolutionary importance has been recognized, the study of their Received 30 March 2012; revised 28 June 2012; accepted 29 June 2012. genetic diversity is yet scanty. The main goal of this study was to analyse Final version published online 2 August 2012. microbial genetic diversity of microbialites living in different types of environ- ments throughout Mexico, including desert ponds, coastal lagoons and a DOI: 10.1111/j.1574-6941.2012.01447.x crater-lake. We followed a pyrosequencing approach of hypervariable regions of the 16S rRNA gene.
    [Show full text]
  • Reservoir and Source Potential of Eocene Microbialites, Green River Formation, USA
    Reservoir and Source Potential of Eocene Microbialites, Green River Formation, USA by Copyright © 2015 Nicholas Cestari Submitted to the Department of Geology and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Advisory Committee: Alison Olcott Marshall, Chair Craig P. Marshall Eugene C. Rankey Date Defended: 12/2/2015 The Thesis Committee for Nicholas Cestari certifies that this is the approved version of the following thesis: Reservoir and Source Potential of Eocene Microbialites, Green River Formation, USA ___________________________________ Alison Olcott Marshall, Ph.D., Chairperson Date Approved: 12/2/2015 ii ABSTRACT In recent years, large petroleum discoveries within the lacustrine microbialite facies of pre-salt systems of offshore Brazil, Angola, and Gabon have increased interest in the potential of microbial carbonates as reservoir rocks. Whereas a multitude of studies have been conducted on microbialites and the associated lacustrine facies separately, there is still little known regarding whether there are definitive dissimilarities between the geochemical footprints of microbialites and associated lithofacies within a system. To explore this unknown, organic geochemistry was evaluated with the aim of comparing the microbialite facies (stromatolites and thrombolites) with the associated lacustrine carbonates (dolomitic marlstone, ooid grainstone, peloidal packstone and wackestone) to test if there are dissimilarities in regard to reservoir and source potential. Specifically, the goal is to understand the petroleum significance of lacustrine microbialites deposited in various lake conditions. Total Organic Carbon (TOC) and extractable organic material were analyzed for microbialite and associated lacustrine lithofacies in the Green River Formation of Colorado and Utah.
    [Show full text]
  • Cell Structure and Function in the Bacteria and Archaea
    4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth.
    [Show full text]
  • Sepf Is the Ftsz Anchor in Archaea, with Features of an Ancestral Cell Division System
    ARTICLE https://doi.org/10.1038/s41467-021-23099-8 OPEN SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system Nika Pende1,8, Adrià Sogues2,8, Daniela Megrian1,3, Anna Sartori-Rupp4, Patrick England 5, Hayk Palabikyan6, ✉ Simon K.-M. R. Rittmann 6, Martín Graña 7, Anne Marie Wehenkel 2 , Pedro M. Alzari 2 & ✉ Simonetta Gribaldo 1 Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, 1234567890():,; but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.
    [Show full text]
  • Ecological Relevance of Abundant and Rare Taxa in a Highly-Diverse Elastic
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433984; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Ecological relevance of abundant and rare taxa in a highly-diverse elastic 3 hypersaline microbial mat, using a small-scale sampling 4 5 Authors 6 Laura Espinosa-Asuar1,*, Camila Monroy1, David Madrigal-Trejo1, Marisol Navarro- 7 Miranda1, Jazmín Sánchez-Pérez1, Jhoseline Muñoz1, Juan Diego Villar2, Julián 8 Cifuentes2, Maria Kalambokidis1, Diego A. Esquivel-Hernández1, Mariette 9 Viladomat1, Ana Elena Escalante-Hernández3 , Patricia Velez4, Mario Figueroa5, 10 Santiago Ramírez Barahona4, Jaime Gasca-Pineda1, Luis E. Eguiarte1and Valeria 11 Souza1,*. 12 13 Affiliations 14 1Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional 15 Autónoma de México, AP 70-275, Coyoacán 04510, Ciudad de México, México 16 2Pontificia Universidad Javeriana, Bogotá D.C., Colombia 17 3Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, 18 Universidad Nacional Autónoma de México, AP 70-275, Coyoacán 04510, Ciudad 19 de México, México, City, México 20 4Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma 21 de México, Coyoacán 04510, Ciudad de México, México 22 5Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 23 04510, Ciudad de México, México 24 *corresponding authors: 25 [email protected]; [email protected] 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433984; this version posted March 10, 2021.
    [Show full text]
  • Shark Bay Microbialites: a Walk Through Technological Time
    Shark Bay microbialites: a walk through technological time Brendan Burns and Pieter Visscher DEC symposium on research and conservation October 2012 Outline 1. Shark Bay microbialites 2. Initial diversity studies 3. Tagged pyrosequencing 4. Functional metagenomic sequencing 5. Microelectrode profiling 6. Conservation and sustainability 7. Where to from here…. Applications of genomic, proteomic, microbiological, and analytical chemical tools in the study of functional complexity Outline 1. Shark Bay microbialites 2. Initial diversity studies 3. Tagged pyrosequencing 4. Functional metagenomic sequencing 5. Microelectrode profiling 6. Conservation and sustainability 7. Where to from here…. Overall strategic research goals Comprehensively study the functional complexity of modern microbialites, as a model system for understanding the intricate interactions between microorganisms and their physical environment and their potential roles in the wider biosphere Hypothesis Microbial metabolisms (and interactions) determine stromatolite function, morphology, and persistence Hamelin Pool (Shark Bay) ,Western Australia Shark Bay microbialites • One of the best examples on earth of living marine microbialites • Surrounding seawater at least twice as saline as normal seawater (fluctuates); high UV, desiccation • Higher salinity in early oceans • Key to understanding the past is to study the present Outline 1. Shark Bay microbialites 2. Initial diversity studies 3. Tagged pyrosequencing 4. Functional metagenomic sequencing 5. Microelectrode profiling
    [Show full text]
  • The Apical Root Canal System Microbial Communities Determined
    www.nature.com/scientificreports OPEN The apical root canal system microbial communities determined by next‑generation sequencing Luciana Carla Neves de Brito1, Janet Doolittle‑Hall2, Chun‑Teh Lee 3, Kevin Moss2, Wilson Bambirra Júnior4, Warley Luciano Fonseca Tavares4, Antônio Paulino Ribeiro Sobrinho4* & Flávia Rocha Fonseca Teles5 The aim of this study was to explore the microbial communities of endodontic infections at their apical portion by 16S rRNA Illumina sequencing and delineate the core microbiome of root canal infections and that of their associated clinical symptomatology. Samples were collected from ffteen subjects presenting one tooth with a root canal infection, and their associated symptoms were recorded. Samples were collected from the apical third of roots using a #10 K fle and then amplifed using multiple displacement amplifcation and PCR-amplifed with universal primers. Amplicons were sequenced (V3–V4 hypervariable region of the 16S rRNA gene) using MiSeq (Illumina, CA). The microbial composition of the samples was determined using QIIME and HOMINGS. Data were analyzed using t tests and ANOVA. A total of 1,038,656 good quality sequences were obtained, and OTUs were assigned to 10 bacterial phyla, led by Bacteroidetes (51.2%) and Firmicutes (27.1%), and 94 genera were represented primarily by Prevotella (17.9%) and Bacteroidaceae G-1 (14.3%). Symptomatic teeth were associated with higher levels of Porphyromonas (p < 0.05) and Prevotella. P. endodontalis and P. oris were present in both cores. The present study demonstrated the complexity of the root canal microbiome and the “common denominators” of root canal infections and identifed taxa whose virulence properties should be further explored.
    [Show full text]
  • Structure of Bacterial and Archaeal Cells
    © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 4 CHAPTER PREVIEW 4.1 There Is Tremendous Diversity Structure of Among the Bacteria and Archaea 4.2 Prokaryotes Can Be Distinguished by Their Cell Shape and Arrangements Bacterial and 4.3 An Overview to Bacterial and Archaeal Cell Structure 4.4 External Cell Structures Interact Archaeal Cells with the Environment Investigating the Microbial World 4: Our planet has always been in the “Age of Bacteria,” ever since the The Role of Pili first fossils—bacteria of course—were entombed in rocks more than TexTbook Case 4: An Outbreak of 3 billion years ago. On any possible, reasonable criterion, bacteria Enterobacter cloacae Associated with a Biofilm are—and always have been—the dominant forms of life on Earth. —Paleontologist Stephen J. Gould (1941–2002) 4.5 Most Bacterial and Archaeal Cells Have a Cell Envelope “Double, double toil and trouble; Fire burn, and cauldron bubble” is 4.6 The Cell Cytoplasm Is Packed the refrain repeated several times by the chanting witches in Shakespeare’s with Internal Structures Macbeth (Act IV, Scene 1). This image of a hot, boiling cauldron actu- MiCroinquiry 4: The Prokaryote/ ally describes the environment in which many bacterial, and especially Eukaryote Model archaeal, species happily grow! For example, some species can be iso- lated from hot springs or the hot, acidic mud pits of volcanic vents ( Figure 4.1 ). When the eminent evolutionary biologist and geologist Stephen J. Gould wrote the opening quote of this chapter, he, as well as most micro- biologists at the time, had no idea that embedded in these “bacteria” was another whole domain of organisms.
    [Show full text]
  • Gene Acquisitions from Bacteria at the Origins of Major Archaeal Clades
    Gene Acquisitions from Bacteria at the Origins of Major Archaeal Clades Are Vastly Overestimated Mathieu Groussin, Bastien Boussau, Gergely Szollosi, Laura Eme, Manolo Gouy, Céline Brochier-Armanet, Vincent Daubin To cite this version: Mathieu Groussin, Bastien Boussau, Gergely Szollosi, Laura Eme, Manolo Gouy, et al.. Gene Acqui- sitions from Bacteria at the Origins of Major Archaeal Clades Are Vastly Overestimated. Molecular Biology and Evolution, Oxford University Press (OUP), 2016, 33 (2), pp.305 - 310. 10.1093/mol- bev/msv249. hal-01913926 HAL Id: hal-01913926 https://hal.archives-ouvertes.fr/hal-01913926 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Gene Acquisitions from Bacteria at the Origins of Major Archaeal Clades Are Vastly Overestimated Mathieu Groussin,1 Bastien Boussau,2,3,4 Gergely Szoll€ osi,~ 5 Laura Eme,6 Manolo Gouy,2,3,4 Celine Brochier-Armanet,2,3,4 and Vincent Daubin*,2,3,4 1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 2UniversitedeLyon,Lyon,France 3Universite Lyon 1, Villeurbanne, France 4 CNRS, UMR 5558, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France Downloaded from https://academic.oup.com/mbe/article-abstract/33/2/305/2579643 by UCBL SCD Lyon 1 user on 06 November 2018 5ELTE-MTA “Lendulet”€ Biophysics Research Group, Budapest, Hungary 6Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Heterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns
    Life 2013, 3, 346-362; doi:10.3390/life3020346 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Heterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns Virginia P. Edgcomb * and Joan M. Bernhard Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-508-289-3734; Fax: +1-508-457-2183. Received: 4 March 2013; in revised form: 2 April 2013 / Accepted: 2 April 2013 / Published: 22 May 2013 Abstract: Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions.
    [Show full text]