Lesson 10: Graph Visualisation and Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 10: Graph Visualisation and Analysis IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Lesson 10 Graph Visualisation and Analysis: Methods and Applications Mentor: Dr. Kam Tin Seong Associate Professor of Information Systems (Practice) School of Information Systems, Singapore Management University Content • Motivation of graph visualisation • Graph Visualisation in Actions • Typology of network data • Graph data file formats • Graph Layout Techniques • Network visualisation and analysis process model • Network Metrics • Network visualisation and analysis tools – Gephi – NodeXL 10-1 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Network in real World • Physical – Transportation (i.e. road, port, rail, etc) – Utility (electricity, water, gas, network cable, etc) – Natural (river, etc) • Abstract – Social media (i.e. e-mail, Facebook, Twitter, Wikipedia, etc) – Organisation (i.e. NGO, politics, customer-company, staff-to-staff, criminal, terrorist, disease, etc) 3 Classical Graph Theory • The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1735 laid the foundations of graph theory and prefigured the idea of topology. Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg 4 10-2 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Classical Graph Visualisation and Analysis • Using sociogram, also know as network graph Early 20th-century social graph used in studying workflows among employees Source: Valdis Krebs (2010) “Your Choice Reveal Who You Are: Mining and Visualizing Social Patterns” in Beautiful Visualization. 5 Graph Visualisation in action 1 • Using graph visualisation to understand business networks 6 10-3 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph Visualisation in action 2 • Graph visualisation is used to reveal voting patterns among United States senators Graph Visualisation in action 3 • Graph visualisation is used to understand online social network 8 10-4 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph Visualisation in action 4 • Graph visualisation is used to show how the news are all connected by degrees of separation Link: http://whichlight.github.io/reddit-network- vis/?discussion=http://reddit.com/r/gaming/comments/3d2ewz/ninten do_president_satoru_iwata_passes_away/ 9 Graph Visualisation in actin 5 • SNA in Construction Industry Source: Pryke, S.D.”Analysing construction project coalitions: exploring the application of social network analysis”, Construction Management and Economics, (2004), 22. pp. 787-797. 10-5 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph Visualisation in action 6 • (a) Similarity graph of log entries and (b) Similarity graph of network scans (b) (a) Source: Graph Drawing for Security Visualization Graph Visualisation in action 7 • Networks of the below universities are expanded in a breadth first manner up to the depth of 2, (showing university, alumni and companies they are associated with through employment, investment or other activities) • Size of the node reflects degree of the node (scaled logarithmically). Source: http://www.innovation-ecosystems.org/wp-content/uploads/2010/12/2011.educon.pdf 10-6 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph Visualisation in action 8 • Degree centrality indexes for nodes in the existing (2006) and proposed (2020) public transport networks in Melbourne’s north-east Graph Visualisation in action 9 • Maritime degree, centrality and vulnerability: port hierarchies and emerging areas in containerized transport (2008–2010) 10-7 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph visualization in action 10 • S&T cooperation network diagram of cities in China To learn more, go to Visual Complexity Source: http://www.visualcomplexity.com/vc/index.cfm?domain=Transportation%20Networks 16 10-8 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis What are interaction data? • A table showing phone call links between 10 staff in a company. Potential source of network data • Transaction records (for example, EZLink card) 18 10-9 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Potential source of network data • Link records (for example, board of directors) 19 Potential source of network data • Unstructured data (for example, Tweets) 20 10-10 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis An undirected link table • Focus on interaction but not the direction. – For example C1 -> C6 and C6 -> C1 are considered as one interaction. • The table is symmetric. A directed link table • Focus on both interaction and direction. – For example C1 -> C6 and C6 -> C1 are considered as two different interactions. • The table is asymmetric. 10-11 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph Data File Formats • GraphML, an XML-based file format for graphs. • GXL, graph exchange format based on XML. • Trivial Graph Format, simple text based format. • GML is another widely used graph exchange format. • DGML, Directed Graph Markup Language from Microsoft. • XGMML, an XML-based graph markup language closely related to GML. • Dot Language, a format for describing graphs and their presentation, for the Graphviz set of tools. 23 Graph database - Reference: http://neo4j.com/developer/get-started/ 10-12 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph representation • On the left is a normal graph, in the centre is a graph in which each edge is given a numerical value, and to the right is a directed graph. Complete Graph • A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. 10-13 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis A sample graph • A complete graph is a simple undirected graph in which every pair of distinct vertices (also known as nodes) are connected by an unique edge. edge vertex A directed graph • Have a clear origin and destination. • Also known as asymmetric edges. • Suitable for representing network with non reciprocal relationships such as Twitter. 10-14 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis A weighted graph • A weighted edge includes values associated with each edge that indicate the strength or frequency of tie. – For example, numbers of calls between two staffs. A weighted graph • Edges with different thickness are used to represent the monthly calls by staffs. 10-15 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis An ego-centric graph • Network consisting of an individual and their immediate peers (Heer & Boyd, 2005) Bipartite Graph • A graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V are independent sets. • Equivalently, a bipartite graph is a graph that does not contain any odd- length cycles. 32 10-16 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Affiliation Networks - Bipartite Graph • Nodes are partitions into two subsets and all Two-mode view of the Southern lines are between pairs of nodes belonging to Women social event dataset different subsets • As there are g actors and h events, there are g + h nodes • The lines on the graph represent the relation “is affiliated with” from the perspective of the actor and the relation “has as a member” from the perspective of the event. • No two actors are adjacent and no two events are adjacent. If pairs of actors are reachable, it is only via paths containing one or more events. Similarly, if pairs of events are reachable, it is only via paths containing one or more actors. Valdis Krebs (2010) “Your Choice Reveal Who You Are: Mining and Visualizing Social Patterns” in Beautiful Visualization. A Multimodel Graph • Social network connecting different types of vertices. – For example, a network may connect peers to discussion forums and blog posts they have commented on. SeriousEats visualization emphasizing the most important people (black circles), forums (orange squares), and blogs (blue diamonds). 10-17 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Adjacency Matrix 35 Graph Layouts 36 10-18 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Conventional graph drawing • Showing node-edge relationship. • Very challenging for large graph. Issues to consider when representing structured data through a graph • Positioning of nodes • Representation of the edges • Dimensioning • Interaction with graphs 10-19 IS428 Visual Analytics for Business Intelligence 10/29/2015 Lesson 10: Graph Visualisation and Analysis Graph Layout Techniques • Force-directed • Radial • Tree Source: http://en.wikipedia.org/wiki/Graph_drawing Force-Directed
Recommended publications
  • Fcastone - FCA file Format Conversion and Interoperability Software
    FcaStone - FCA file format conversion and interoperability software Uta Priss Napier University, School of Computing, [email protected] www.upriss.org.uk Abstract. This paper presents FcaStone - a software for FCA file format con- version and interoperability. The paper both describes the features of FcaStone and discusses FCA interoperability issues (such as the specific difficulties en- countered when connecting FCA tools to other tools). The paper ends with a call to the FCA community to develop some sort of standard FCA Interchange For- mat, which could be used for data exchange between stand-alone applications and across the web. 1 Introduction FcaStone1 (named in analogy to ”Rosetta Stone”) is a command-line utility that con- verts between the file formats of commonly-used FCA2 tools (such as ToscanaJ, Con- Exp, Galicia, Colibri3) and between FCA formats and other graph and vector graph- ics formats. The main purpose of FcaStone is to improve the interoperability between FCA, graph editing and vector graphics software. Because it is a command-line tool, FcaStone can easily be incorporated into server-side web applications, which generate concept lattices on demand. FcaStone is open source software and available for down- load from Sourceforge. FcaStone is written in an interpreted language (Perl) and thus platform-independent. Installation on Linux and Apple OS X consists of copying the file to a suitable location. Installation on Windows has also been tested and is also fairly easy. The need for interoperability software was highlighted in discussions among ICCS participants in recent years. Several ICCS authors expressed disappointment with the lack of progress in conceptual structures (CS) research with respect to applications and software (Chein & Genest (2000); Keeler & Pfeiffer (2006)) and with respect to current web developments (Rudolph et al., 2007).
    [Show full text]
  • Oracle Database 10G: Oracle Spatial Network Data Model
    Oracle Database 10g: Oracle Spatial Network Data Model An Oracle Technical White Paper May 2005 Oracle Spatial Network Data Model Table of Contents Introduction ....................................................................................................... 3 Design Goals and Architecture ....................................................................... 4 Major Steps Using the Network Data Model................................................ 5 Network Modeling........................................................................................ 5 Network Analysis.......................................................................................... 6 Network Modeling ............................................................................................ 6 Metadata and Schema ....................................................................................... 6 Network Java Representation and API.......................................................... 7 Network Creation Using SQL and PL/SQL ................................................ 8 Creating a Logical Network......................................................................... 9 Creating a Spatial Network.......................................................................... 9 Creating an SDO Geometry Network ................................................ 10 Creating an LRS Geometry Network.................................................. 10 Creating a Topology Geometry Network........................................... 11 Network Creation
    [Show full text]
  • A Network-Of-Networks Percolation Analysis of Cascading Failures in Spatially Co-Located Road-Sewer Infrastructure Networks
    Physica A 538 (2020) 122971 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks ∗ ∗ Shangjia Dong a, , Haizhong Wang a, , Alireza Mostafizi a, Xuan Song b a School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, United States of America b Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China article info a b s t r a c t Article history: This paper presents a network-of-networks analysis framework of interdependent crit- Received 26 September 2018 ical infrastructure systems, with a focus on the co-located road-sewer network. The Received in revised form 28 May 2019 constructed interdependency considers two types of node dynamics: co-located and Available online 27 September 2019 multiple-to-one dependency, with different robustness metrics based on their function Keywords: logic. The objectives of this paper are twofold: (1) to characterize the impact of the Co-located road-sewer network interdependency on networks' robustness performance, and (2) to unveil the critical Network-of-networks percolation transition threshold of the interdependent road-sewer network. The results Percolation modeling show that (1) road and sewer networks are mutually interdependent and are vulnerable Infrastructure interdependency to the cascading failures initiated by sewer system disruption; (2) the network robust- Cascading failure ness decreases as the number of initial failure sources increases in the localized failure scenarios, but the rate declines as the number of failures increase; and (3) the sewer network contains two types of links: zero exposure and severe exposure to liquefaction, and therefore, it leads to a two-phase percolation transition subject to the probabilistic liquefaction-induced failures.
    [Show full text]
  • Planarity As a Driver of Spatial Network Structure
    DOI: http://dx.doi.org/10.7551/978-0-262-33027-5-ch075 Planarity as a driver of Spatial Network structure Garvin Haslett and Markus Brede Institute for Complex Systems Simulation, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom [email protected] Downloaded from http://direct.mit.edu/isal/proceedings-pdf/ecal2015/27/423/1903775/978-0-262-33027-5-ch075.pdf by guest on 23 September 2021 Abstract include city science (Cardillo et al., 2006; Xie and Levin- son, 2007; Jiang, 2007; Barthelemy´ and Flammini, 2008; In this paper we introduce a new model of spatial network growth in which nodes are placed at randomly selected lo- Masucci et al., 2009; Chan et al., 2011; Courtat et al., 2011; cations in space over time, forming new connections to old Strano et al., 2012; Levinson, 2012; Rui et al., 2013; Gud- nodes subject to the constraint that edges do not cross. The mundsson and Mohajeri, 2013), electronic circuits (i Can- resulting network has a power law degree distribution, high cho et al., 2001; Bassett et al., 2010; Miralles et al., 2010; clustering and the small world property. We argue that these Tan et al., 2014), wireless networks (Huson and Sen, 1995; characteristics are a consequence of two features of our mech- anism, growth and planarity conservation. We further pro- Lotker and Peleg, 2010), leaf venation (Corson, 2010; Kat- pose that our model can be understood as a variant of ran- ifori et al., 2010), navigability (Kleinberg, 2000; Lee and dom Apollonian growth.
    [Show full text]
  • Arxiv:2006.02870V1 [Cs.SI] 4 Jun 2020
    The why, how, and when of representations for complex systems Leo Torres Ann S. Blevins [email protected] [email protected] Network Science Institute, Department of Bioengineering, Northeastern University University of Pennsylvania Danielle S. Bassett Tina Eliassi-Rad [email protected] [email protected] Department of Bioengineering, Network Science Institute and University of Pennsylvania Khoury College of Computer Sciences, Northeastern University June 5, 2020 arXiv:2006.02870v1 [cs.SI] 4 Jun 2020 1 Contents 1 Introduction 4 1.1 Definitions . .5 2 Dependencies by the system, for the system 6 2.1 Subset dependencies . .7 2.2 Temporal dependencies . .8 2.3 Spatial dependencies . 10 2.4 External sources of dependencies . 11 3 Formal representations of complex systems 12 3.1 Graphs . 13 3.2 Simplicial Complexes . 13 3.3 Hypergraphs . 15 3.4 Variations . 15 3.5 Encoding system dependencies . 18 4 Mathematical relationships between formalisms 21 5 Methods suitable for each representation 24 5.1 Methods for graphs . 24 5.2 Methods for simplicial complexes . 25 5.3 Methods for hypergraphs . 27 5.4 Methods and dependencies . 28 6 Examples 29 6.1 Coauthorship . 29 6.2 Email communications . 32 7 Applications 35 8 Discussion and Conclusion 36 9 Acknowledgments 38 10 Citation diversity statement 38 2 Abstract Complex systems thinking is applied to a wide variety of domains, from neuroscience to computer science and economics. The wide variety of implementations has resulted in two key challenges: the progenation of many domain-specific strategies that are seldom revisited or questioned, and the siloing of ideas within a domain due to inconsistency of complex systems language.
    [Show full text]
  • Query Processing in Spatial Network Databases
    Query Processing in Spatial Network Databases Dimitris Papadias Jun Zhang Department of Computer Science Department of Computer Science Hong Kong University of Science and Technology Hong Kong University of Science and Technology Clearwater Bay, Hong Kong Clearwater Bay, Hong Kong [email protected] [email protected] Nikos Mamoulis Yufei Tao Department of Computer Science and Information Systems Department of Computer Science University of Hong Kong City University of Hong Kong Pokfulam Road, Hong Kong Tat Chee Avenue, Hong Kong [email protected] [email protected] than their Euclidean distance. Previous work on spatial Abstract network databases (SNDB) is scarce and too restrictive Despite the importance of spatial networks in for emerging applications such as mobile computing and real-life applications, most of the spatial database location-based commerce. This necessitates the literature focuses on Euclidean spaces. In this development of novel and comprehensive query paper we propose an architecture that integrates processing methods for SNDB. network and Euclidean information, capturing Every conventional spatial query type (e.g., nearest pragmatic constraints. Based on this architecture, neighbors, range search, spatial joins and closest pairs) we develop a Euclidean restriction and a has a counterpart in SNDB. Consider, for instance, the network expansion framework that take road network of Figure 1.1, where the rectangles advantage of location and connectivity to correspond to hotels. If a user at location q poses the efficiently prune the search space. These range query "find the hotels within a 15km range", the frameworks are successfully applied to the most result will contain a, b and c (the numbers in the figure popular spatial queries, namely nearest correspond to network distance).
    [Show full text]
  • Urban Street Network Analysis in a Computational Notebook
    Urban Street Network Analysis in a Computational Notebook Geoff Boeing Department of Urban Planning and Spatial Analysis Sol Price School of Public Policy University of Southern California [email protected] Abstract: Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively conduct analytics and disseminate re- producible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tu- torials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download urban data and model street networks for various study sites, compute network indicators, vi- sualize street centrality, calculate routes, and work with other spatial data such as building footprints and points of interest. Computational notebooks help in- troduce methods to new users and help researchers reach broader audiences in- terested in learning from, adapting, and remixing their work. Due to their utility and versatility, the ongoing adoption of computational notebooks in urban plan- ning, analytics, and related geocomputation disciplines should continue into the future.1 1 Introduction A traditional academic and professional divide has long existed between code creators and code users. The former would develop software tools and workflows for professional or research ap- plications, which the latter would then use to conduct analyses or answer scientific questions.
    [Show full text]
  • The Hitchhiker's Guide to Graph Exchange Formats
    The Hitchhiker’s Guide to Graph Exchange Formats Prof. Matthew Roughan [email protected] http://www.maths.adelaide.edu.au/matthew.roughan/ Work with Jono Tuke UoA June 4, 2015 M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 1 / 31 Graphs Graph: G(N; E) I N = set of nodes (vertices) I E = set of edges (links) Often we have additional information, e.g., I link distance I node type I graph name M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 2 / 31 Why? To represent data where “connections” are 1st class objects in their own right I storing the data in the right format improves access, processing, ... I it’s natural, elegant, efficient, ... Many, many datasets M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 3 / 31 ISPs: Internode: layer 3 http: //www.internode.on.net/pdf/network/internode-domestic-ip-network.pdf M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 4 / 31 ISPs: Level 3 (NA) http://www.fiberco.org/images/Level3-Metro-Fiber-Map4.jpg M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 5 / 31 Telegraph submarine cables http://en.wikipedia.org/wiki/File:1901_Eastern_Telegraph_cables.png M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 6 / 31 Electricity grid M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 7 / 31 Bus network (Adelaide CBD) M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 8 / 31 French Rail http://www.alleuroperail.com/europe-map-railways.htm M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 9 / 31 Protocol relationships M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 10 / 31 Food web M.Roughan (UoA) Hitch Hikers
    [Show full text]
  • A DSL for Defining Instance Templates for the ASMIG System
    A DSL for defining instance templates for the ASMIG system Andrii Kovalov Dissertation 2014 Erasmus Mundus MSc in Dependable Software Systems Department of Computer Science National University of Ireland, Maynooth Co. Kildare, Ireland A dissertation submitted in partial fulfilment of the requirements for the Erasmus Mundus MSc Dependable Software Systems Head of Department : Dr Adam Winstanley Supervisor : Dr James Power Date: June 2014 Abstract The area of our work is test data generation via automatic instantiation of software models. Model instantiation or model finding is a process of find- ing instances of software models. For example, if a model is represented as a UML class diagram, the instances of this model are UML object diagrams. Model instantiation has several applications: finding solutions to problems expressed as models, model testing and test data generation. There are sys- tems that automatically generate model instances, one of them is ASMIG (A Small Metamodel Instance Generator). This system is focused on a `problem solving' use case. The motivation of our work is to adapt ASMIG system for use as a test data generator and make the instance generation process more transparent for the user. In order to achieve this we provided a way for the user to interact with ASMIG internal data structure, the instance template graph via a specially designed graph definition domain-specific language. As a result, the user is able to configure the instance template in order to get plausible instances, which can be then used as test data. Although model finding is only suitable for obtaining test inputs, but not the expected test outputs, it can be applied effectively for smoke testing of systems that process complex hierarchic data structures such as programming language parsers.
    [Show full text]
  • Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis
    Hindawi Advances in Bioinformatics Volume 2017, Article ID 1278932, 8 pages https://doi.org/10.1155/2017/1278932 Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis Georgios A. Pavlopoulos,1 David Paez-Espino,1 Nikos C. Kyrpides,1 and Ioannis Iliopoulos2 1 Department of Energy, Joint Genome Institute, Lawrence Berkeley Labs, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA 2Division of Basic Sciences, University of Crete Medical School, Andrea Kalokerinou Street, Heraklion, Greece Correspondence should be addressed to Georgios A. Pavlopoulos; [email protected] and Ioannis Iliopoulos; [email protected] Received 22 February 2017; Revised 14 May 2017; Accepted 4 June 2017; Published 18 July 2017 Academic Editor: Klaus Jung Copyright © 2017 Georgios A. Pavlopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. We comment on their strengths and their weaknesses and empirically discuss their scalability, user friendliness, and postvisualization capabilities.
    [Show full text]
  • An Exchange Format for Graph Transformation Systems
    Electronic Notes in Theoretical Computer Science 127 (2005) 51–63 www.elsevier.com/locate/entcs A New Version of GTXL : An Exchange Format for Graph Transformation Systems Leen Lambers Institut f¨ur Softwaretechnik und Theoretische Informatik Technische Universit¨at Berlin Germany Abstract GTXL (Graph Transformation Exchange Language) is designed to support and stimulate develop- ers to provide their graph transformation-based tools with an exchange functionality regarding the integration with other tools. For this exchange XML was chosen as underlying technology. The exchange of graphs is facilitated by the exchange format GXL which is also XML-based. GTXL uses GXL to describe the graph parts of a graph transformation system. A first version of GTXL arose from the format discussion within the EU Working Group APPLIGRAPH. Trying to restim- ulate the discussion on a common exchange format for graph transformation systems, this paper presents a new version of GTXL. Three important changes have been made. At first, an integrated presentation of rules is introduced, secondly the expression of more general conditions is supported and finally the storage of the underlying semantics of a graph transformation system by means of special attributes is proposed. Keywords: exchange format, graph transformation system, graph transformation-based tools, XML 1 Introduction Graph transformation systems (GTSs) comprise graphs and rules changing these graphs. Comparing them with term rewrite systems, terms correspond to graphs and term rewrite rules to graph rewrite rules. Since graphs are widely used to model various data structures in computer science, graph trans- formation systems can be used to define various modifications of these data 1 Email: [email protected] 1571-0661/$ – see front matter © 2005 Elsevier B.V.
    [Show full text]
  • An XML-Based Description of Structured Networks
    Massimo Ancona, Walter Cazzola, Sara Drago, and Francesco Guido. An XML-Based Description of Structured Networks. In Proceedings of Interna- tional Conference Communications 2004, pages 401–406, Bucharest, Romania, June 2004. IEEE Press. An XML-Based Description of Structured Networks Massimo Ancona£ Walter Cazzola† Sara Drago£ Francesco Guido‡ £ DISI University of Genova, e-mail: fancona,[email protected] † DICo University of Milano, e-mail: [email protected] ‡ Marconi Selenia Communication, e-mail: [email protected] Abstract In this paper we present an XML-based formalism to describe hierarchically organized communication networks. After a short overview of existing graph description languages, we discuss the advantages and disadvantages of their application in network optimization. We conclude by extending one of these formalisms with features supporting the description of the relationship between the optimized logical layout of a network and its physical counterpart. Elements for describing traffic parameters are also given. 1 Introduction The problem of network design and optimization has a strategical importance especially for military networks. In this case, design for fault tolerance and security plays a role more and more crucial than the equivalent importance required for commercial and research networks. The reengineering of a large communication network is a complex problem, which consists of different aspects that can be strongly affected by the way of describing data. The plainest way to describe a communication network is to model the relationship among sites and links by means of a weighted undirected graph, but unless some more assumptions are taken, this approach can raise several problems. A first issue is encountered when an analysis and a visualization of the network has to be realized: practical networks include hundreds or often thousands of nodes and links, so that even a simple description and documentation of the network structure is hard to maintain and update.
    [Show full text]