Black Holes in Quantum Gravity Hidefumi Nomura

Total Page:16

File Type:pdf, Size:1020Kb

Black Holes in Quantum Gravity Hidefumi Nomura THESIS Black Holes in Quantum Gravity 量子重力理論におけるブラックホール Hidefumi Nomura 野村英史 A doctoral dissertation submitted to Department of Physics, Waseda University March, 2007 Contents I Black Hole in Brane World Scenario 9 1 Brane World Scenario and Black Hole Production 11 1.1 Brane World Scenario . ................................. 11 1.2 Black Hole Production in Brane World Scenario ...................... 13 2 Five-Dimensional Rotating Black Hole 15 2.1 Quantum Radiation of Five-Dimensional Rotating Black Hole . ........... 15 2.1.1 Non-minimal Coupled Scalar Field in 5D Rotating Black Hole .......... 16 2.1.2 Superradiance . ................................. 18 Λ=0( =0).................................... 19 Λ > 0( = −1) .................................. 20 Λ < 0( =1) ................................... 21 2.1.3 Quantization of scalar field and particle production rate . ........... 22 2.2 Evaporation of Five-Dimensional Rotating Black Hole . ................ 27 II Canonical Approach to Quantum Gravity : Loop Quantum Gravity 35 3 Formalism of Loop Quantum Gravity 37 3.1 Hamiltonian Formulation . ................................. 38 3.1.1 (3+1) decomposition ................................ 38 3.1.2 Action of Gravitational Field . ........................... 39 3.1.3 The New Variables -from metric to connection- . ................ 41 3.1.4 Holonomy and Wilson Loop (Loop Variables) . ................ 43 3.2 The Programme of Canonical Quantization . ...................... 44 3.2.1 Cylindrical Function ................................ 45 3.2.2 Orthonormal Basis of Hilbert space . ...................... 46 3.2.3 Gauge Invariant States ............................... 47 3.2.4 Spin Network . ................................. 47 3.2.5 Diffeomorphism Invariant States .......................... 50 3.3 Quantum Geometry in Loop Quantum Gravity . ...................... 50 3 4 CONTENTS 4 Black Holes in Loop Quantum Gravity 55 4.1 Black Hole Thermodynamics and Entropy ......................... 55 4.1.1 The Laws of Black Hole Mechanics ........................ 55 4.2 Origin of Black Hole Entropy . ............................... 57 4.2.1 Isolated Horizon . ............................... 58 4.2.2 Quantum Theory of Isolated Horizon . .................... 60 Hamiltonian framework .............................. 60 Quantum Horizon Geometry . ......................... 61 Entropy Calculation . ............................... 65 4.3 Semiclassical Approach to Quantum Black Hole . .................... 67 4.3.1 Bohr’s Correspondese Principle and Quasinormal Modes of Black Hole . 68 4.3.2 Universal Area Spectrum in Single-Horizon Black Holes ............. 69 WKB Analysis for single-horizon black holes ................... 69 4.3.3 Continuous Area Spectrum in Regular Black Hole . .............. 75 Highly damped QNMs of Regular Black Hole ................... 76 4.4 Reconsideration of Black Hole Entropy . ......................... 82 4.4.1 Summary of the ABCK framework ........................ 85 4.4.2 number counting . ............................... 86 5 Summary and Conclusion 89 A Angular Functions and eigenvalues 93 Introduction The quantization of gravity is probably the most important open problem in theoretical physics. Such a theory is needed not only for conceptual reasons such as unification of quantum theory with general relativity, but also for the understanding of fundamental issues such as the origin of the Universe or space and time, and the final fate of evaporating black holes. In 1915, Albert Einstein has recognized gravity as the geometry of spacetime and proposed general relativity. General relativity has predicted properly the advance of Mercury’s perihelion, gravitational deflection of light around the sun, and so on. On the other hand, quantum field theory has achieved the remarkable experimental success as the standard model in the description of fundamental interactions except gravitational interaction. The standard model indeed provides a very good description of particle physics. General relativity and quantum mechanics have changed our understanding of Nature dramatically. Both theories have destroyed and revolutionized the picture of the world before. General relativity has modified the notions of space and time. General relativity has required the general covariance of four dimensional spacetime and disproved the notion of Newton’s absolute time and space. General relativity is the discovery that spacetime and the gravitational field are the same entity. Spacetime is itself a dynamical and physical object. In turn, Quantum mechanics has changed the notions of deterministic law, measurements, and wave and particle. The term quantum refers to discrete units assigned to certain physical quantities. In other words, the quantum world is discrete. It has revealed wave-particle duality, uncertainty principle, and probabilistic law in the microscopic world. In spite of their success, the novel modified notions of those theories don’t fit together easily. We want to combine what we have learned from the two theories, however. This is an exciting challenge in fundamental theoretical physics. Fortunately, gravity is negligible in microscopic scale. Actually, the ratio of gravity to coulomb force between two electrons 1 femto meter apart is only 10−43. Then we usually neglect the gravitational force. When should we consider quantum effects of gravity? The characteristic scale in general relativity is the Schwarzschild radius 2Gm R = . (1) Sch c2 On the other hand, the characteristic scale of the elementary particle is Compton wavelength λ = . (2) mc We set the above equations equal to each other. We can get what is called Planck length lPl, Planck time 5 6 CONTENTS tPl, and Planck mass mPl, G −33 lPl = 3 10 cm, (3) c Gh −44 tPl = 5 10 s, (4) c c m = 10−5g 1019GeV. (5) Pl G The Planck length is indeed very small. If one imagines atom to be of the size of the Moon’s orbit, Planck length would only be as small as about a tenth of the size of a nucleus. In this Planck scale we can not handle the gravitational force classically and have to consider quantum effects. We have several candidates for quantum gravity at present. Those, however, are far from the com- plete one. The main approach to quantum gravity is string theory. It is based on the idea that the problem of constructing a viable quantum theory of gravity can be solved naturally within a unification of all in- teractions. String theory suggests the existence of 10-dimensional spacetime. Motivated from this string theory, a “brane world scenario” has attracted much attention [1, 2] recently. In the brane world sce- nario our four-dimensional world could itself be a “brane” (membrane) embedded in higher spacetime. In this scenario the fundamental gravitational energy scale might be low down to O(TeV) if we admit the large scale of the extra dimensions. The size of the extra dimensions could be as large as 0.1mm compatibly with gravitational experiment. Then the hierarchy problem about the discrepancy between the Planck and the electro-weak scales could be resolved. We call this “TeV scale scenario”. From a phenomenological point of view, the most exciting possibility in such a scenario is that mini-black holes might be produced in particle colliders or be found in cosmic ray events. If such a TeV scale gravity is fundamental in nature, a black hole will be produced in two body scattering above a TeV energy scale, with a geometrical cross section of the order of Schwarzschild radius, because the Schwarzschild radius of higher-dimensional black hole becomes larger than that of four-dimensional one [4, 5]. The produced black hole will evaporate soon and emit a lot of standard particles throughout quantum radiation. These phenomena can test quantum radiation, determine the number and the scale of extra dimensions, and glimpse quantum effects of gravity. Therefore, it is important that we study the general property of a higher-dimensional black hole in advance. The first part of the thesis we focus on the evolution of a higher-dimensional black hole by Hawking radiation, especially a five-dimensional black hole. The five-dimensional rotating black hole has two rotation parameter while four-dimensional one has only one rotation parameter. This property causes an interesting observation. On the other hand, another main approach to quantum gravity is the direct quantization of general rel- ativity. This includes covariant methods such as path-integral quantization and canonical methods like the Wheeler-DeWitt approach or the more recent approach so-called loop quantum gravity. We are interested in loop quantum gravity in particular. Loop quantum gravity is an attempt to construct a mathematically rigorous, non-perturbative, background independent quantum theory of four-dimensional, Lorentzian general relativity plus all known matter in the continuum. Loop quantum gravity is a straightforward quantization of general relativity with its conventional matter couplings, so the program of loop quan- tum gravity seems to be conservative and of small ambition. No claim of being the final “Theory of everything” is made. Loop quantum gravity, however, has a radical innovative picture; it predicts the minimal structures of spacetime. In the latter part of the thesis we focus on loop quantum gravity and CONTENTS 7 its application to a black hole. A black hole is one of the most interesting objects which general rela- tivity predicts. The outstanding feature of a black hole is that it has a singularity and
Recommended publications
  • Universal Thermodynamics in the Context of Dynamical Black Hole
    universe Article Universal Thermodynamics in the Context of Dynamical Black Hole Sudipto Bhattacharjee and Subenoy Chakraborty * Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India; [email protected] * Correspondence: [email protected] Received: 27 April 2018; Accepted: 22 June 2018; Published: 1 July 2018 Abstract: The present work is a brief review of the development of dynamical black holes from the geometric point view. Furthermore, in this context, universal thermodynamics in the FLRW model has been analyzed using the notion of the Kodama vector. Finally, some general conclusions have been drawn. Keywords: dynamical black hole; trapped surfaces; universal thermodynamics; unified first law 1. Introduction A black hole is a region of space-time from which all future directed null geodesics fail to reach the future null infinity I+. More specifically, the black hole region B of the space-time manifold M is the set of all events P that do not belong to the causal past of future null infinity, i.e., B = M − J−(I+). (1) Here, J−(I+) denotes the causal past of I+, i.e., it is the set of all points that causally precede I+. The boundary of the black hole region is termed as the event horizon (H), H = ¶B = ¶(J−(I+)). (2) A cross-section of the horizon is a 2D surface H(S) obtained by intersecting the event horizon with a space-like hypersurface S. As event the horizon is a causal boundary, it must be a null hypersurface generated by null geodesics that have no future end points. In the black hole region, there are trapped surfaces that are closed 2-surfaces (S) such that both ingoing and outgoing congruences of null geodesics are orthogonal to S, and the expansion scalar is negative everywhere on S.
    [Show full text]
  • Immirzi Parameter Without Immirzi Ambiguity: Conformal Loop Quantization of Scalar-Tensor Gravity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive PHYSICAL REVIEW D 96, 084011 (2017) Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity † Olivier J. Veraguth* and Charles H.-T. Wang Department of Physics, University of Aberdeen, King’s College, Aberdeen AB24 3UE, United Kingdom (Received 25 May 2017; published 5 October 2017) Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field. DOI: 10.1103/PhysRevD.96.084011 I.
    [Show full text]
  • Arxiv:1108.1178V2 [Gr-Qc]
    Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model Aristide Baratin∗1 and Daniele Oriti†2 1Centre de Physique Th´eorique, CNRS UMR 7644, Ecole Polytechnique F-9112 Palaiseau Cedex, France 2Max-Planck-Institut f¨ur Gravitationsphysik Albert Einstein Institute Am M¨uhlenberg 2, 14476, Golm, Germany, EU A dual formulation of group field theories, obtained by a Fourier transform mapping functions on a group to functions on its Lie algebra, has been proposed recently. In the case of the Ooguri model for SO(4) BF theory, the variables of the dual field variables are thus so(4) bivectors, which have a direct interpretation as the discrete B variables. Here we study a modification of the model by means of a constraint operator implementing the simplicity of the bivectors, in such a way that projected fields describe metric tetrahedra. This involves a extension of the usual GFT framework, where boundary operators are labelled by projected spin network states. By construction, the Feynman amplitudes are simplicial path integrals for constrained BF theory. We show that the spin foam formulation of these amplitudes corresponds to a variant of the Barrett-Crane model for quantum gravity. We then re-examin the arguments against the Barrett-Crane model(s), in light of our construction. Introduction Group field theories (GFT) represent a second quantized framework for both spin networks and simplicial geometry [6, 7, 9], field theories on group manifolds (or Lie algebras) producing Feynman amplitudes which can be equivalently expressed as simplicial gravity path integrals [5] or spin foam models [10], in turn covariant formulations of spin networks dynamics [1]3.
    [Show full text]
  • Arxiv:1410.1486V2 [Gr-Qc] 26 Aug 2015
    October 2014 Black Hole Thermodynamics S. Carlip∗ Department of Physics University of California Davis, CA 95616 USA Abstract The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many indepen- dent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox. arXiv:1410.1486v2 [gr-qc] 26 Aug 2015 ∗email: [email protected] 1 Introduction The surprising discovery that black holes behave as thermodynamic objects has radically affected our understanding of general relativity and its relationship to quantum field theory. In the early 1970s, Bekenstein [1, 2] and Hawking [3, 4] showed that black holes radiate as black bodies, with characteristic temperatures and entropies ~κ Ahor kTH = ;SBH = ; (1.1) 2π 4~G where κ is the surface gravity and Ahor is the area of the horizon. These quantities appear to be inherently quantum gravitational, in the sense that they depend on both Planck's constant ~ and Newton's constant G. The resulting black body radiation, Hawking radiation, has not yet been directly observed: the temperature of an astrophysical black hole is on the order of a microkelvin, far lower than the cosmic microwave background temperature. But the Hawking temperature and the Bekenstein-Hawking entropy have been derived in so many independent ways, in different settings and with different assumptions, that it seems extraordinarily unlikely that they are not real.
    [Show full text]
  • Arxiv:Gr-Qc/0511017 V3 20 Jan 2006 Xml,I a Ugse Yerly[] Hta MTS an That [6], Eardley by for Suggested Spacetimes
    AEI-2005-161 Non-symmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes Erik Schnetter1,2, ∗ and Badri Krishnan2,† 1Center for Computation and Technology, 302 Johnston Hall, Louisiana State University, Baton Rouge, LA 70803, USA 2Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany (Dated: January 2, 2006) Marginally trapped surfaces (MTSs) are commonly used in numerical relativity to locate black holes. For dynamical black holes, it is not known generally if this procedure is sufficiently reliable. Even for Schwarzschild black holes, Wald and Iyer constructed foliations which come arbitrarily close to the singularity but do not contain any MTSs. In this paper, we review the Wald–Iyer construction, discuss some implications for numerical relativity, and generalize to the well known Vaidya space- time describing spherically symmetric collapse of null dust. In the Vaidya spacetime, we numerically locate non-spherically symmetric trapped surfaces which extend outside the standard spherically symmetric trapping horizon. This shows that MTSs are common in this spacetime and that the event horizon is the most likely candidate for the boundary of the trapped region. PACS numbers: 04.25.Dm, 04.70.Bw Introduction: In stationary black hole spacetimes, there can be locally perturbed in an arbitrary spacelike direc- is a strong correspondence between marginally trapped tion to yield a 1-parameter family of MTSs. A precise surfaces (MTSs) and event horizons (EHs) because cross formulation of this idea and its proof follows from re- sections of stationary EHs are MTSs. MTSs also feature cent results of Andersson et al. [7].
    [Show full text]
  • Tsallis, Rényi and Sharma-Mittal Holographic Dark Energy Models in Loop Quantum Cosmology
    S S symmetry Article Tsallis, Rényi and Sharma-Mittal Holographic Dark Energy Models in Loop Quantum Cosmology Abdul Jawad 1 , Kazuharu Bamba 2,*, Muhammad Younas 1, Saba Qummer 1 and Shamaila Rani 1 1 Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore-54000, Pakistan; [email protected] or [email protected] (A.J.); [email protected] (M.Y.); [email protected] (S.Q.); [email protected] (S.R.) 2 Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan * Correspondence: [email protected] Received: 7 October 2018; Accepted: 31 October 2018; Published: 13 Novemebr 2018 Abstract: The cosmic expansion phenomenon is being studied through the interaction of newly proposed dark energy models (Tsallis, Rényi and Sharma-Mittal holographic dark energy (HDE) models) with cold dark matter in the framework of loop quantum cosmology. We investigate different cosmic implications such as equation of state parameter, squared sound speed and cosmological plane 0 0 (wd-wd, wd and wd represent the equation of state (EoS) parameter and its evolution, respectively). It is found that EoS parameter exhibits quintom like behavior of the universe for all three models of HDE. The squared speed of sound represents the stable behavior of Rényi HDE and Sharma-Mittal 0 HDE at the latter epoch while unstable behavior for Tsallis HDE. Moreover, wd-wd plane lies in the thawing region for all three HDE models. Keywords: cosmoligical parameters; dark energy models; loop quantum cosmology 1. Introduction Observational data from type Ia supernovae (SNIa) [1–4], the large scale structure (LSS) [5–8] and the cosmic microwave background (CMB), anisotropies [9–11], tell us that the universe undergoes an accelerated expansion at the present time.
    [Show full text]
  • An Introduction to Loop Quantum Gravity with Application to Cosmology
    DEPARTMENT OF PHYSICS IMPERIAL COLLEGE LONDON MSC DISSERTATION An Introduction to Loop Quantum Gravity with Application to Cosmology Author: Supervisor: Wan Mohamad Husni Wan Mokhtar Prof. Jo~ao Magueijo September 2014 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London Abstract The development of a quantum theory of gravity has been ongoing in the theoretical physics community for about 80 years, yet it remains unsolved. In this dissertation, we review the loop quantum gravity approach and its application to cosmology, better known as loop quantum cosmology. In particular, we present the background formalism of the full theory together with its main result, namely the discreteness of space on the Planck scale. For its application to cosmology, we focus on the homogeneous isotropic universe with free massless scalar field. We present the kinematical structure and the features it shares with the full theory. Also, we review the way in which classical Big Bang singularity is avoided in this model. Specifically, the spectrum of the operator corresponding to the classical inverse scale factor is bounded from above, the quantum evolution is governed by a difference rather than a differential equation and the Big Bang is replaced by a Big Bounce. i Acknowledgement In the name of Allah, the Most Gracious, the Most Merciful. All praise be to Allah for giving me the opportunity to pursue my study of the fundamentals of nature. In particular, I am very grateful for the opportunity to explore loop quantum gravity and its application to cosmology for my MSc dissertation.
    [Show full text]
  • Black Holes and Black Hole Thermodynamics Without Event Horizons
    General Relativity and Gravitation (2011) DOI 10.1007/s10714-008-0739-9 RESEARCHARTICLE Alex B. Nielsen Black holes and black hole thermodynamics without event horizons Received: 18 June 2008 / Accepted: 22 November 2008 c Springer Science+Business Media, LLC 2009 Abstract We investigate whether black holes can be defined without using event horizons. In particular we focus on the thermodynamic properties of event hori- zons and the alternative, locally defined horizons. We discuss the assumptions and limitations of the proofs of the zeroth, first and second laws of black hole mechan- ics for both event horizons and trapping horizons. This leads to the possibility that black holes may be more usefully defined in terms of trapping horizons. We also review how Hawking radiation may be seen to arise from trapping horizons and discuss which horizon area should be associated with the gravitational entropy. Keywords Black holes, Black hole thermodynamics, Hawking radiation, Trapping horizons Contents 1 Introduction . 2 2 Event horizons . 4 3 Local horizons . 8 4 Thermodynamics of black holes . 14 5 Area increase law . 17 6 Gravitational entropy . 19 7 The zeroth law . 22 8 The first law . 25 9 Hawking radiation for trapping horizons . 34 10 Fluid flow analogies . 36 11 Uniqueness . 37 12 Conclusion . 39 A. B. Nielsen Center for Theoretical Physics and School of Physics College of Natural Sciences, Seoul National University Seoul 151-742, Korea [email protected] 2 A. B. Nielsen 1 Introduction Black holes play a central role in physics. In astrophysics, they represent the end point of stellar collapse for sufficiently large stars.
    [Show full text]
  • Observational Test of Inflation in Loop Quantum Cosmology
    AEI-2011-042 Observational test of inflation in loop quantum cosmology Martin Bojowald1, Gianluca Calcagni2, and Shinji Tsujikawa3 1Institute for Gravitation and the Cosmos, The Pennsylvania State University 104 Davey Lab, University Park, PA 16802, U.S.A. 2Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am M¨uhlenberg 1, D-14476 Golm, Germany 3Department of Physics, Faculty of Science, Tokyo University of Science 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan E-mail: [email protected], [email protected], [email protected] Abstract: We study in detail the power spectra of scalar and tensor perturbations generated during inflation in loop quantum cosmology (LQC). After clarifying in a novel quantitative way how inverse-volume corrections arise in inhomogeneous set- tings, we show that they can generate large running spectral indices, which generally lead to an enhancement of power at large scales. We provide explicit formulas for the scalar/tensor power spectra under the slow-roll approximation, by taking into ac- count corrections of order higher than the runnings. We place observational bounds on the inverse-volume quantum correction δ a−σ (σ> 0, a is the scale factor) and arXiv:1107.1540v1 [gr-qc] 8 Jul 2011 ∝ the slow-roll parameter ǫV for power-law potentials as well as exponential potentials by using the data of WMAP 7yr combined with other observations. We derive the constraints on δ for two pivot wavenumbers k0 for several values of δ. The quadratic potential can be compatible with the data even in the presence of the LQC correc- tions, but the quartic potential is in tension with observations.
    [Show full text]
  • On Superstatistics and Black Hole Quasinormal Modes
    On superstatistics and black hole quasinormal modes. Aldo Mart´ınez-Merinoa , M. Sabidob a Departamento de Ciencias Naturales y Exactas, CU Valles, Universidad de Guadalajara. Carretera Guadalajara - Ameca Km. 45.5, C.P. 46600, Ameca, Jalisco, M´exico. b Departamento de F´ısicade la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Le´on,Guanajuato, M´exico. Abstract It is known that one can determine that lowest value of spin is jmin = 1, by using the quasinormal modes of black holes, the Bekenstein-Hawking entropy and Boltzmann-Gibbs statistics. In this paper, to determine jmin, we have used non extensive entropies that depend only on the probability (known as Obregon’s entropies and have been derived from superstatistics), as well as non extensive entropies that have free parameters . We find that jmin depends on the area and the non extensive parameter. In particular, for the non extensive entropies that only depend on the probability and find that the modification is only present for micro black holes. For classical black holes, the results are the same as for the Boltzmann-Gibbs statistics. 1. Introduction Black holes are one of the most enigmatic and enticing objects of study and just recently, a direct verification of their existence was provided by Event Horizon Telescope collaboration [1]. Despite the amount of research on the subject there are several unanswered questions. Quantization of black holes was proposed in the pioneering work of Bekenstein [2], he suggested that the surface gravity is proportional to its temperature and that the area of its event horizon is proportional to its entropy.
    [Show full text]
  • Gravitational Axial Perturbations and Quasinormal Modes of Loop Quantum Black Holes
    Eur. Phys. J. C (2019) 79:157 https://doi.org/10.1140/epjc/s10052-019-6565-2 Regular Article - Theoretical Physics Gravitational axial perturbations and quasinormal modes of loop quantum black holes M. B. Cruz1,a,C.A.S.Silva2,b,F.A.Brito1,3,c 1 Departamento de Física, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-970, Brazil 2 Instituto Federal de Educação Ciência e Tecnologia da Paraíba (IFPB), Campus Campina Grande-Rua Tranquilino Coelho Lemos 671, Jardim Dinamérica I, João Pessoa, Brazil 3 Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, Campina Grande 58429-900, Paraíba, Brazil Received: 3 November 2018 / Accepted: 3 January 2019 / Published online: 21 February 2019 © The Author(s) 2019 Abstract Loop quantum gravity (LQG) is a theory that pro- ular, in the context of this theory, a black hole metric known as poses a way to model the behavior of the spacetime in sit- loop quantum black hole (LQBH), or self-dual black hole, has uations where its atomic characteristic arises. Among these been proposed [10,11]. This solution corresponds to a quan- situations, the spacetime behavior near the Big Bang or black tum corrected Schwarzschild solution and possess the inter- hole’s singularity. The detection of gravitational waves, on esting property of self-duality. From this property, the black the other hand, has opened the way to new perspectives in the hole singularity is removed and replaced by another asymp- investigation of the spacetime structure. In this work, by the totically flat region, which is an expected effect in a quantum use of a WKB method introduced by Schutz and Will (Astro- gravity regime.
    [Show full text]
  • Immirzi Parameter and Noether Charges in First Order Gravity
    Immirzi parameter and Noether charges in first order gravity Remigiusz Durka Institute for Theoretical Physics, University of Wroc law, Pl. Maksa Borna 9, 50-204 Wroc law, Poland E-mail: [email protected] Abstract. The framework of SO(3, 2) constrained BF theory applied to gravity makes it possible to generalize formulas for gravitational diffeomorphic Noether charges (mass, angular momentum, and entropy). It extends Wald’s approach to the case of first order gravity with a negative cosmological constant, the Holst modification and the topological terms (Nieh-Yan, Euler, and Pontryagin). Topological invariants play essential role contributing to the boundary terms in the regularization scheme for the asymptotically AdS spacetimes, so that the differentiability of the action is automatically secured. Intriguingly, it turns out that the black hole thermodynamics does not depend on the Immirzi parameter for the AdS–Schwarzschild, AdS–Kerr, and topological black holes, whereas a nontrivial modification appears for the AdS–Taub–NUT spacetime, where it impacts not only the entropy, but also the total mass. 1. Black hole thermodynamics The discovery of the laws of black hole dynamics [1] has led to uncovering a remarkable analogy between gravity and thermodynamics. This is especially clear in the case of the first law κ dM = dA +ΩdJ (black hole dynamics) dE = T dS + dW (thermodynamics) , (1) 8πG arXiv:1111.0961v2 [gr-qc] 8 Nov 2011 where on the left we have black hole mass M, angular momentum J, angular velocity Ω, area of the event horizon A and surface gravity κ. The seminal works of Bekenstein [2, 3] and Hawking [4], relating the area of the event horizon with the entropy Area Entropy = , where l = G¯h/c3 , (2) 4l2 p p q and the surface gravity of a black hole with its temperature κ T emperature = ¯hc , (3) 2π have strongly suggested that this analogy might be in fact an identity.
    [Show full text]