Redleaf: Isolation and Communication in a Safe Operating System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
X10 Language Specification
X10 Language Specification Version 2.6.2 Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove Please send comments to [email protected] January 4, 2019 This report provides a description of the programming language X10. X10 is a class- based object-oriented programming language designed for high-performance, high- productivity computing on high-end computers supporting ≈ 105 hardware threads and ≈ 1015 operations per second. X10 is based on state-of-the-art object-oriented programming languages and deviates from them only as necessary to support its design goals. The language is intended to have a simple and clear semantics and be readily accessible to mainstream OO pro- grammers. It is intended to support a wide variety of concurrent programming idioms. The X10 design team consists of David Grove, Ben Herta, Louis Mandel, Josh Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, Olivier Tardieu. Past members include Shivali Agarwal, Bowen Alpern, David Bacon, Raj Barik, Ganesh Bikshandi, Bob Blainey, Bard Bloom, Philippe Charles, Perry Cheng, David Cun- ningham, Christopher Donawa, Julian Dolby, Kemal Ebcioglu,˘ Stephen Fink, Robert Fuhrer, Patrick Gallop, Christian Grothoff, Hiroshi Horii, Kiyokuni Kawachiya, Al- lan Kielstra, Sreedhar Kodali, Sriram Krishnamoorthy, Yan Li, Bruce Lucas, Yuki Makino, Nathaniel Nystrom, Igor Peshansky, Vivek Sarkar, Armando Solar-Lezama, S. Alexander Spoon, Toshio Suganuma, Sayantan Sur, Toyotaro Suzumura, Christoph von Praun, Leena Unnikrishnan, Pradeep Varma, Krishna Nandivada Venkata, Jan Vitek, Hai Chuan Wang, Tong Wen, Salikh Zakirov, and Yoav Zibin. For extended discussions and support we would like to thank: Gheorghe Almasi, Robert Blackmore, Rob O’Callahan, Calin Cascaval, Norman Cohen, Elmootaz El- nozahy, John Field, Kevin Gildea, Sara Salem Hamouda, Michihiro Horie, Arun Iyen- gar, Chulho Kim, Orren Krieger, Doug Lea, John McCalpin, Paul McKenney, Hiroki Murata, Andrew Myers, Filip Pizlo, Ram Rajamony, R. -
The Design of the EMPS Multiprocessor Executive for Distributed Computing
The design of the EMPS multiprocessor executive for distributed computing Citation for published version (APA): van Dijk, G. J. W. (1993). The design of the EMPS multiprocessor executive for distributed computing. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR393185 DOI: 10.6100/IR393185 Document status and date: Published: 01/01/1993 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
Amigaos 3.2 FAQ 47.1 (09.04.2021) English
$VER: AmigaOS 3.2 FAQ 47.1 (09.04.2021) English Please note: This file contains a list of frequently asked questions along with answers, sorted by topics. Before trying to contact support, please read through this FAQ to determine whether or not it answers your question(s). Whilst this FAQ is focused on AmigaOS 3.2, it contains information regarding previous AmigaOS versions. Index of topics covered in this FAQ: 1. Installation 1.1 * What are the minimum hardware requirements for AmigaOS 3.2? 1.2 * Why won't AmigaOS 3.2 boot with 512 KB of RAM? 1.3 * Ok, I get it; 512 KB is not enough anymore, but can I get my way with less than 2 MB of RAM? 1.4 * How can I verify whether I correctly installed AmigaOS 3.2? 1.5 * Do you have any tips that can help me with 3.2 using my current hardware and software combination? 1.6 * The Help subsystem fails, it seems it is not available anymore. What happened? 1.7 * What are GlowIcons? Should I choose to install them? 1.8 * How can I verify the integrity of my AmigaOS 3.2 CD-ROM? 1.9 * My Greek/Russian/Polish/Turkish fonts are not being properly displayed. How can I fix this? 1.10 * When I boot from my AmigaOS 3.2 CD-ROM, I am being welcomed to the "AmigaOS Preinstallation Environment". What does this mean? 1.11 * What is the optimal ADF images/floppy disk ordering for a full AmigaOS 3.2 installation? 1.12 * LoadModule fails for some unknown reason when trying to update my ROM modules. -
Exploring Languages with Interpreters and Functional Programming Chapter 22
Exploring Languages with Interpreters and Functional Programming Chapter 22 H. Conrad Cunningham 5 November 2018 Contents 22 Overloading and Type Classes 2 22.1 Chapter Introduction . .2 22.2 Polymorphism in Haskell . .2 22.3 Why Overloading? . .2 22.4 Defining an Equality Class and Its Instances . .4 22.5 Type Class Laws . .5 22.6 Another Example Class Visible ..................5 22.7 Class Extension (Inheritance) . .6 22.8 Multiple Constraints . .7 22.9 Built-In Haskell Classes . .8 22.10Comparison to Other Languages . .8 22.11What Next? . .9 22.12Exercises . 10 22.13Acknowledgements . 10 22.14References . 11 22.15Terms and Concepts . 11 Copyright (C) 2017, 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires use of a browser that supports the display of MathML. A good choice as of November 2018 is a recent version of Firefox from Mozilla. 1 22 Overloading and Type Classes 22.1 Chapter Introduction Chapter 5 introduced the concept of overloading. Chapters 13 and 21 introduced the related concepts of type classes and instances. The goal of this chapter and the next chapter is to explore these concepts in more detail. The concept of type class was introduced into Haskell to handle the problem of comparisons, but it has had a broader and more profound impact upon the development of the language than its original purpose. This Haskell feature has also had a significant impact upon the design of subsequent languages (e.g. -
Real-Time Operating System in Java
University of Wollongong Theses Collection University of Wollongong Theses Collection University of Wollongong Year Real-time operating system in Java Qinghua Lu University of Wollongong Lu, Qinghua, Real-time operating system in Java, MA thesis, School of Computer Science and Software Engineering, University of Wollongong, 2007. http://ro.uow.edu/theses/29 This paper is posted at Research Online. http://ro.uow.edu.au/theses/29 Real-time Operating System in Java A thesis submitted in fulfilment of the requirements for the award of the degree Master of Computer Science -Research from UNIVERSITY OF WOLLONGONG by Qinghua Lu School of Computer Science & Software Engineering August, 2007 1 Dedicated to My Parents, Lu Changyou and Luo Xiue! 2 The following papers were written as part of this research. 1. McKerrow, P.J., Lu, Q., Zhou, Z.Q. and Chen, L. (2007), Developing real-time systems in Java on Macintosh, Submitted to AUC’07, Apple University Consortium, Gold Coast, September, 23-26, 2007. 2. McKerrow, P.J., Lu, Q., Zhou, Z.Q. and Chen, L. (2007), Software development of embedded systems on Macintosh, Submitted to AUC’07, Apple University Consortium, Gold Coast, September, 23-26, 2007. 3 Declaration I, Qinghua Lu, declare that this thesis, submitted in fulfilment of the requirements for the award of Master of Computer Science -Research, in the School of Computer Science & Software Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications -
Alpha ELT Listing
Lienholder Name Lienholder Address City State Zip ELT ID 1ST ADVANTAGE FCU PO BX 2116 NEWPORT NEWS VA 23609 CFW 1ST COMMAND BK PO BX 901041 FORT WORTH TX 76101 FXQ 1ST FNCL BK USA 47 SHERMAN HILL RD WOODBURY CT 06798 GVY 1ST LIBERTY FCU PO BX 5002 GREAT FALLS MT 59403 ESY 1ST NORTHERN CA CU 1111 PINE ST MARTINEZ CA 94553 EUZ 1ST NORTHERN CR U 230 W MONROE ST STE 2850 CHICAGO IL 60606 GVK 1ST RESOURCE CU 47 W OXMOOR RD BIRMINGHAM AL 35209 DYW 1ST SECURITY BK WA PO BX 97000 LYNNWOOD WA 98046 FTK 1ST UNITED SVCS CU 5901 GIBRALTAR DR PLEASANTON CA 94588 W95 1ST VALLEY CU 401 W SECOND ST SN BERNRDNO CA 92401 K31 360 EQUIP FIN LLC 300 BEARDSLEY LN STE D201 AUSTIN TX 78746 DJH 360 FCU PO BX 273 WINDSOR LOCKS CT 06096 DBG 4FRONT CU PO BX 795 TRAVERSE CITY MI 49685 FBU 777 EQUIPMENT FIN LLC 600 BRICKELL AVE FL 19 MIAMI FL 33131 FYD A C AUTOPAY PO BX 40409 DENVER CO 80204 CWX A L FNCL CORP PO BX 11907 SANTA ANA CA 92711 J68 A L FNCL CORP PO BX 51466 ONTARIO CA 91761 J90 A L FNCL CORP PO BX 255128 SACRAMENTO CA 95865 J93 A L FNCL CORP PO BX 28248 FRESNO CA 93729 J95 A PLUS FCU PO BX 14867 AUSTIN TX 78761 AYV A PLUS LOANS 500 3RD ST W SACRAMENTO CA 95605 GCC A/M FNCL PO BX 1474 CLOVIS CA 93613 A94 AAA FCU PO BX 3788 SOUTH BEND IN 46619 CSM AAC CU 177 WILSON AVE NW GRAND RAPIDS MI 49534 GET AAFCU PO BX 619001 MD2100 DFW AIRPORT TX 75261 A90 ABLE INC 503 COLORADO ST AUSTIN TX 78701 CVD ABNB FCU 830 GREENBRIER CIR CHESAPEAKE VA 23320 CXE ABOUND FCU PO BX 900 RADCLIFF KY 40159 GKB ACADEMY BANK NA PO BX 26458 KANSAS CITY MO 64196 ATF ACCENTRA CU 400 4TH -
Morpho-Syntactic Interactions Between V and C in Romance1
Dialectologia. Special issue, V (2015), 293-319. ISSN: 2013-2247 Received 7 August 2015. Accepted 26 September 2015. MORPHO-SYNTACTIC INTERACTIONS BETWEEN V AND C IN ROMANCE1 Ángel J. GALLEGO Universitat Autònoma de Barcelona [email protected] Abstract This paper discusses a series of morpho-syntactic (a)symmetries that emerge in the vP and CP levels of different Romance languages. The (a)symmetries considered indicate a P or D oriented nature for specific functional heads placed in the vP and CP domains, an idea that has been at the forefront of micro-parametric studies ever since the 80s (cf. Kayne 1984, 2000; Uriagereka 1995). The consequences of this investigation for the status of parameter theory are further considered (cf. Chomsky 1981; Baker 2001; Biberauer 2008; Kayne 2000; Picallo 2014) and the study of the lexicon, arguably the main locus of linguistic variation (cf. Halle & Marantz 1993; Hale & Keyser 1993; Starke 2014; Uriagereka 2008). Keywords complementizers, lexicon, micro-parameters, Romance languages, variation, verbs INTERACCIONES MORFOSINTÁCTICAS ENTRE V Y C EN ROMANCE Resumen Este trabajo discute una serie de (a)simetrías morfosintácticas que aparecen en los niveles del Sv y el SC de diferentes lenguas románicas. Dichas (a)simetrías indican que núcleos funcionales pertenecientes a los dominios Sv y SC despliegan una naturaleza similar a P o a D, una idea que ha 1 A previous version of this paper was presented at the V Westmost Europe Dialect Syntax (Wedisyn) Meeting, held at the Universidad Autónoma de Madrid (24-25 April 2014), whose audience I thank for questions and suggestions. Special thanks go to Roberta D’Alessandro, Carlota de Benito, Inés Fernández-Ordóñez, and Álvaro Octavio de Toledo for comments and (on-going) discussion. -
Contributors to This Issue
Contributors to this Issue Stuart I. Feldman received an A.B. from Princeton in Astrophysi- cal Sciences in 1968 and a Ph.D. from MIT in Applied Mathemat- ics in 1973. He was a member of technical staf from 1973-1983 in the Computing Science Research center at Bell Laboratories. He has been at Bellcore in Morristown, New Jersey since 1984; he is now division manager of Computer Systems Research. He is Vice Chair of ACM SIGPLAN and a member of the Technical Policy Board of the Numerical Algorithms Group. Feldman is best known for having written several important UNIX utilities, includ- ing the MAKE program for maintaining computer programs and the first portable Fortran 77 compiler (F77). His main technical interests are programming languages and compilers, software confrguration management, software development environments, and program debugging. He has worked in many computing areas, including aþbraic manipulation (the portable Altran sys- tem), operating systems (the venerable Multics system), and sili- con compilation. W. Morven Gentleman is a Principal Research Oftcer in the Com- puting Technology Section of the National Research Council of Canada, the main research laboratory of the Canadian govern- ment. He has a B.Sc. (Hon. Mathematical Physics) from McGill University (1963) and a Ph.D. (Mathematics) from princeton University (1966). His experience includes 15 years in the Com- puter Science Department at the University of Waterloo, ûve years at Bell Laboratories, and time at the National Physical Laboratories in England. His interests include software engi- neering, embedded systems, computer architecture, numerical analysis, and symbolic algebraic computation. He has had a long term involvement with program portability, going back to the Altran symbolic algebra system, the Bell Laboratories Library One, and earlier. -
The Synthesis Kernel
... " The Synthesis Kernel Calton Pu, Henry Massalin and 21 ~; John loannidis Columbia University ABSTRACT: The Synthesis distributed operating system combines etticient kernel calls with a high level, orthogonal interface. The key concept is the use of a code synthesizer in the kernel to generate specialized (thus short and fast) kernel routines for specific situations. We have three methods of synthesizing code: Factoring Invariants to bypass redundant computations; Collapsing Layers to eliminate unnecessary procedure calls and context switches; and Executable Data Structures to shorten data structure traversal time. Applying these methods, the kernel call synthesized to read Idevlmem takes about 15 microseconds on a 68020 machine. A simple model of computation called a synthetic machine supports parallel and distributed processing. The interface to synthetic machine consists of six operations on four kinds of ohjects. This combination of a high-level interface with the code synthesizer avoids the traditional trade-off in operating systems between powerful interfaces and efficient implementations . ., Complliing .\'yslt'nIS, Vol. 1 • No.1' Winter IIJI!I! I I I. Introduction and data, and synthetic 1/0 units to move data in to and out of the synthetic machine. The synthetic machine interface and kernel code synthesizer A trade-off between powerful features and efficient arc independent ideas that have a synergistic eliect. Without the implementation exists in many operating systems. Systems with code synthesizer. even a sophisticated implementation of synthetic high-level interfaces and powerful features, like Argus lO and Eden/ machines would be very inetlicient. Each high-level kernel call require a lot of code for their implementation, and this added would require a large amount of code with a long execution time. -
Empirical Comparison of Scons and GNU Make
Großer Beleg Empirical Comparison of SCons and GNU Make Ludwig Hähne August 21, 2008 Technical University Dresden Department of Computer Science Institute for System Architecture Chair for Operating Systems Professor: Prof. Dr. rer. nat. Hermann Härtig Tutor: Dipl.-Inf. Norman Feske Dipl.-Inf. Christian Helmuth Erklärung Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die angegebenen Hilfsmittel benutzt habe. Dresden, den 26. Juni 2008 Ludwig Hähne Abstract Build systems are an integral part of every software developer’s tool kit. Next to the well-known Make build system, numerous alternative solutions emerged during the last decade. Even though the new systems introduced superior concepts like content signa- tures and promise to provide better build accuracy, Make is still the de facto standard. This paper examines GNU Make and SCons as representatives of two conceptually distinct approaches to conduct software builds. General build-system concepts and their respective realizations are discussed. The performance and scalability are empirically evaluated by confronting the two competitors with comparable real and synthetic build tasks. V Contents 1 Introduction 1 2 Background 3 2.1 Design Goals . .3 2.1.1 Convenience . .3 2.1.2 Correctness . .3 2.1.3 Performance . .3 2.1.4 Scalability . .4 2.2 Software Rebuilding . .4 2.2.1 Dependency analysis . .4 2.2.1.1 File signatures . .4 2.2.1.2 Fine grained dependencies . .5 2.2.1.3 Dependency declaration . .5 2.2.1.4 Dependency types . .5 2.2.2 Build infrastructure . .6 2.2.3 Command scheduling . .6 2.3 Build System Features . -
QUICK START GUIDE 4G Lite Product Series Table of Contents
QUICK START GUIDE 4G Lite Product Series Table of Contents STEP ONE: OVERVIEW 1 to 4 STEP TWO: WIRING 5 to 11 STEP THREE: COMMUNICATION 12 to 15 STEP FOUR: ACP OR SDAC 16 to 17 STEP FIVE: SOFTWARE 18 to 21 STEP SIX: ENROLLMENT 22 to 24 STEP SEVEN: TIME & ATTENDANCE OPERATION 25 to 29 ACP OR SDAC (4G V-Station Lite) STEP FOUR: QUICK START GUIDE II Product Packaging Checklist 4G CR-PASS, 4G V-FLEX LITE AND 4G SECURECONTROL 4G V-STATION LITE QTY ITEM QTY ITEM 1 4G CR-Pass Device or 4G V-Flex Lite or 4G V-Station Lite 1 4G SecureControl Device 1 Installation CD 1 Terminal Block, 1x12po, 3.5mm, RA 1 Installation Guide (on Installation CD) 1 Terminal Block, 1x14po, 3.5mm, RA 1 Operator’s Manual (on Installation CD) 1 Quick Start Guide (Hard-copy and on Installation CD) 1 Quick Start Guide (Hard-copy and on Installation CD) 4 Dry Wall Anchor, Nylon, #4-8, 1” Length 1 SST Wall Mount Plate 4 Self-Tapping Screw, Philip Pan Head, SST, #6, 1” Length 1 4G MicroUSB Device Cable 1 Logo Sticker 1 4G MicroUSB PC Cable 1 Clamp-on Ferrite Core (WLAN Only) 1 Clamp-on Ferrite Core 1 Antenna, Omni Plug Connector (WLAN Only) 1 Machine Screw, Pin-in-Hex Security, Pan Head, SST, 6-32, 1/4” Length 1 Security Key, Pin-in-Hex, 2.5” Length NOTE: Electronic documentation is provided in Adobe® 1 Security Screw Retainer, Stainless Steel Acrobat® format (PDF). Adobe® Acrobat® Reader is available 2 Self-Tapping Screw, Philip Pan Head, SST, #6, 1” Length on the Installation CD or at http://www.adobe.com OVERVIEW 2 Dry Wall Anchor, Nylon, #4-8, 1” Length 2 Machine Screw, -
On the Interaction of Object-Oriented Design Patterns and Programming
On the Interaction of Object-Oriented Design Patterns and Programming Languages Gerald Baumgartner∗ Konstantin L¨aufer∗∗ Vincent F. Russo∗∗∗ ∗ Department of Computer and Information Science The Ohio State University 395 Dreese Lab., 2015 Neil Ave. Columbus, OH 43210–1277, USA [email protected] ∗∗ Department of Mathematical and Computer Sciences Loyola University Chicago 6525 N. Sheridan Rd. Chicago, IL 60626, USA [email protected] ∗∗∗ Lycos, Inc. 400–2 Totten Pond Rd. Waltham, MA 02154, USA [email protected] February 29, 1996 Abstract Design patterns are distilled from many real systems to catalog common programming practice. However, some object-oriented design patterns are distorted or overly complicated because of the lack of supporting programming language constructs or mechanisms. For this paper, we have analyzed several published design patterns looking for idiomatic ways of working around constraints of the implemen- tation language. From this analysis, we lay a groundwork of general-purpose language constructs and mechanisms that, if provided by a statically typed, object-oriented language, would better support the arXiv:1905.13674v1 [cs.PL] 31 May 2019 implementation of design patterns and, transitively, benefit the construction of many real systems. In particular, our catalog of language constructs includes subtyping separate from inheritance, lexically scoped closure objects independent of classes, and multimethod dispatch. The proposed constructs and mechanisms are not radically new, but rather are adopted from a variety of languages and programming language research and combined in a new, orthogonal manner. We argue that by describing design pat- terns in terms of the proposed constructs and mechanisms, pattern descriptions become simpler and, therefore, accessible to a larger number of language communities.