Ill; KR0000202 KAERI/RR-2005/99

Development of Food and Biotechnology by

Radiation in Plant

fl1 Please be aware that all of the Missing Pages in this document were originally blank pages 7| fcd

o|

EH o| S o| ۥ

o| IS

1 - o

I-

II- hormesisl- ^71-fe w.

- 2 - m. °\*\*\ hormesis

r-ray

APX)

IV.

12 Gy 27 *£} 17 » 91 19 * -8- g: 4 Gy 87.2 g

fe 10 Gy 44 43*. 38% S.

TN ^ TP %>3O>^ 59^4^ 10 Gy

^ 1^. 17 44 4 Gy, 8 Gy, 8 Gy

- 3 - TC $.#3. ZL 1 Gy £f 2 Gy

tcfef

g. 2 Gy 7] 3}^^ 4 Gy

, 1 Gy ^ 4 Gy

4 Gy ^ 8 Gy

2 Gy if 8 Gy

A2f7f f 2 Gy if 12 Gy

4 Gy l Gy

APXif S0D7f (cv. Xanthi)^] 70 Gy 58% (A/C 22% (C/A . 50 Gy 70 Gy# 7fl£| axillary shootol apical shoots}- 7]$] J^) c/A ^#1 (70 GyH

30, 50 stroma APX 42 1^^ 30 50 ^^ 50 30

^^i 30 Gy r^ 50 Gyl-

30 Gy^ 3} 6| 200

spot#o| 15-40 pi 5-6.5, pi 7-8 4°H Pi 5 o} 35 kDa^ minor

PI 5.5, 20 kDa ^-e

V.

7} *i!7]

] 7} ^IA

- 5 - •%•

- 6 - SUMMARY

I . Project Title Radiation Hormesis in Plant

II. Objective and Importance of the Project Life on earth evolved in the presence of intense radiation, y -rays were especially high. , including man, cannot escape ; food, water, air, earth, homes, clothes, and our bodies give off low levels of ionizing radiation. Our understanding of radiation damage is biased by much information taken from acute exposures, with inadequate information about moderate doses at low rates of exposure. The equating of damage from absorbed radiation without the time factor stated leads to misunderstanding about low level radiation. Chronic experiments indicate that can absorb more than the acute lethal dose without showing significant damage. The well known and well publicized somatic damage from acute radiation has promoted the simplistic viewpoint that any amount of ionizing radiation is harmful. This prediction ignore the fact that all life is constantly exposed to ambient ionizing radiation that may be essential for our well being. It is well known that ionizing radiation could be generally hormetic when administered in low doses. The hormetic dose may vary according to the subject, conditions, physiologic function measured, dose rate, and total exposure. Radiation hormesis was not predictable from classic studies with high doses of radiation. High

- 7 - doses give decreased physiologic performance, radiation sickness, and death. Hormetic doses give accelerated development, increased resistance to disease and subsequent radiation, greater reproductive capacity, and longer life span. Radiation hormesis provides the basis for appropriate utilization of ionizing radiation as a useful tool in our technologic society. It can provide more efficient use of resources, maximum production of grain, vegetables, and meat, and increased health and longevity. Efficient utilization of 's resources demands support to explore the practical application of radiation hormesis.

HI. Scope and Contents of Project This research was performed to investigate the effects of low dose y -ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora Blight of Pepper could be enhanced as an aspect of radiation hormesis. Isolation and characterization of radiation-induced proteins from plant cultured cells and plants, and study of radiation tolerant of transformed plants from antioxidant enzyme (SOD and/or APX) by radiation were carried out to develop the radiation-tolerant plants by biochemical and molecular biological understanding of antioxidative mechanism of plant and cultured cells by radiation IV. Result of Project © Seeds of "Palpal" cultivar were irradiated with 0.5~20 Gy of y radiation in order to determine the hormetic effect of low dose radiation. The germination rate of y -ray irradiation group was lower than that of the control but the seedling height of groundnut grown from seeds irradiated with low dose y -ray was slightly higher than that of the control. The number of pod and kernels, and the seed yield increased by 27 %, 17 % and 19 %, respectively, in the 12.0 Gy irradiation group compared to that in the control group. The 100 seed weight was 87.2 g in the 4.0 Gy irradiation group, which was 11 % heavier than 78.3 g in the control group. Low dose radiation showed an enhancement effects on the growth and yield components of groundnut.

(2) Brassica campestris varieties showed higher germination rate and dry weight production with increasing y ray dose. Dry weight of Surim and Hckjinju were 143% and 13856 at lOGy dose, respectively. There was no tendency in germination rate and dry weight production for Raphanus sativas var. Chung-un with y -ray irradiation. The pattern of mineral nutrient content of these plants showed y or d type of dose-reaction curve with no siginificant. This investigation suggests that the more results can be required to understand the hormetic effect of low dose y ray on the uptake of mineral nutrient for these plants.

(3) Low dose y radiation had promoting effects on the germination and early growth in the old seeds of cabbage at the optimum dose of 1.0 Gy and 2.0 Gy. Chlorophyll contents of cabbage plantlet were higher

- 9 - in the low dose irradiated groups than the unirradiated, and had a tendency to increase as a function of irradiated dose. The antioxidant enzyme activity of cabbage plantlet increased in the low dose irradiated groups and decreased in the high dose irradiated groups.

@ The hormetic effects of the low dose y-radiation on the growth were different from each cultivar. Low dose y-radiation had promoting effects on the germination at the optimum dose of 2 Gy and 8 Gy and on the early growth at the optimum dose of 4 Gy, 16 Gy and 20 Gy in partner and support cultivar and 1 Gy in FR yongja cultivar. Chlorophyll contents of gourd plantlet were not significant effects of irradiation. The antioxidant enzyme activity of gourd plantlet and early growth were not remarkable correlation but generally increasing tendency.

© Germination rate of seeds irradiated with low dose y-ray was enhanced in Seokwang cultivar but not in Housemomotaro cultivar. Seedling height increased in 4 Gy and 8 Gy irradiation group of both cultivars. Plant height of Seokwang cultivar was depressed in low dose irradiation group but fresh weight was increased in 2 Gy and 4 Gy irradiation group. In Housemomotaro cultivar, plant height increased in 12 Gy and 20 Gy irradiation group and fresh weight increased in 4 Gy and 20 Gy irradiation group. Growth inhibition of tomato plants by high dose radiation was noticeably reduced by pre-irradiation of low dose radiation. Resistance to subsequent high dose of radiation was enhanced in 2 Gy and 8 Gy irradiation group of Seokwang cultivar and in 2 Gy and 12 Gy irradiation group of Housemomotaro cultivar.

- 10 - (H) The germination rate of pepper seeds was significantly enhanced by the radiation at all dose levels. Stimulatory effect for resistance induction was found to differ between cultivars. It was confirmed that the remarkable effect was induced in Dabok and depended on radiation dosage. Disease resistance at 4 Gy was much higher than that of control. On the other hand, no detectable induction effect for resistance was dbserved in Kwangbok which was moderate resistant cultivar to radiation.

© The growth of transgenic tobacco plants that overexpress SOD and/or APX cDNA were investigated after gamma irradiations at 0, 10, 30, 50, and 70 Gy. Plant growth was inhibited according to the dose of irradiation. In the plants irradiated with 70 Gy, A/C plants showed 58& of inhibition and 11% of inhibition in C/A plants comparing to control plants (non-treated irradiated plants). In 50 Gy-radiation, plants flowered earlier than other gamma irradiated plants. The axillary shoots were formed in 50 and 70 Gy-irradiated plants. Gamma-radiation inhibited the growth of shoot apical meristem but the new leaves grew at 10 DAT in all plants including non-treated plants.

(§) In an attempt to analysis the antioxidative gene expression in response to gamma-irradiation in tobacco plants, young tobacco plants were gamma-irradiated to 30 or 50 Gy, and at 2, 6, 18, and 42 hours after irradiation the stems and leaves of plants were collected. The stAPX gene encoding chloroplast stromal ascorbate peroxidase in tobacco was not as strongly affected by gamma irradiation. After irradiation, the stAPX transcript level decreased at 2 h, then slightly increased at 6 h and the level was

- 11 - maintained until 48 h. Catalase transcripts were detected in tobacco leaves prior to irradiation. However after irradiation the transcript level decreased at the early time point but at the later time points the level slightly increased.

(D The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by two-dimensional gel electrophoresis. The tobacco suspension cells were gamma- irradiated to 30 Gy, and at 6 h, 1, 6 day after irradiation the cells were collected. In the gamma-irradiated cells, a few polypeptides of were newly synthesized, increased, and decreased or disappeared by comparing total proteins from gamma-irradiated and non-irradiated tobacco suspension cells. With the isolation and analysis of these polypeptides, irradiation-induced proteins could be developed.

V. Proposal for Applications The study partly showed significant increasing effects of low-dose /-radiation on the germination, early growth and total grain yield in crops. It was necessary to examine the optimal radiation doses to hormetic effects on crops such as carrots, onions and grasses which had low germination rates. In dormant period of the microtuber and minituber in vitro, stimulation effect of the low dose / -radiation was various among species. It is promising to study the control mechanism of germination and dormant period on potatoes from now on. It seems that the changes of heritable substance and the genetic variation after irradiation of y -ray and their stimulative

- 12 - mechanism should be investigated consecutively. In addition, isolation of radiation-inducible antioxidant substance and gene products from plant cell lines by radiation, development of radiation-tolerant plants and application of the production of useful secondary metabolites shall be done promisingly.

- 13 - CONTENTS

Chapter 1. Introduction 17 Chapter 2. State of the art 18 Chapter 3. The contents and results of the research 24

1.Effect of low dose gamma radiation on the growth of groundnut -24 2. Effects of low dose /radiation on the uptake of mineral nutrients in Chinese cabbage and radish 24

3. Effects of low dose gamma radiation on the seed germination and physiology of Chinese cabbage 25

4. Effects of low dose gamma radiation on the early growth and physiological activity of gourd 27

5. Effects of low dose y -ray on the early growth of tomato and the resistance to subsequent high doses of radiation 29

6. Induction of resistance against phytophthora blight of pepper by low dose gamma ray radiation 30

7. Responses of transgenic tobacco plants overexpressing antioxidant enzymes to gamma radiation 31

8. Expression of antioxidative genes on response to gamma irradiation in tobacco plants 33

9.Analysis of gamma radiation-induced changes of proteins in tobacco suspension eel Is 101 Chapter 4. Objectives of R&D and possible contribution 104 Chapter 5. Application 105 Chapter 6. References 106

- 14 - 17 2 18 3 23 23 1. 23 2. 23 3. 24 4. ^. 512} 26 5. 28 6. 29 7. APX/SOD ^^% ^«H ^#^11 ^S^ 30 8. 32 9. ^ ^ m^ l 32 51 ^-# 33 33 33 36 2. 42 7h 42 42 45 3. 56 7}. 56 60 63 4. 69 7}. 69

- 15 - 73 • 73 %* 78 78 81 6. 87 7. APX/SOD ^^ ^-y)|^#^l ^^ 93 8. 98 9. ioo 4 103 5 104 105

- 16 - M

Jl2|-(hormetic effect)71-

hormesis7f

- 17 - Hormesisl-

of

o)

-bcfl, Maldineyif Thourenin7'^

- 18 - hormesis

r-ray

ttfl

120*51

2.0 kR oi ^.n^, Sheppardi} Evenden13)

3:44 21) 344 f ^-5.^, Suess^f Grosse 20)-fe r -ray 1-2.5 kR

^^, Degnerif Schacht26^ ^ ogS-tytfJL -s}$i3-, Berezina^} Riza-zade 27)-b 0.5 kR^ /-ray 34^4 ^"^^r

- 19 - /-ray ^l l ]| aH Bajescu ^32)^ 300~900R^ /-ray ^ JM-4} 117* pod t§^ ^.x^, Corbean^ Bajescu33)^

. Sparrowij- Christensen34)^

-ray S^H ^B^7^ %^] H]E>ni C 38)^ /-ray

^ carotene

r -ray 0.5-5.0

kR 4l ^, ^^f ^^^ ^^l Hl*H ^&^1 *^t:} ^^1^ r-ray

20 - 71 ^ -y^# ^*lt> Hannover

y-ray 100R

, 155%

1T;K Texas Tech^l Dr. R. D. Allen^ aq^- review paper^]^-] "Update on : Dissection of oxidative stress tolerance using transgenic

°1 ^r°>^ ^^^4t[ D.G. Inze (Belgium), R. Allen

- 21 - (Texas Tech. USA), B.A. Zilinskas (Rutgers Univ. USA), K. Asada (Kyoto Univ. Japan) ZL## #^A5. WSl-Jkfc -fr&x}^ *]#*ll 7fl

SOD

ascorbate 7]- ) -B^ JL3iafl(protectant).3. ^#-n-«fl flavonoid7f '55). UV

.,-156.57)

MnS0D7f

58)

- 22 - m-g- ^

1. ^

1) ^-^1#^ ^^^1-H I'd ^91 *\^-& "^^" ^(Arachis hypogaea L. )

2) «o^^^4 ^Ki^ ^4-d ^4^1 4-§-^> ^M^-£ ^^-^^H^^-^^14 6° 0, 0.5, 1.0, 2.0, 4.0, 8.0, 12.0, 20.0 Gy£j ^ Fricke dosimeter^.

3) W 4 uf^g-^1 4-^^Bl 40X25 cmS polyethylene 0.015 mm)^S 2l^-*> 4^S^-ofl 1^J«J 30^,

^ N-P2O5-K2O-

2.

Brassica campestris var. Surim),

- 23 - ; Brassica campestris var. Hckjinju), 1998^^ ; Raphanus sativas var. Chung-un) #

iGy/KS. 0, 2, 4, 6, 8, 10 Gy <4Hr-£~§. ^

4^ ^ 3, 4, 5, 6, ^^ ^^^, 5.^# ^^ 1 oven-dry

^ H2O2-H2SO4 44 molybdenium^ ^(P)^}- sal icylate autoanal yser (BRAN- LEUBBE) 3., ?M ^^^^(K, Na, Ca, Mg, Fe, Cu, Zn, 6^^. 7}^2 ICP(GBC Integra XL)#

3.

(Brassica campestris L. )^_S.-b 1998^

, o.5, 1.0, 2.0, 4.0, 8.0, 12.0, 16.0, 20.0 Gy^

2) 1999^

- 24 3)

0.5 15 ^ falcon tubeeH] ^^1 -^ 10 m^^ 80% aetone^LS. Bfl (41C)

H 24Al^> ^#*l; cf§- o^2}^|(Watman No. 41)5. <^^H 80% ^-S. lO^fl 5)^*> ^ ShimazuA]-^) UV-1601PC spectrophoto- meter 663 nmif 645 n

4) (1) 4^ lO^sf 20^ ^^ n^ <£^*\ 0.5 1 e] c^g. ^}A>^6fl^ n>iflt> ^ 0.05 M ^l-tl:^'^^ (pH 7.0) 1.0 10,000 rpm^.5. 10-g-^, 11,000 rpm<>11^ 15-g-^V ^4 2&±.<%±3, A>-8-*>Sit;f. ^a^^ ^%^ BSA Bradford69)5|

(2) Peroxidase (POD) %A^ pyrogallol (Sigma, Cot# P-0381)# 7

^]~g-t> SigmaAfoj tij-^^] ^e> ^-^^^cf. yfl^MlS 5li°4 100

3 mC cuvette^] ^^L 0.1 M ^1^>^:^^ (pH 6.0) 0.32 me, 0.147 M H202 0.16 mC, h% pyrogallol -§-oJ} 0.32 rd^} ^^-^ 2.1 mC# ^) ^^ ^, 420 nrnoM 20^^1 ^^r^>H ^^S. ^l" ^^8*H -T-^SEl^. UV ^-^ .7|- 0.4-0.7^1 5)£S aLSl^-a- S)^*H 5^fc%^ }. POD %^^r 4^-^ ^^S. ^$m. POD %^ (unit/g 4o0sec) X (SH«fl#)]/(l2* X 12*^ 420

- 25 - Catalase (CAT)

(Aebi, 1984)^- 0.053 M H2O2 1 nrf, lifi4 0.1 me, 0.05 (pH 7.0) 1.9 ml*) ^^<$°.£. ^sfll- 240 CAT %^ (unit/g ^#^) = X .6*). <^7]tf 43.6*^r

240 nm^l-H H202^

{Lagenaria leucantha L. )^ partner^ support 0, 0.5, 1, 2, 4, 8, 12, 16, 20, 30 Gy

2) 1999V1

3) 2- Arnon60) 0.5 15 me falcon tube ^ ShimazuA}^] UV-1601PC spectrophotometer

- 26 - 652

4) (1) 9i^ 0.5

^ 0.05 M °l-tt#-§^ (PH 7.0) 1.0 10,000 rpmJLS. 10^-^>, 11,000

Bradford69^ ^ofl tcj-ef

Peroxidase (POD) %A^ pyrogallol (Sigma, Cot# P-0381)#

3 me cuvetteofl \&3. 0.1 M tl^%*§^ (pH 6.0) 0.32 me, 0.147 M H202 0.16 me, 5* pyrogallol -g-<^ 0.32 me^f iHf-4^ 2.1 mZ-& ^7)1 ^^ ^-,

£7]- 0.4-0. 7o] 5)S.^• 2LS-^^^ Sj^^fo^ 5:^%^ K POD ^^TT ^1-s-^l *\&-£. ^r^l-^tf. POD %*£ (unit/g 24o/2Osec) X (S|-&jwH#)]/(12* X ?*^r 420 nmoflA-l^ ^ Catalase (CAT) %^-&

-g-trf^_r:f. jL^^g-i- ^]*> ^-§-§-^^8: 0.053 M H202 1 me, 3L£L<^ 0.1 me, 0.05M

(unit)£- cuvetteuff^)^.-) Ji4i^| s]^V H202^ ^fl# 240 nm^| rH t\&$] -i]AS. ^l^l-^l^l-. CAT %A^ (unit/g X 2]^H|f^-)/(2x43.6*). <^7]^ 43.6*^- 240 nn

- 27 - (Lycopericum esculentuw, MILL)

4 ^g.£_ 4^}$lt;f. X^BO> r-^i^r 0, 1, 2, 4, 8, 12, 16, 20 Gy£]

2)

100^- plug tray<^]

7 cm^ a|^ pot 247M 47(1

3) snfs ^ alfe 0, 2, 4, 8, 12 Gy ^^-^.^^ 50, 100, 150

4) **-M ^•TJI^ ^-^]A^ student t tests. 4 ^^-7^1 ^Jt# HlJ3.^f^AiJ| p &ol 0.05, 0.01, O.OOliicf ^^ ^-fs uppol 44^ ^-^

- 28 - 6.

1) Phytophthora capsici 97CC3104

(Capsicum annuum L. ) ### 4-§-*f^4. ^4^^ 0, 1, 2, 4, 8, 12, 20 ^

2) ^i*^ *H«fl

7H

3) ^ 20% V-8 juice agar

4)

20-40

1998\1 6^ 25

- 29 - 5)

6^3. 0= ^o) &£., 1= ^.7] 20% , 2= #7] 21-50% 71 50% O) , 4= 4| ^1##, 5=

7. APX/SOD

APXi} SOD7f , control . CuZnS0D7f CuZn, MnS0D7f ^ Mn^.S, APX7} ^]?1 $.-2r CA, AM, } AM C/AS, AM A/CS. 1). S 60 ( l-g- 4 ef (kanamycin or/and Basta)7> MS (Murashige and x 15 mm)ofl 0, 10, 30, 50, 70 Gy<4 417)7} ^.t^ ojufl

- 30 - ChinmcQiZhSCDOKatf, Sen Gupta etaL, 1993)

Chimeric QiZhSODCKkf, WfebbancLAnen, 1996)

transformation (Basta) transformation (Basta)

OAiCAXAM

A/CAMXCA

Fig. 1. Pasmid constructions of the vectors for expressing SOD and/or APX cDNAs containing the chimeric chloroplast-targeted sequence (ch) under the control of CaMV 35S promoter. CuZn: The pea CuZn SOD cDNA with kanamycin resistance. Mn: The pea Mn SOD cDNA with kanamycin resistance. APX: The pea cytosolic APX cDNA with kanamycin resistance. CA: Both CuZn SOD and APX cDNAs with basta resistance. AM: Both APX and Mn SOD cDNAs with basta resistance. C/A: The crossing by CA( •?•) and AM( $ ) with kanamycin and basta resistance. A/C: The crossing by AM(-?•) and CA(£ ) with kanamycin and basta resistance.

- 31 - 8.

6-87)1 %£- alfe

50 Gy^g. eoCo #n^.o. ^s]*f&cK ^nHd ^e] 2, 6, 18, 42A) # ^^ #715f ^# *H4]*H ^^ll^^S. 5Slc]-. Total RNAfe TRIZOITM Reagent (G1BC0/BRL) ^^^ 50 fig RNA# 5.1% formaldehyde7f *&&% agarose -°fl Hybond-N Nylon membrane (Amersham) &.S. DNA (APX, catalase)# PCR5. %^$*A ^ Ramdom Primed DNA labeling Kit (Boehringer Mannheim)# 32

9.

. 30 Gy

100 1 mL trichloroacetic acid (TCA) °Ml$(10% TCA + 0.07% 0 -mercaptoethanol in 9] 3. 11,000 rpm, 10^-^1 ^^-g-el*l-JL ^^## z\X\ 0.07% -mercaptoethanoIAS. 2£) ^^ ^ 30^: #•#^^^(8.5 M urea, 1.6* ampholine pH 5-8, 0.4% ampholine pH 3-10, triton X-100, 5% 0-mercaptoethanol)AS ^>^^^- ^N^-^h 20 fih 4-§-# isoelectric focusing (1EF, Innobiline DryStrip, pH 4-7, amer shamphar maci a )# -^A1*> ^ 8-18% gradient gel &]}*\ 25 SDS-PAGE# ^A]

- 32 - hormesis

i7fl

95.8 ^o> 8 Gy 100 80-90 % H^ 2).

10 %

O]

0.5 Gy 44 12.9 cmif 12.0 cm£| dt^^S. ^3,^-3] 11.6 cm

- 33 - 0.0 0.5 1.0 2.0 4.0 8.0 1Z0 20.0 Dbse(Q/)

Fig. 2. Germination rate of groundnut, palpal cultivar, grown from seeds irradiated at the dose of 0.5Gy~20.0Gy of 7 radiation. Data represent mean±standard error.

- 34 - 15

12

"5 9 si CD c CD „ CD D CO

0.0 0.5 1.0 2.0 4.0 8.0 120 20.0 Cbse(Q/)

Fig. 3. Seedling height of groundnut, palpal cultivar, grown from seeds irradiated at the dose of 0. 5Gy~20.0Gy of y radiation. Data represent mean±standard error.

- 35 - 647JN u|*H 8 Gy 16

r^ 12 Gy 27 ir(p<0.05) #7H- 2 Gy, 0.5 Gy, 1 Gy ^ fl 10 5) ^^5. 8 Gy 16

12 Gy ^49^ 127. 17 % 2 Gy£f 0.5 Gy 2L^[^-S. 44 124. 123.47flS. 14

i^(a^ 6) 4.0 Gy ^AHF-7} 87.2 gAS. tf2^- 78.3 12 Gy 85.8 gAS. 10 ^r 20 Gy ^-FM 84.0 g^S 7

^°Jc||, 12 Gy 91.9 g^- 77.1 g<^l ulsfl 7\^ ^ 19 % ^£^ -fM^^-b (p<0.05) i^c}. T;}^-O] 2 Gy 24^5] 86.5 gAS 12 % ^ ^^, 0.5 Gy5} 4.0 Gy ^4^-fe 84 gS>_£. 9 % ^S. ^7}# ^49- ^ 1 Gy 3:49-^. 75.1 g^.S tflZi-T-ofl y]^ 3 % ±1} 8 Gy ^FT-TT 61.1 g°-S. ^^^-^} H|§fl 21

36 - Patil ^65^ &%£: 8-20 * ^S., pod^^ 55

Luckey1^ Miller & Miller68)

- 37 - 100

0.0 0.5 1.0 2.0 4.0 8.0 12.0 20.0 Dose (Q/)

Fig. 4. No. of pods of groundnut, palpal cultivar, grown from seeds irradiated at the dose of 0. 5Gy~20. OGy of 7 radiation. Data represent mean±standard error. * Significant at 5%

- 38 160

0.0 0.5 1.0 2.0 4.0 8.0 12.0 20.0 Dose (Q/) Fig. 5. No. of kernels of groundnut, palpal cultivar, grown from seeds irradiated at the dose of 0. 5Gy~20. OGy of y radiation. Data represent mean±standard error.

- 39 - 100

CD g> I 75 d) 0) CO o o

50 0.0 0.5 1.0 2.0 4.0 8.0 12.0 20.0

Fig. 6. 100 seed weight of groundnut, palpal cultivar, grown from seeds irradiated at the dose of 0. 5Gy~20.0Gy of y radiation. Data represent mean±standard error. * Significant at 5%

- 40 - 120

80 "c "5. •—. O)

40 1 yiel d ern e

0.0 0.5 1.0 2.0 4.0 8.0 12.0 20.0 Dose (Gy) Fig. 7. Kernel yield of groundnut, palpal cultivar, grown from seeds irradiated at the dose of 0.5Gy~20.0Gy of y radiation. Data represent mean±standard error. * Significant at 5%

41 - 2.

247} 98^^ ^?HN1^(BC)£1- 95^

6 Gy 2:49-6114 . 10 Gy

r-ray 10 Gy

4 Gy, 10 Gy 4 44 ^.^e)9-

10 Gyofi4 138%^ ^#^^^1 ^7f# £.&*.}. ^^^-fe 8

- 42 - Table 1. Germination rate according to the dose of 7-ray

Days after Germination (.%) Plants Dose(Gy) sowing 10 3 56 70 74 76 74 76 4 64 78 82 90 88 Brassica campestris 88 5 68 88 82 92 88 88 var. Surim 6 72 88 82 92 90 90 7 72 90 82 92 90 90 3 88 64 78 88 82 76 4 96 94 88 96 96 94 Brassica campestris 5 96 94 90 100 96 94 var. Hckjinju 6 96 94 90 100 96 98 7 96 94 90 100 96 98 3 86 82 74 62 76 86 4 90 84 74 68 78 90 Raphanus sativas 5 90 86 80 74 80 90 var.Chung-un 6 90 88 82 74 82 90 7 90 88 88 82 82 90

- 43 - 0 8 10

Fig.8. Dry weight at 59 days after germination according to the dose ofy -ray (-Q-Brassica campestris var. Surim -B-Brassica campestris var. Hckjinju -^-Raphanus sativas var. Chung-un).

- 44 - 17^)if ^^71(3x1-^ ^ 59^)3. U

Y) K, Ca,

Mg, Na ZLB\3. n]Bo^^o| Zri) Cu, Fe, Mn^ ^S: H^| 9, ZL%± 10, ZL -^i a]

4

4 r^ 2Gy ?7\ 44 143%^ 59*J fe 10 Gy N, fe 8 129% 2 Gy, 4 Haunold -^22)4 Korosi ^^ 44

r-id ^4 41-^1 TKN4 TP ^^^- -Jd

10

71 D) 2, 3, 4fe 44 fe 8 Gy7f4 10 it Si ~b 2 Gye>114 Cuif 622%, 8 Gyofl4 972%, 6 Gy, 8 Gy, 10

- 45 - 0 8 10

Fig. 9. Contents of Nitrogen(N) and phosphate(P) in Brassica campestris var. Surim at 17, 59days after germination according to the dose of y -ray (-•~17days-N -M7days-P -e-59days-N -A-59days-P).

- 46 - 0 4 6 8 10 Dose(Gy)

Fig. 10. Contents of Nitrogen and phosphate in Brassica campestris var. Hckjinju at 17, 59days after germination according to the dose of /-ray (-•-17days-N -*-17days-P -^~59days-N

- 47 - 0 4 6 8 10 Dose(Gy)

Fig. 11. Contents of Nitrogen(N) and phosphate(P) in Raphanus sativas var.Chung-un at 17, 59days after germination according to the dose of / -ray (-^-17days-N -±-17days-P -s~59days-N -*- 59days-P).

- 48 - Table 2. Contents of mineral nutrient in Brassica campestris var. Surim at 17days after germination according to the dose of j -ray

Nutrient content(g) Mineral nutrient Dose of y ray(Gy) 0 2 4 6 8 10 23 17 22 19 26 28 Na (1.00) (0.74) (0.94) (0.83) (1.13) (1.21) 86 53 80 62 77 89 K (1.00) (0.61) (0.92) (0.72) (0.89) (1.03) 36 34 46 39 45 53 Ca (1.00) (0.96) (1.28) (1.09) (1.24) (1.48) 7.3 6.0 7.7 6.1 8.0 9.6 Mg (1.00) (0.82) (1.06) (0.85) (1.11) (1.32) 0.13 0.11 0.12 0.13 0.14 0.18 Zn (1.00) (0.82) (0.92) (1.01) (1.03) (1.36) 0.030 0.028 0.031 0.036 0.040 0.043 Cu (1.00) (0.94) (1.04) (1.20) (1.34) (1.42) 0.30 0.33 0.54 0.66 0.90 0.31 Fe (1.00) (1.08) (1.77) (2.17) (2.97) (1.01) 0.065 0.051 0.062 0.078 0.095 0.081 Mn (1.00) (0.78) (0.95) (1.19) (1.45) (1.25)

49 - Table 3. Contents of mineral nutrient in Brassica campestris var. Hckjinju at 17days after germination according to the dose of y -ray

Nutrient content(g) Mineral nutrient Dose of 7ray(Gy) 0 2 4 6 8 10 Na 434 553 377 379 425 292 (1.00) (1.27) (0.87) (0.87) (0.98) (0.67) K 1739 1944 1249 1240 1272 983 (1.00) (1.12) (0.72) (0.71) (0.73) (0.57) 514 961 602 585 695 630 Ca (1.00) (1.87) (1.17) (1.14) (1.35) (1.22) Mg 140 161 106 125 93 104 (1.00) (1.15) (0.76) (0.89) (0.66) (0.74) Zn 2.63 2.70 1.89 2.53 3.26 1.64 (1.00) (1.03) (0.72) (0.96) (1.24) (0.62) 0.331 2.507 0.631 0.587 3.212 1.114 Cu (1.00) (6.22) (1.91) (1.78) (9.72) (3.37) Fe 7.85 41.42 14.63 11.18 32.12 13.93 (1.00) (5.28) (1.86) (1.42) (4.09) (1.78) Mn 1.274 1.805 1.109 1.282 1.545 0.971 (1.00) (1.42) (0.87) (1.01) (1.21) (0.76)

- 50 Table 4. Contents of mineral nutrient in Raphanus sativas var. Chung-un CR at 17days after germination according to the dose of /-ray

Nutrient content(g)

Mineral nutrient Dose of rray(Gy) 0 2 4 6 8 10

723 549 575 718 867 759 Na (1.00) (0.76) (0.80) (0.99) (1.20) (1.05)

2055 1474 1613 1836 2680 1917 K (1.00) (0.72) (0.78) (0.89) (1.30) (0.93)

832 623 679 840 998 1106 Ca (1.00) (0.75) (0.82) (1.01) (1.20) (1.33)

198 163 160 191 248 205 Mg (1.00) (0.82) (0.81) (0.96) (1.25) (1.04)

4.60 3.58 3.32 3.88 5.09 4.87 Zn (1.00) (0.78) (0.72) (0.84) (1.11) (1.06)

0.93 0.99 0.88 1.32 1.33 1.28 Cu (1.00) (1.06) (0.95) (1.42) (1.43) (1.38)

10.50 9.20 7.55 10.54 8.88 9.80 Fe (1.00) (0.88) (0.72) (1.00) (0.85) (0.93)

1.69 1.51 1.46 1.74 2.10 1.64 Mn (1.00) (0.89) (0.86) (1.03) (1.25) (0.97) fe 2 Gy 10 -j.t. 8

5, 6, 7*fl 44 4 Gy, 8 Gy

Miller

TKN, TP TP

Cu, Fe

- 52 - Table 5. Contents of mineral nutrient in Brassica campestris var. Surim at 59days after germination according to the dose of y -ray

Nutrient content(g)

Mineral nutrient Dose of / ray(Gy) 0 2 4 6 8 10

441 713 769 652 569 700 Na (1.00) (1.62) (1.74) (1.48) (1.29) (1.59)

3689 5159 5379 5646 4182 5236 K (1.00) (1.40) (1.46) (1.53) (1.13) (1.42)

2457 2820 3252 3056 3055 2946 Ca (1.00) (1.15) (1.32) (1.24) (1.24) (1.20)

382.9 487.7 546.2 532.2 457.6 548.8 Mg (1.00) (1.27) (1.43) (1.39) (1.20) (1.43)

11.60 12.03 15.51 11.11 13.38 16.13 Zn (1.00) (1.04) (1.33) (0.96) (1.15) (1.39)

1.499 2.219 2.262 2.150 1.832 2.283 Cu (1.00) (1.48) (1.51) (1.43) (1.22) (1.52)

31.27 28.17 43.35 33.71 34.33 49.20 Fe (1.00) (0.90) (1.38) (1.07) (1.09) (1.57)

1.508 1.478 2.008 1.522 1.640 2.169 Mn (1.00) (0.98) (1.33) (1.01) (1.09) (1.44)

53 - Table 6. Contents of mineral nutrient in Brassica campestris var. Hckjinju at 59days after germination according to the dose of 7-ray

Nutrient content(g)

Mineral nutrient Dose of yray(Gy) 0 6 10 954 743 Na iiiiiiii (1.00) (0.78) liiHii 8907 8171 6723 6801 K (1.00) (0.92) (0.75) (0.76) 4647 4341 3743 3989 Ca (1.00) (0.93) (0.81) (0.86) liiiHilli

737 710 671 704 Mg II iiiiiiiiii (1.00) (0.96) (0.91) (0.95)

16.46 14.32 14.83 12.78 Zn ill (1.00) (0.87) (0.90) (0.78) •ill 2.577 2.316 2.011 1.679 m mmm : : : Cu : :": :-:-: •:•:•:•:-:-:•:•:-:•:-••••:•:•:•:•:•:• (1.00) (0.90) (0.78) (0.65) iiiililll

74.66 64.51 57.71 68.23 Fe 11 (1.00) (0.86) (0.77) (0.91) liillilii 3.209 2.972 3.173 2.946 Mn (1.00) (0.93) (0.99) (0.92)

- 54 - Table 7. Contents of mineral nutrient in Raphanus sativas var.Chung-un at 59 days after germination according to the dose of y -ray

Nutrient content(g) Mineral nutrient Dose of rray(Gy) 0 2 4 6 8 10 1255 1233 1358 1236 1276 1146 Na (1.00) (0.98) (1.08) (0.98) (1.02) (0.91)

3384 3771 3610 3666 4196 3204 K (1.00) (1.11) (1.07) (1.08) (1.24) (0.95)

3335 3460 3575 3493 3355 3102 Ca (1.00) (1.04) (1.07) (1.05) (1.01) (0.93)

565 584 603 610 612 546 Mg (1.00) (1.03) (1.07) (1.08) (1.08) (0.97)

13.27 12.35 15.27 13.03 13.39 12.51 Zn (1.00) (0.93) (1.15) (0.98) (1.01) (0.94)

1.47 1.44 1.52 1.35 1.52 1.44 Cu (1.00) (0.97) (1.03) (0.92) (1.03) (0.98)

30.92 31.84 32.16 31.72 32.75 28.31 Fe (1.00) (1.03) (1.04) (1.03) (1.06) (0.92)

3.34 3.76 3.63 3.39 3.89 3.18 Mn (1.00) (1.13) (1.09) (1.01) (1.16) (0.95)

- 55 - 3.

10^2} 20

8.0 Gy^ 99*£J- 16

3^. 7} 2.11 cm^.^1- ^^

Gy 7} 4

8 Gy 4 85% 2.0 Gy 2.I8 cmofl a]*U 2.27 cm!- Ji^l 0.5 Gy 2 Gy (P<0.05) f^-ol 1 Gy 2.25 cm (P<0.05)5El^-U 4^13o*

- 56 Table 8. Early growth of Chinese cabbage grown from seeds(produced in 1998, cv. Manjeom) irradiatied with different doses of gamma radiation in the greenhouse

\ Traits 10 DAS 20 DAS Germination Cotyledon Leaf Leaf Leaf Leaf Fresh rate Dose N. width width length width length weight (%) (Gy) \ (cm) (cm) (cm) (cm) (cm) (g/plant) 0 98 2.11T 2.57 4.90 4.73 9.26 3.28 0.5 96 2.08 2.54 4.98 4.67 9.43 3.20 1.0 95 2.04 2.53 5.01 4.80 9.90" 3.46 2.0 94 2.03 2.54 4.76 4.53 9.14 3.18 4.0 90 2.00 2.46 4.61 4.77 9.64** 3.24 8.0 99 2.04 2.50 4.86 4.47 9.26 3.01 12.0 97 1.99 2.47 4.67 4.44 8.86 2.86 16.0 98 1.95 2.38 4.27 4.36 8.61 2.56 20.0 97 1.99 2.27 4.19 4.37 8.95 2.71 DAS ; days after sowing. 1" ; Figure represents mean of 30 plants. *> **, *** ; Significant at 5%, 1% and 0.1% level, respectively.

57 - Table 9. Early growth of Chinese cabbage grown from seeds(produced in 1994, cv. Sulim eockari) irradiated with different doses of gamma radiation in the greenhouse

\ Traits 10 DAS 20 DAS Germination Cotyledon Leaf Leaf Leaf Leaf rate Fresh Dose \. (%) width width length width length weight (Gy) \ (cm) (cm) (cm) (cm) (cm) (g/plant) 0 85 2.18T 2.35 3.97 4.24 7.96 2.29 0.5 85 2.27" 2.42 4.25" 4.57"* 8.51*" 2.51 1.0 86 2.25* 2.55*** 4.55*** 4.68*** 9.08*** 2.66*** 2.0 89 2.27* 2.57"* 4.67*" 4.68*** 8.97*" 2.53**

4.0 85 2.21 2.50" 4.52*** 4.44' 8.56"* 2.43 8.0 84 2.21 2.61*** 4.65*** 4.43* 8.46** 2.41 12.0 86 2.13 2.42 4.30" 4.62"* 8.66"* 2.64*" 16.0 87 2.13 2.47" 4.43"* 4.35 8.42" 2.31 20.0 87 2.02 2.15 3.85 4.03 7.68 1.92

DAS ; days after sowing, t ; Figure represents mean of 30 plants.

*t **_ *** ; Significant at 5%, 1% and 0.1% level, respectively. 12 Gy -fe 20 Gy 2.35 miLi} -feo> f^^L -8-SH &fe ^^7> S^# Ji&fetfl 8 Gy ^Fr^f 2.61 cm (P<0.001)5. 7}^ ^^ \\% ^S. f7}l2}f £_# 3. u^g-oj 2 Gy ^49.3] 2.57 cm (P<0.001 )^nf. ^^^45. ^^-^ a| ^t> ^*o^S 20 Gy ^KM- *\} 4.68 cmS. 10%°]-#51 l^ (P3l3l-l- 2t$EUL n^g-o] 12 Gy 3:4TL^1 2.64 g (P<0.001)21- 2 Gy 2:4^ 2.53 g (P<0.01) ^l^u}. o]sg$)

5-10

0.2-4 Gy

- 59 - ZL

Ji<*| ^#.2. r^ 1 Gyif 2 Gy7f

1 Gy, 2 Gy, 16 Gy, 20 Gyif

7.22 mg/gofj ul^H ^^-o) ^i*^^ 20 Gy7f 7.71 mg/g-^

31 tM-o] 2 Gy SAf^-i} 1 Gy ^4^^ 4^ 7.57 7.45 mg/g ol5JuK 3|-# 20^ ^H]-b A^^ ¥^?> aJ4 ^%v# c-11 ^^o| 7f^- ^^-5}^^ 16 Gy5| 20 Gy 3L*Y?-7\ 44 7.10 mg/g

7.05 mg/gJl^. ^^ %»-so># iiJt*l-$iol j Gy 5 7f 6.87 mg/g^-S. ^^1^ ^F?"^ 7}^J- ^^ ^ O^ ^-^4. M o] «H^- (S 11)^1 nl-f. 10 ^oj 6^*].^^ 2 Gyif 1 Gy ^4^-b 44 8.15 mg/gif

8.08 mg/gAJsL cfl^^iuf ^^ ^BO^ j^tsf. 3f# 20 ^*o*^.S 20 Gyif 16 Gy 3:4^-^ ^^fl ^^-4i ^%>o| 44 7.97 mg /gif 7.66 mg/gAS. cU^^- 7.23 mg/giinf 6-10% ^ %»-^# fl 1 Gy S4^7f cfi^^-^ufi \£-£- 7. 12

- 60 - Table 10. Chlorophyll a and b contents of Chinese cabbage grown from seeds(produced in 1998, cv. Manjeom) irradiated with different doses of gamma radiation in the greenhouse

10 DAS 20 DAS Chlorophyll Chlorophyll Total Chlorophyll Chlorophyll Total \ a b chlorophyll a b chlorophyll (mg/g fresh weight) 0 3.84T 3.38 7.22 3.54 3.15 6.69 1.0 3.94 3.52 7.45 3.62 3.25 6.87 2.0 4.02 3.55 7.57 3.63 3.31 6.99 16.0 3.92 3.44 7.36 3.74 3.39 7.10 20.0 4.11 3.60 7.71 3.70 3.35 7.05 DAS ; days after sowing, t ) Figure represents mean of three replications.

- 61 - Table 11. Chlorophyll a and b contents of Chinese cabbage grown from seeds(in 1994, cv.Sulim eockari) irradiated with different doses of gamma radiation in the greenhouse

\ Traits 10 DAS 20 DAS \ Chlorophyll Chlorophyll Total Chlorophyll Chlorophyll Total Dose\ a b chlorophyll a b chlorophyll (Gy) \ (rag/g fresh weight) 0 419f 3.83 8.02 3.76 3.47 7.23 1.0 4.22 3.87 8.08 3.72 3.41 7.12 2.0 428 3.87 8.15 3.85 3.50 7.34 16.0 4.47 4.05 8.52 3.97 3.69 7.66 20.0 4.38 3.99 8.37 4.13 3.84 7.97 DAS ; days after sowing, t I Figure represents mean of three replications.

62 43>62) ^ £)o\ ^}. Gorlanov62)^ 10 Gy~20 Gy

POD %^^ H

2 Gy^- 1 Gy ^Aj-^r-^l AA 0.437 unit4} 0.430 0.334 unitJiT} 30%^ S. &7}*}$l*. 20 Gyif 16 Gy ^HMfr 0.345 unit ^ 0.341 unitS

16 Gy 2.05 units 20 Gy -b POD %^^1 7^ ^^r 4.19 1.31 (P<0.01) ^7

1 Gy 2L*\^-7\ 0.065 unitS tfl^^-2-) 0.052 unitJLt:} 25% u >-s-°l 16 Gy ^A}^-^ 0.058 unit^-^-U 200 Gy ^4^?-^. ^r 0.051 unitS tjj^-Jiuf %^o] ^^K 4^ 20^ ^-$] CAT ^-cr A^°l 7>^ #^i:1?i 1.0 Gy ^A}-^-7} 0.131 unitS 7}^ ^^3. ^o) 2 Gy ^4^1 0.123 unit^u]-. ^^r^j #^*> 16 Gy£} 20 Gy ^ •b 44 0.107 unitAj- 0.114 unitS r^3^^\ 0.122 unitSu} ^^ POD %A;

- 63 - 6.0 a 10 DAS ® 20 DAS 5.0 - c "CD o +-> 4.0 co o CD a CO 3.0 CO a> T3 E "x | 2.0 o 1.0

0.0 0.0 1.0 2.0 16.0 20.0 Dose (Gy) Fig. 12. Peroxidase activity of Chinese cabbage grown from seeds(in 1998, cv. Manjeom) irradiated with different doses of gamma radiation in the greenhouse. Data represents mean±standard error.DAS; days after sowing.

- 64 - o "3 Fig. 13CatalaseactivityofChinescabbaggrown 3 CD o CO CO .E .E 0.12 "c

*-> vit •4—' CD CD CO Q. O 0.16 0.08 0.04 0.00 Data representsmean±standarderror.DAS;day s aftersowing. different dosesofgammaradiationithegreenhouse. from seeds(in1998,cv.Manjeom)irradiatedwith 0.0 1.0 Dose(Gy) - 65 2.0 16.0 20.0 020 DAS • 10DAS 2 Gyif 1 Gy ^K^f 44 0.538 unit (P<0.01)£f 0.445 unit (P<0.05)5. ^Jj^^r 0.372 unitiLuj- 44 45%£f 20% %S. 4M^ 517(1 ^7f*}&uh nf^ 20*1 20 Gyif 16 Gy ^A}^-7f 44 3.044 unit (P<0.05)£f 2.700 unit (P<0.01)S cfl^^-^ 1.680 unit^.uf 60-80% ^S. -frS)^ SX^) ^7}*t&t.\. ^S^l tf^^ 2 Gy ZiAl-7-if 1 Gy ^Af^-^ 44 2.660 unit (P<0.05)i| 2.320 unit (P<0.05)S ^

10

PODif CAT

CAT fe ^^r - ^ ^^^= ^4^^- ^4^]-^ POD At^ o| ^76»^ 12^11 5]*}^ ^ ^-^-U POD % 70 Gy ^HF-oMfe 250% #7f*f55[t:]-. Sahif Pramanik75)

POD %^^ 35-100% ^7f*f&i;fc2. JJja*f$iT:f. Garg -^74 L CAT )^ CAT

- 66 4.0

3.0 vit y sin )

ct i o CO Q. CD CO CD 2.0 rrt ID < •o X CO o 'E CD ZJ 1.0 Q_

0.0 0.0 1.0 2.0 16.0 20.0 Dose(Qy) Fig. 14. Peroxidase activity of Chinese cabbage grown from seeds (produced in 1994, cv. Sulim eockari) irradiated with different doses of gamma radiation in the greenhouse. Data represents mean±standard error. DAS ; days after sowing.

67 - 0.16

0.12 - o CO CD CD W E 0.08 - JO _ cO ^ "co -"E 0.04 -

0.00 0.0 1.0 2.0 16.0 20.0 Dose

Fig. 15. Catalase activity of Chinese cabbage grown from seeds (produced in 1994, cv. Sulim eockari) irradiated with different doses of gamma radiation in the greenhouse. Data represent mean±standard error. DAS ; days after sowing. 4.

7\.

68.3%^.

Support

Support^ ^^ 2 Gy 3i^\^-7\ 66.7^5. tfli-?-^ 41.7*6fl H]sfl 3- ^^ ^-^A^-b (p<0.01) ^7}3L2}# ^.^3. r}^ol 0.5 Gy 3} 16 Gy ^4^^1 55.0% ^o|^c>. FR -§-^Hl^£ ^3^7} 30.0*S. nfl-f ^ ^ ^of^-ol &bcfl 4 Gy ^AJ-^.^A-1 53.3%^ ^7|1^^.S -^ (p<0.05) ^7f# i^3., tM-ol 2 Gyif 12 Gy ^HP-S} 43.3*

12). Patner^l 30 Gy 3:Af^-n>ol 14.2 cmS. t^S^S^ 14.9 i-f 16 Gy, 12 Gy, 20 Gy S4^M^ 44 19.3 cm, 19.2 cm, 18.8 cm 3. -^Til^^S 3.S.*) -S-5j^alfe (p<0.001) ^7)^^- ^•^IJLiJfl- JL«i c}. Support #-#<>M^ ^^^ ^49- S-^7} cfl^^- 17.1 cmofl Ul§fl ii^fec-H 20 Gy ^Af^-7f 22.6 cmS 7^ ^^3- 4^-dl 2 22.5 cm^f 0.5 Gy£| 20.9 fe (P<0.001) ^7KM-# I^B 15.2 cm^l Hl*fl -feSafe^] 1 Gy ^4^-7f 22.0 cm (p<0.00l)^ 7}^ ±£$£3., cf^o] 30 Gy ^4^^ 20.9 cm (p<0.001)if 0.5 Gyi} 4 Gy 2i*}^-$) 19.8 cm (p<0.01) <£&-

- 69 Table 11. Germination rate of gourd developed from seeds irradiated with different doses of gamma radiation in the pot experiment.

D°Se 0 0.5 1 2 4 8 12 16 20 30 (Gy) Partner 63.3±1.7 55.0+1Z6 56.7+4.4 48.3±44 53.3±6.0 68.3±1.7 40.0±8.7 46.7+6.7 46.7+14.2 55.0+11.5

Support 41.7±6.0 55.0+2.9 4&3+15.9 66.7*13.3 46.7+10.9 41.7±1.7 33.3±10.9 55.0±7.6 45.0±10.0 41.7±12.0

FR yongja 30.0±5.0 35.0+5.0 36.7±4.4 43.3±6.0 53.3*±6.0 36.7±6.0 43.3±13.0 38.3±4.4 23.3±1.7 38.3+7.3 t ; Figure represents the mean and the standard error of 3 repetitions. *, ** ", Significant at 5% and 1% level, respectively.

- 70 Table 12. Growth response of gourd developed from seeds irradiated with different doses of gamma radiation in the pot experiment.

j)ose Seedling height (cm) Fresh weight (g/plant) Stem diameter (mm)

Partner Support FR Yongja Partner Support FR Yongja Partner Support FR Yongja

0 14.9+0.41 17.1 ±0.5 15.2±0.7 2.7±0.2 3.0±0.2 3.6±0.6 3.3 ±0.1 3.7 ±0.2 3.7 ±0.3

0.5 16.5"±0.3 20.9""±0.6 19.8"±1.2 3.2'±0.2 4.1"±02 4.9±0.7 3.3 ±0.2 3.9 + 0.2 4.3 ±0.3

1 17.9"*±0.5 2Q2'"±0.5 22.0"'±0.9 3.7"±0.2 3.8'±0.2 5.7±1.4 3.7* ±0.1 3.8±0.2 5.1" ±0.0

2 18.2*"±0.4 22.5'"±0.5 19.5'±1.9 3.9'"±0.2 4.3*±0.5 5.1 ±1.0 3.5 ±02 3.8 ±0.3 4.5+0.4

4 16.4" ±0.7 19.9""±0.3 19.8'" ±0.5 3.2+02 3.7'±0.2 4.7±0.4 3.8" ±0.1 4.0±0.1 4.8"±0.2

8 18.0*"±0.3 17.7±0.5 15.7±1.6 3.8"±0.3 3.5±0.2 3.8±1.1 3.7'±0.2 3.3 + 0.2 4.6 ±0.5

12 19.2""±0.4 20.3*"±0.6 17.6"±1.0 4.3"*"±0.3 3.7'±0.3 3.9±0.6 3.8'±0.2 3.5 ±0.1 4.4'±0.3

16 19.3'"±0.5 22.5'"±0.5 19.2' +1.7 4.5" ±0.5 4.5" ±0.4 4.5±1.3 3.5+0.2 4.0±0.2 4.2+0.4

20 18.8'"±0.3 22.6""±0.7 17.8+2.3 4.3'"±0.3 4.6"*±0.3 3.6±1.1 3.8" ±0.2 3.8±0.1 4.4+0.4

30 14.2+2.3 19.6"±0.6 20.9""±1.1 4.2±1.3 3.4±0.2 4.8±1.0 3.5 ±0.4 3.5 + 0.2 4.8'±0.3

t ; Figure represents the mean and the standard error of 30 plants.

*r **( *** ; Significant at 5%, 1% and 0.1% level, respectively.

- 71 - }. Patner ##<>iHfe ^2^ 2.7 gofl H]sfl 16 Gy 4.5 g (p<0.01)^S. 7># ^$Jt-5.^ nHH 12 Qy$\ 20 Gy ^4^-7} 4.3 g (p<0.001) ^ol^ji, Support #f^14fe 20 Gy£f 16 Gy ^HM 4 4 4.6 g (p<0.001)^1- 4.5 g (p<0.01)^S. ^^ 3.0 gofl M]*J| -°-^ ^5a^ ^7f# iSicf. FR-§-4^1^^ ^H^^-^ 3.6 gofl Hlsfl 1 Gyif 2Gy 44 5.7 g2} 5.1 gSLS. ^^r f7}f ii^Auf

-b^l, Patner #^«HH-b 4 Gy4f 12 Gy ^ 20 Gy 2L*}^-7] S.^- 3.8 3.3 mm^l H)*H -frSj'g&b ^S^^7M- JS-^^. 1 Gyi} 8 Gy SA^7} 3.7 mm^ cH&ol&r*. Support #^<^14-b 4 Gyi} 16 Gy 4.0 mm^. 7}% -kto- ^fw°l 0.5 Gy 3^X^-7} 3.9 mm^. 3.7 mmofl «]*fl ^e^^-M" ^^«l 3.7 fflm

-fe 2 Gy^f 8 Support ^f-ofl-Hfe 4 Gy, 16 Gy, 20 Gy7l- FR-S-^M>Hfe 1 Gy7\

5-10 Gy^ X^i# ^4^M ^°f^ ^^-^-^1 ^ 20%

M o.2~4 Gy

- 72 1 Gy, 4 Gy, 8 Gy, 16 Gy, 30 Gy

## Patner^ ^-f ^2]- ^^l^o) ^t^. ^i^o] ^ 4 Gy o] 19.69 mg/g.^5. cflZiqL^ 16.74 mg/gJit:f ^^3- U^^]

TlU ^^ ^# ^5ltK Support ##^^i A^O] aj^fjci 1 Gyi} 8 Gy ^AJ-^-7]- 44 24.75 mg/gi} 23.61 mg/g^S. tHS^?-^ 22.06 mg/gJi 16 Gy iAHp.oflA-1^. 19.83

1 K Gorlanov62)^ 4^ ^^Hl ^i^d^ r# 10-20 Gy ^4M ^^

i^l POD %^^ ZL patner^ support #f^& S^-

AoV;?ioi ^l^f. patner^ ^-f ^fl^:^-^ 18.96 unit^fl yjsfl 8 Gy 34.27 units. 7}% ^^3- ^\^°) 1 GyAf 30 Gy^ 44 28.43

- 73 - Support DFR Yongja

o

0 1 4 8 16 30 Dose (Gy) Fig. 16. Chlorophyll contents of gourd developed from seeds irradiated with different doses of gamma radiation. Bars represent the standard error of the mean.

- 74 - 80 I Partner H Support DFRYongja

••e -E 60 ••§1 S » 40

5_ ti a) "c Q_ Z3 20

0 0 4 8 16 30 Dose (Gy) Fig. 17. Peroxidase activity of gourd developed from seeds irradiated with different doses of gamma radiation. Bars represent the standard error of the mean.

- 75 - unit-ty 27.37 unit^o)£uh support #^HH^ 1 Gy dLM^-7} 39.72 unitS. 7}^ ^t<&3L x+g-o] 4 Gy £} 30 Gy ^A}^S 44 39.47 unitif 35.66 unitS. tfl^2-^ 25.61 unitofl Hl*H -f-Tfl^AS. -f}-SH$tI-b (p<0.05)^7fl- Ji^uK FR-g-^H'H-fe- 4 Gyif 8 Gy 3^\^-7\ 44 50.48 Aj- 36.71 unitS. tfl^ 32.38 unit^t:} ^ :&£ l^AU 30 Gy 16 Gy ^K?~fe 44 28.39 unit^} 22.79 unitS. tfi

ZL^ 18^ CAT %^# ^Hfufl ^cic-)| 4^-^ JS.^. l Gyi} 4 Gy

patnerif suppot

}. Zhezhel73)-£ POD %^} f^^

o.^ POD %^^r ^7}^><^ 70 Gy 250% ^7\%\

- 76 - 1.2

c 0.9 .> o "o CO a CD CO CD 0.6 ca E ca •— -1—• +2 ctf O "E 0.3 3

0.0 0 8 16 30 Dose (Gy) Fig. 18. Catalase activity of gourd developed from seeds irradiated with different doses of gamma radiation. Bars represent the standard error of the mean.

77 - ^1 4 63-72 %3. 4 55 %6fl yl^H 15-30 % ^£ ^m^\. 2L*}^%3,^ 1 Gy 72 *§. 7f^- ^^Ar^, i:^i-o| 20 Gy ^Af^-5. 71 %^^L, 8 Gy if 12 Gy^ Jf- 3:^H?-^ S^ 68 K^^K 4^ 30^ ^^ -^S^^-^ cfl &=7-4\ 9.7 cmoil «1*H ^1^^ 3L*W7} 3.^ <$$& ^^r# ^-^^f. 4 Gy£f 8 Gy ^AHp.7} 10.6 cm (p<0.05)S 7}% ^$£3., nf^-o) 2 Gy 2^5. 44 10.5 cm (p<0.05)if 10.3 cm#

61.1 cm^fl alsU 1 Gy 3:49-^1 61.4 cm# Jf-*]}M 2.*}^ ^7H1 tcfef ^^-o] ^-TII cfl, ^l 12 Gy O]AOV ^4^L^A^ tf5^ Hl^fl ^^Vol 25

4 Gyif 2 Gy ^.uK 8 Gy

^of^g: 4 Gy ^4^^ 78 ^-^ 74 %14 ^^ ^of# 1 Gy ^FHH^ 39 %3. 7}% V^^r tdf## £-$13., 16 Gyif 20 Gy ^AH?-

10.8 cm

- 78 - Table 13. Effects of low dose /-ray on the early growth of tomato cultivars

Agronomic Irradiation dose (Gy) Culnvars . tr£uts 0 1 2 4 8 12 16 20

55726363686864 71 rate (%)

^ ^ l 9.7=03f 10.3+0.4 10.5'±0.3 10.6'±0.2 10.6'±0.2 9.7±02 10.0+02 9.9±0.2 Seo- (cm) kwang plant height , ~f 61.1 + 15 61.4+1.6 59.1 + 1.6 54.8+3.1 53.5*±1.8 45.6"*±0.7 47.9"±1.7 45.7"* +1.3 (cm)

Fresh weight 3U±451 31i8±4-6 33.416.2 33.6±3.1 29.1±5.1 27.8±42 21.8+13 26.4±4.0 (g/piant)

^ 74 39 55 78 60 66 45 49 rate {%)

^ ^ t 10.8+0.4 13.r'±0.3 14.3"'+0.3 15.l"'+0.3 14.7*"±0.3 14.5""±02 14.0'"±03 12.6"+0.3 House- momotaro plant heieht / xl 52.3±5.1 49.3±1.8 55.1 + 1.7 52.5±2.9 51.4+4.6 56.5+0.4 55.9±0.8 56.3+1.2 (cm)3

Fresh weight g2_9±40 26.7+1.5 34.9±6.7 35.6±5.8 30.2±ll.l 31.5±2.4 33.3±32 37.2±6.0 (g/rJant)s *;Significant at 5% level, **;Significant at 1% level, ***;Significant at 0.1% level t y Standard error in plant height and fresh weight f; before high dose 7 -radiation (30 days after sowing) §; after high dose r -radiation (60 days after sowing)

- 79 - 40 % ^S.7f JUS*] -8-5H &7f[ (p<0. J2., uf^-o] 8 GyAf 12 Gy iAH^S 44 14.7 cm (p<0.001)5} 14.5 cm (p<0.001)5] &%±3, 35 % $5. &7\*}%LK\. 4# 60*1 ^ 52.3 cm&fl Hl*H ^^

12 Gy ojAj- ^4^-611 A-] 7-8 % ^giE.51 S^^7fS^f# ii^^u}, l 8 Gy ^H^H-b 44 49.3 cm^ 51.4 cm^ cH^^-ofl a]sj| k^ # JsL^c}. Su}S ^]#^1 ^^ Wf^Mfe ^^S) 32.9g^l u]§H 20 Gy 2^61^1 37.2g£.S. 13 % ^£ ^7>^^3., cf^-o] 4 Gyi} 2 Gy ^ *YT-S. 44 35.6gif 34.9g-^S 7 % ^_£^ ^7f# 2t$i^.U 1 Gy, 8 Gy, 12 Gy 2^6]%

o) 61>

Daskalov ^78)^r 7 ^ 8 Gy ^.tH, Brezhner^ Tagmazjan79^ 10-30 Gy

if ^^ ^7f7|- 8 GySj- 12 Gy6flA-l Gy SAJ-oflAi 71-4 ^^-^h Sidrak^f Suess80)^

S.D| 2-10 Gy ^ ^- 2-4 GydflAj, ^A££E^ ^.^^ t;^ ^^. 20 )^ 50

- 80 - 2, 4, 8, 12 Gy ^F?t- tfl^** ^1 I7lf^^ 44^ 50, 100, 150 Gy# ^Af^fjL ^ ^*fl ^ ^°1 ^r 50 Gy 35.1 cm^l Hlsfl 8 Gyif 2 Gy 44 40.3 cmif 36.9 cmS «if 5-15 % ^S. ^°] ^$£°-^\ *]&*& 12 Gy ^49-<>M*7 ^^-T-^l Wl*H ^J^ol ^^Sl^^K ^^ 100 Gy ^^9-6fl>H-b 31*11 ^i^l^ ^49-^1^ ^BST2- ^^ 25.3 cm iinj- ^ ^*>4 ^H ^Stt^>. ^-. ^-id^ 8 Gyif 12 Gy ^AJ.^^A^ 44 30.9 cm (p<0.05)i| 30.3 cm^ 3^K£.3. 20 % %S. ^$£3-, 2 Gy£} 4 Gy 6fl4JE 10 % ^£ ^^}. ^^ 150 Gy ^Fr-ofl-Mfe 12 Gy 32.4 cmS. r)|29- 26.8 cm^u]- 20

JL2}7> ^^*>$it:K ^^ 50 Gy 2 Gyif 4 Gy ^-FM 44 20.2g^f 18.8g-£:^ ^^^-5] 16.4g JSlt:} 23 %$} 15 % $£. ^5tt^-^, 8 Gyif 12 Gy ^4^-^ 44 18.1g2+ 100 GyAf 150 Gy

nfl, 100 Gy 2^61|A^ 8 Gy 9. lgofl U1§H 70 % ^iE -8-5j^ Sa7il(p<0.05) -k&t:h 150 Gy -b 2 Gy^ 12 Gy ^4^-71- 7}# ^^ ^^j^^S 44 11.9g3+ 11 30 % $

^^ 50 Gy 3.^7} tfli^- 30. 9 cm It} -^ S^# Ji&^-fl 2 Gy

- 81 - 50

40 -

3 30 •4-1 O> -= 20

10

0 u 100 150 Dose (Gy)

Fig. 19. Effects of subsequent high dose radiation on the plant height grown from seed irradiated with low dose of /-ray on Seokwang cultivar. Bars represent the standard error of the mean 25

20 c CO 15

CD •3 10

CO CD LL 5

0 50 100 150 Dose (Gy)

Fig. 20. Effects of subsequent high dose radiation on the fresh weight of plant grown from seed irradiated with low dose of y-ray on Seokwang cultivar. Bars represent the standard error of the mean.

- 83 - 50 a2Gy Q4Gy C3 8Gy ®12Gy

40

• ^ ^H _T_ r r o 30 1 -- 3 . :• JC BH ••::: 11 ; IHIMI • :;:; JZ 20 II iiii i ill

•:. 1 Plan t 10 1 III il•l 111 ! j : MsI Ifl!l ; 1 si 1 111 •4 iii 0 L- i ii! 50 100 150 Dose (Gy) Fig. 21. Effects of subsequent high dose radiation on the plant height grown from seed irradiated with low dose of /-ray on Housemomotaro cultivar. Bars represent the standard error of the mean.

- 84 - 37.2 cm5. 7H1" ^^^.. ^MH 4 Gyif 12 Gy£| 36.7 ctn^f 36.4 cm ^-^lSa^K -f^r 100 Gy-i)- 150 Gy 2.4-r-°H4i H]^-*> ^^JLJsL ^^r r icL'H^^l^K ^ ^^ 100 Gy ^Fr-ofl-Hb 12 Gy 33.7 cm (p<0.001)3. ^H^^2--^ 27.3 cm^.uf 23 % -f-7f ^•^ S.&3., t}^) 2 Gyi} 4 Gy 24^-5. 44 33.2 cm (p<0.0l)^f 29.8 cm (p<0.05)^ ^h§- iiSSl^K ^^ 150 Gy ^4^- ^l^ib 2 Gy ^KM- 7>^ -fe^: 31.3 cmS ^S,^^] 22.7 cm^l ul^H 38 96 ^S. ^-^^ ^b (p<0.01) ^^r ^L^-i- iSSl^l, ^f^-0! 4 Gyi} 8 Gy ^>*.HL3. 44 30.3 cm (p<0.05)if 30.2 cm (p<0.05)5. 30 % O1A> ^^

50 Gy ^4TLeHl4b 4 Gy L, 8 Gyi} 12 Gy7l- 19.6g^.J ^ 100 Gy^f 150 Gy ^4nL6fl^b 4^^ ^49" S •& A^^ll^# i^b^ll, 100 Gy ^4nL6114b 2 Gy (p<0.01)^f 12 Gy (p<0.05) ^4^71- 14.9g^-S. 71-^- ^^t^l, •:f-7^14^.S -n--^^^ib ^J-sfl ^^J-5L3if§- u}E]-^ul-. ^f-^f 150 Gy ^Af-^-oJlA-ls. 8 Gyif 4 Gy ^-71- 44 14. Og (p<0.05)2} 13. 65 %

\, Luckey1^

4S5] ^^#^r 3.7*11.3., ^ 120-130 % &7\ HM 25 30 l2Gy D4Gy El8Gy a12Gy 20 h c CO 15 h •3 -iL

SI

5 h CO 0 50 100 150 Dose (Gy) Fig. 22. Effects of subsequent high dose radiation on the fresh weight of plant grown from seed irradiated with low dose of /-ray on Housemomotaro cultivar. Bars represent the standard error of the mean. rnj-ef c>e.

6.

14). 2 Gy 4 Gy

•§-

Izvorska46', o|

o]-%-7\*W

HU 23).

^5. 4

- 87 - Table 14. Germination rate of pepper seeds irradiated with different doses of gamma ray

Germination(%)

Cultivars Dose(Gy) 0 1 2 4 8 12 20 Kwangbok 52 84 96 87 86 90 73

Dabok 31 49 60 80 75 66 31 0Dabok:susceptible • hivangboKresistant

12 4 8 12 Irradiation dose(Gy)

Fig. 23. Comparison of disease severity between resistant and susceptible cultivar against pepper blight on 20 days after inoculation. The seeds were irradiated with different dose of gamma ray just before sowing. Disease severity was estimated by following a scale, where 0= healthy or no symptom, 1= lesion below 20% of stem, 2- lesion to 50% of stem, 3= wilting slightly, 4= wilting severely, 5= plant dead. hormesis ^oK§r

. 1, 4 Gy

7} 7}^ 3.7]} *g ^%^# -fj-.5E.AlSl-Mf ^- ^-§-°] 20 Gy^ ^5)SSt^i- 6i -r al^^K ^-*1 4 Gy

3.37 n?M ^ °11- ^^*>^>(S 15). ^11-

hormesis

hormesis $.3\$\ ^^*H ^^-^ -id^^S ^4^t:f. uf^. A]

^71 16). &of ^ ^«^ §^6]] ^%VA^ 1M47MU Ljof 7f

- 90 - 7B?

Table 15. Change in pepper blight severity of susceptible pepper cultivar (cv. Dabok) irradiated by gamma-ray Dose (Gy) r'aS 0 1 2 4 8 12 20 1 4.375Z 15.5y 3.813 4 4.563 18 3.875 5 4.375 15.5 4.250 13 4.000 6 2 4.293 14 4.125 8 4.872 20 3.213 2 4.199 11 4.777 19 4.143 10 3 4.138 9 3.643 3 4.249 12 3.034 1 4.885 21 4.378 17 4.013 7

Ri = 38.5 R2 = 15 R3 = 50 R4 = 8 R5 = 47.5 R6 = 49 R7 = 23

rii = 3 n2 = 3 n3 = 3 n4 = 3 n5 = 3 n6 = 3 n7 = 3

Hx = {(12/n(n+1)) X(Ri7rii)} - 3(n+1) = 15.883 > x'%. 0.05) = 12.59

z Disease severity based on a scale is the same as Fig.1. y Ranking based on the disease severity. x Statistic value was analysed by Kruskal-Wallis's H test in non-parametric tests.

- 91 Table 16. Change in pepper blight severity of resistant pepper cultivar (cv.Kwangbok) treated by gamma ray irradiation

Dose (Gy) Trials 0 1 2 4 8 12 20 1 0.520z 5y 0.413 2 0.608 6 0.200 1 0.648 7 1.240 19 0.452 4 2 0.428 3 0.834 17 0.723 11 0.880 18 0.677 8 1.289 20 0.832 16 3 0.698 10 0.762 13 0.821 15 0.732 12 0.789 14 1.365 21 0.678 9

Ri = 18 R2 = 32 R3 = 32 FU = 31 Rs = 29 R6 = 60 Rr = 29 = ni = 3 n2 = 3 n3 = 3 ru 3 n5 = 3 n6 = 3 n7 = 3

x H = ((12/.i(n+ •0) X(Ftf/ni)]: - 3(ni+l) = 8.589 < X (6. 0.05) - 12.59 2 Disease severity based on a scale is the same as Fig.1. y Ranking based on the disease severity. x Statistic value was analysed by Kruskal-Wallis's H test in non-parametric tests.

- 92 - 7. #nHd ^A}ofl APX/SOD

^^J 24). #*Hd# ^v Gy o]

. 50 Gy# ^el«> ^-f tte^ XanthioflA-1

JicJ- ^.*]^ ^^-o) 6o>3i*l-$5lJ5.n| Mn, APX, C/A

K H^} 70 Gy#

Mn, ^#H11 f^ ^H A]| 4^ ^#^|i| J^

Bel W3 Xanthi^ 3.-«l^ (50 Gy o|^J-)^ ^n].^^ cfl ^«H^1 &"fe Bel 86) ^o] 313.

-§-*> Bradford61'^ ^^^1 *\v} ^^^S^KSOD %^^r McCordif Fridovich87)^l ^^^l ^4 xanthine, xanthine oxidase (XOD)-i} cytochrome c# o]-§-*H ^^^oJcK S^^-^# ^1*> «h§-^[10 mM xanthine 2.5 mL, 10 mM cytochrome c 0.5 mL, 0.1 mM EDTA# 0.05 M . aJ-§-^^ cytochrome c£| # ^>^ ^ sodium dithioniteS. nj{5] ^^^}^t:K ^j-7] ^Mr^ 1

- 93 120 j- 100 r- I-.

O 80 • ••mi l ;O0Gy ; J . j j !o;j()Gy'.'. • • J : § nui r i 1 60 • : 5 sS • S ii N : 5 [ z I m : J • ; 5 S z I :• 20 1-11 * • • ; • ^ z • S : $

Xantlni GuZii Mn APX CA AN<: CJA A/C Plattt Lines

Fig. 24. Plant growth inhibit! on in response to gamma in irradiation transgenic tobacco plants. Dose dependent growth inhibition of transgenic tobacco plants expressing SOD and/or APX or non-transformed (Xanthi) at flowering time after gamma irradiation at 10, 30, 50, and 70 Gy.

- 94 - ^ 10"4 M EDTA 0.05 M 25*11 XOD 10 550 XOD %^o) 50%

88) a APX :%M3^r Torsethaugen ^ *] o^flA-| uj-rtfl*]: ^ 8% glycerol, 1 mM EDTA, 5 mNl AsA {ascorbate)# 90 mM ^l^%^<^(pH 7.8) 1 mLS. ^#^}^t:f. 12,000 g^JA-j 20

0.5 mM AsAif 0.1 mM H202 50 mM 7. OH 290

S0D7f APX7} SOD ^ APX %^# ^4^1 ^^ SOD al%^S(units/mg protein)^ Mn SOD7} J£*j*i Mn^l-^71- tH^^M" ^§ -f^^ S0D7f ^lltf ^*i:^-^ SODif APX7f S.^- 3E ^£# UEM^UHH^ 25B). APX# S^Al^H *^Sf5^i %^ ^^ ^4^^*-^, SOD

- 95 - - 96 - Xanthi CuZn Mn APX CA AM C/A A/C

Xanthi CuZn Mn APX CA AM C/A A/C Plant Lines

Fig. 25. SOD and APX activities in defferent plant lines. SOD specific activity (A) was measured using xnathine/ SOD/cytochrome c according to McCord and Fridivich (1969). APX specific activity (B) was measuring according to method of Torsethaugen(l997) by measuring rate of ascorbate oxidation. Data are means ± S.E. of three independent plants.

- 97 - 8.

30, 50 Gy U^ 70

^•^1 stromaAPX 30 Gy^ ^-nf^# <^4^^A^ 50 Gy ^1 26). ^«H cAPX (cytosolic APX)^ 30 Gy^A^ 42^^; oj^cfl, 50 Gy ti M) } i^^o] ^7}*>S5t^rslj o|^^5. APX isoenzyme^l tcfe} ^nfAlofl cflsfl 2^7} c}f ^-g-i- ^.

\{n.^ 25). CAT u\*V7}x}3. ^Bfl peroxidase (POD, ^^)^ ^^f^uf. ^, 30 Gy JSL^, 50 ^^ l 30 «y 50 Gy C 2

Catalase

Fig. 26. RNA gel bolt analysis of genes that showed stimulated gene expression upon gamma irradiation. Each lane represents 50 //g of total RNA isolated from leaves and stems of young tobacco plants (6-8 leaf stage) collected at various time points after gamma irradiation at 30 and 50 Gy. The lower pannel was shown EtBr-stained rRNA. The cDNAs encoding chloroplast stromal APX (stAPX) and catalase were used as probes.

- 99 - 9.

. 30 Gy

100 1 mL trichloroacetic acid (TCA) ^H]$(10% TCA + 0.07% -mercaptoethanol in 9]3L 11,000 rpm, 10^-^> ^^^^1^3. ^^## t:fA| 0.07% -mercaptoethanol ±3. 2Q ^^ ^ 30^: *§•<£ ^#^^•^(8.5 M urea, 1.6* ampholine pH 5-8, 0.4*; ampholine pH 3-10, triton X-100, 5% $ -mercaptoethanol )±S. ^AQ-m ^r%^\^X-\. 20 fih ^]^.# isoelectric focusing (IEF, Innobiline DryStrip, pH 4-7, amershampharmacia)# ^^lti: ^ 8-18^ gradient gel^A-^ 25 mA S. SDS-PAGE^- 7H^ spotoj a fe ^^Sl^l &£to. ^ W *lBl 6A)^ ^oi) 17H51 spot(^-^]-30> 28 kDa, pi 5.5W ^-nl-^oil ^sfl 4^T|| ^^5]$1^-4 5711(28-30 kDa, pi 5.5-6 o|*].)7l- #2} 7B7} 27C).

- 100 - Til

- 101 - 30 «v Control OH- H+ OH-

Fig. 27. Two-dimentioal polyacryamide gel electrophoresis from gamma irradiated tobacco suspension cells sampled at various time points after gamma irradiation at 30 Gy and non-treated control. A, The tobacco cells collected at 6 hrs after treatment. B, The tobacco cells collected at 1 day after treatment. C, The tobacco cells collected at 6 days after treatment. O: newly synthesized spots in gamma-irradiated cells, D: increased in intensity of spots, it'- decreased in intensity of spots, -&: disappeared spots.

- 102 - 4 g-

(1999M)

APX)

- 103 - 5 g-

- 104 - l.Luckey, T.D. 1980. Hormesis with ionizing radiation. CRC press. Inc. Boca Raton. Fla. 2.Edwards, J. 1., F.F. Busta, and M. S. Speck. 1965. Heat injury of Bacillus subtilis spores at ultra high temperature. Appl. Microbiol. 13:858-862. 3.Went, F. W. 1964. The role of environment in growth of plants. Brody Memorial Lecture No. 111. Special Report 42. University of Missouri. Columbia. 4.Faitel'berg-Blank, V.R. 1965. Mechanism of ultrasound action on absorption in the gastrointestinal tract. Fed. Proc. Fed. Am. Soc. Exp. Biol. 24:195-200. 5.Santha, A. 1968. Investigations on the relations between the biologic effects fo ionzing radiation and magnetism. II . Joint effect of ionizing radiation and magnetism on the growth of the root of Vica faba, Honvedorvos. 20:198-221. 6.Moinar, K. 1973. Subbiologic aspects of ageing and the concept of biologic cathode protection. Mech. Ageing Dev. 1:319-322. 7.Maldiney, A. and J.R. Thourenin. 1898. On the influence of X-rays and germination. Rev. Gen. Bot. 10:81-86. 8.Richet, C. 1906. The action of minute doses of materials upon lactic fermentation: periods of acceleration and retardation. Arch. Int. Physiol. 4:18-22. 9.Erler, M. 1906. Uber die heilend Wirkung der Gontgenstrahlen beiabgegrenzten Eiterungen. Jahrb. W. Botan. 5:65-70. 10.Simon, J., M. Digleria. and Z. Lang. 1981. Comparative studies on the effects of low doses X-ray and gamma irradiation on the amylase activity of maize seedling Proc. European Soc. for Nuclear Methods in Agriculture. Aberdean. U. K.

- 105 - 11.Stan, S. and A. Croitoru. 1970. Effect of low, moderate and high levels of gamma (60Co) on soybean plants. I Analysis of growth and yield. Stim. Newsl. 1:23-25. 12. Moore, P.R., T.D. Luckey, C.A. Everson, E. MoCoy, C. A. Elvehjem. and E.G. Hart. 1946. Use of sulfasuxidine, streptothricin and streptomycin in nutritinal studies with the chick. J. Biol. Chem. 165:437-440. 13.Sheppard, S. C. and W.G. Evenden. 1986. Factors controlling the hormesis response of field crops to very low doses of gamma irradiation of seed. Can. J. Plant Sci. 66:431-435. H.Sheppard, S. C. and P.J. Regitig. 1987. Factors controlling the hormesis response in irradiated seed. . 52(5):599-605. 15.Campos, F.F. and E.G. Velasco. 1962. Comparative effect of cobalt60 on Plant character of two recommended Philippine lowland rice varienties. Philipp. agric. 46"-93-95. 16.Filho, J., C. Bragantini andF.D. Santos. 1972. Behavior of rice seeds (Oryza sativa L) exposed to gamma radiation. Center de Energid Nuclear na Agric. Brazil. 1. 17.Thaung, M. M. 1960. Stimulating effects of nuclear radiation on develooment and productivity of rice plant. Nature (London). 186: 982-985 18. Iqbal, J. 1980. Effects of acute gamma irradiation, developmental stages and cultivar differences on growth and yield of wheat and sorghum plants. Environm. and Exper. Botany. 20:219-232. 19.Biebl. R. and I.Y. Mostafa. 1965. Water content of wheat and barley seeds and their radiosensitivity. Radiat. Bot. 5:1-5. 2O.Suess, A. and W. Grosse. 1968. The effect of low doses of / radiation of plant growth. Abt. Strahlennutzung. December. 1.

- 106 - 21.Davies, C. R. 1970. Effects of gamma irradiation on growth and yield of agricultural crops. II. Spring-Sown barley and other cereals. Tadiat. Bot. 10:19-27. 22.Haunold, E. and J. Zebra. 1980. Nitrogen content of two spring wheat varieties as by seed irradiation. Stim. Nevvsl. 3:30-36. 23.Korosi, F. and 1. Krakkai. 1983. Effect of gamma irradiation in Phaseolus vulgaris L. seed on P04" uptake of seedlings and its translocation pattern. Enviro. Exp. Bot. 23:149-152. 24.Kaiwdl, K. and M. Rosner. 1965. The accelerating effect of small radiation doses on plant. Bayerisches Landwirtschaftliches Jahrbuch 42:11-29. 25.Caldera, P. G. 1971. Gamma stimulation of maize, Stim. Newsl. 2:5-10. 26.Denger, W. and W. Schacht. 1975. Examination of the specific effect of low doses of ionizing radiaton on the seed of cultivated plants ; 5 year production experiments with silo maize seed irradiated with Co gamma radiation, Radiobiol. Radiother. 16:37-40. 27.Berezina, N.M. and R.R. Riza-Zade. 1965. Ionizing radiation forpre-sowing treatment of corn seeds. Vestn. Nauki. Min. Sel'sk Khoz. SSR. 10:10-13. 28.Kuzin, A.M. 1955. The utilization of ionizing radiation in agriculture. Proc. Int. Conf. Peaceful Uses Atomic Energy, United Nations, Geneva. 12:149-151. 29.Skok, J., W. Chorny. and E.J. Rakosnik. 1965. An examination of stimulatory effects of ionizing radiation in plants. Radiat. Bot. 5:281-292. 30.Koepp, R. and M. Kramer. 1981. Photosynthetic activity and distribution of photoassimilated C in seedlings of Zea mays grown from gamma-irradiated seeds. Photosynthetica. 15:484-493.

- 107 - 31.Hamatova, E. 1969. Influence of chronic r irradiation nodulation soya. Rostl. Vyroba. 15:197-202. 32.Bajescu et al. 1968. Taken from Stan and Jinga. 33.Corbean, S. and N. Bajescu. 1965. Effect of chronic gamma radiation upon protein content of soybeans. Ann. 1. C. C. P. T. Fundulea 33 Ser. C. 34.Sparrow, A. H. and E. Christensen. 1950. Effects of X-ray, neutron and chronic gamma irradiation on growth and yield of potato. Am. J. Bot. 37:667-671. 35.Caldera, P. G. 1970. Gamma stimulation of potato tubers. Stim. Newsl. 1, 6-7. 36.Menyhert, Z. and A. Balint. 1965. Radiostimulation-experiments with potato. Bayer. Landwirtsch. Jahrb. 42'-61-65. 37.Zeimalov, I. I., A.A. AlievandR.R. Riza-Zade. 1972. Effect of presowing gamma-irradiation on yield and phytophorosis of potatoes. (Moscow). 12:311-313. 38.Metlitskii, L.V. 1967. Irradiation of potatoes and other vegetables to prevent sprouting. Radiat. Obrabotka. Pisch. Prod. Izdatel. Ekon. Moscow: NSA 23:12249. 39. Abdullaev, M.A. and N.M. Berezina. 1968. Radiostimulating effect in / irradiated tomato seedings. Dokl. Akad. Nauk az. SSR, 24:38-40. 4O.Bebawi, F.F. 1984. Effects of gamma irradiation on Sorghum Bicolorstriga hermonthica relation. Environm. and Exper. Botany. 24: 123-129. 41.Vlasyuk, P. A. 1964. Effect of ionizing radiation on the physiological biochemical properties and metabolism of argicultural plants. Inst. Fiziol. Biokhim. Rast. SSR. 24-31. 42.Menyhert, Z. 1970. Radiation stimulation of tomatoes. Stim. Newsl. 1:17-20.

- 108 - 43.Pal, I. 1975. Investigation on the effects of seed irradiation of plants in a phytotron. I. Tomato. Stim. Newsl. 8:23-36. 44.Breslavets, I.P., N.M. Berezina, G.L. Shchibria, M.L. Romanchikovam, V.A. Lazykova and Z.F. Mileshko. 1960. Increased yield of radishes and carrots by X or y irradiation of seeds before sowing. Biophsics (USSR). 5:86-89. 45. Sax, K. 1955. The effect of ionizing radiation on plant growth. Amer. J. Botany. 42:360-364. 46. Izvorska, N. 1973. The gamma ray effect on the growth, productivity and some biochemical changes of pepper. Inst. Fiziol. Rast. Bulg. Akad. Nauk. 18:79-83. 47.Yurina, A. V. and L.A. Kardashina. 1977. Presowing gamma irradiation of seeds as a method to increase cucumber fruitfulness in the hot house. 48.Kuzin, A.M., E. K. Uzorin and V.I. Chirkovskii. 1963. Remote effects of / irradiation of seeds on the development of various Nicotina plants. Radiobiology(Moscow). 3:903-904. 49.Grisenko, G.V. and V.M. Mazhara. 1968. Ionizing and other types of radiation and their influence on the resistance of corn to stalk and root rot. Tr. Vses. Sovesch. Immunitetu Rast. 2:21-25. 50. Savin, V.N. and 0.G. Stepanenko. 1967. Change of drought resistance of plants irradiated with 60Co gamma ray. Radiobiology (Moscow). 7:619-622. 51.Allen RD. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107: 1049-1054 52.Conklin PL, Willians EH, Last RL. 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci 93: 9970-9974 53.Conklin PL, Pallanca JE, Last RL, Smirnoff N. 1997. L-ascorbic acid metabolism in the ascotbate-deficient Arabidopsis mutant vtcl. Plant Physiol 115: 1277-1285

- 109 - 54.Kootstra A. 1994. Protection from UV-B-induced DNA damage by flavonoids. Plant Mol Biol 26: 771-774 55.Stapleton AE, Walbot V. 1994. Flavonoids can protect maize DNA from the induction of radiation damage. Plant Physiol 105: 881-889 56. Harlow GR, Jenkins ME, Pottalwala TS, Mount DW. 1994. Isolation of uvhl, an Arabisopsis mutant hypersensitive to ultraviolet and ionizing radiation. Plant Cell 6: 227-235 57. Jiang CZ, Yen CN, Cronin K, Mitchell D, Britt AB. 1997. UV- and gamma-radiation densitive mutants of Arabidopsis thaliana. Genetics 147: 1401-1409 58.Sun J, Chen Y, Li M, Ge Z. 1998. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med 187: 389-395 59.Niels W.H. & Roger, J.B.1970. Manual on radiation . Marcel Dekker Inc. New York. 60.Arnon, D.L.1949. Copperenzymes in isolated chloroplasts po1ypheo1oxidase in veta vulgaris. Plant Physiol. 24:1-15. 61. Kim, J.S. and Y. B. Lee. 1998. Ionizing radiation hormesis in crops. J. Korea. Enviro. Agri. 17(1):76-85. 62. Gorlanov.N.A. 1973. Change in chlorophyll and its properties in the leaves of rotting kidney bean cuttings, grown from gamma irradiated seeds.Radiobiology(Moscow). 13:634. 63. Kim, J. S. Song, H. S. Kim, J. K. and Lee, Y. K. and Lee, Y. B. 1998. Stimulation effect of early growth in crops by low dose radiation. Korean J. Environ. Agric. 17:156 —159. 64. Lee, E. K. Kim, J. S. Lee, Y. K. and Lee, Y. B. 1998. The aeceleration of germination in welsh onion seed irradiation with the low dose /-ray radiation. Korean J. Environ. Agric. 17:346 — 351.

- 110 - 65.Patil, S.H., Thakare, R.G. & Mouli, C.1976. Gamma ray induced Stimulation and differential sensitivity in groundnut. Stim. Newsl. 9 : 58. 66.Kim, J. S. Kim, J. K. Lee, Y. K. and Back, M. W. 1998. Effect of low dose gamma radiation on the germination and yield components of Chinese cabbage. Korean J. Environ. Agric. 17:274—278. 67.Lee, E.K., Kim.J.S., Lee, Y.K. and Lee, Y.B. 1998. Effects of low dose /-ray irradiation on the germination and growth in red pepper. J. Korean Soc. Horticultural Sci. 39(6):670-675. 68. Mi Her. M.W. and W. M. Miller. 1987. Radiation hormesis in plants. Health Physics. 52(5):607-616. 69.Bradford M.M. 1976.A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 70.Kim, J.S., J.K., Kim, E.K. Lee and Y. B. Lee. 1997. Radiation hormesis on the growth of Chinese cabbage and radish. J. Korea Enviro. Agri. 16(4):390-393. 71.Kuzin, A.M., V.A. Kopylov and M.E. Vagobova. 1976. On the role played by radiotoxins in stimulation of the growth and development of irradiated seeds. Stim. Newsl. 9:27-31. 72. Lee, E. K. , Kim, J.S. , Lee, Y.K. and Lee, Y.B. 1998. Effects of low dose y-ray irradiation on the germination and growth in red pepper. J. Korean Soc. Horticultural Sci. 39(6):670-675. 73.Zhezhel,N.G. 1958. Studies on the mechanism of the biological effect of small doses of ionizing radiation in plant. Vestsel 'Skokhoz Nauk. 8:123. 74.Garg, C.K, Tirwari, B. & Singh,0.1972. Effect of presowing gamma irradiated seeds in relation to the germination behavior of Indian colza (Brassica campestris L. var. Sarson Prain). Indian J. Agric. Sci. 42:553.

Ill - 75.Sah, N.K,, Pramanik, S, Raychaudhuri, S.S. 1996. Peroxidase changes in barley induced by ionizing and . Int J Radiat Biol 69: 107-111 76. Lee, H. S., You, S. H., Kwon, S.Y., Kim, J.S. andKwak, S.S. 1999. Gamma radiation-induced changes of antidxidant enzymes in callus cultures of Cassava. Korean J. Plant Tissue Culture 26:53-58. 77.Kuzin, A. M., Vagobova, M. E. and Revin, A. F. 1976. Molecular mechanism of stimulating action of an ionizing radiation on seeds. II. Activation of protein and high molecular weight RNA synthesis. Radiobiology(Moscow). 16, 259. 78.Daskalov, K. 1975. Investigations on the radiostimulation effect of the tomato, green pepper and eggplant. Stitn. Newsl. 7:47-51. 79.Brezhner, D. D. and Tagmazjan, V. A. 1966. "The effect of ionizing radiation on the tomato plant", Dokl, Sov, Uchen, 17 Congr. , Moscow, 377, 8O.Sidrak, G. H. and Suess, A. 1973. "Effects low doses of gamma radiation on the growth and yield of two varieties of tomato", Radiation Botany, 13, 309-314, 81.Kim, J. S.,Lee, E. K., Lee, Y. K. and Lee, Y. B. 1999. Influence of artificial acid rain on the growth of soybean irradiated with low dose gamma radiation. Korean J. Environ. Agri. 18(3)-245-249. 82. Park, S.H. ,Cho, C.K., Yoo, S.Y. and Lee, Y.H. 1996. "Mechanism of radiosesistance induced by low-dose irradiation". J. Korean Asso. Radiat. Prot. 21(2): 99-105, 83.Hayashi T, S Todoriki and Kohyama, K.1994. Irradiation effects on pepper starch viscosity. J. Food Science 59:118-120. 84.Adu AY, GK Owusu, S Sackey, B Padi and A Abdul-Karimu. 1996. Use of gamma rays to induce mutants resistant to cocoa swollen shoot disease in Theobroma cacao L. Plant-Breeding 115:74-76. 85. Neto AT, CEO Camargo, MC Alves Jr., A Pettinelli and FA Ferreira.1996. Plant height reduction and disease resistance in

112 - wheat {Triticum aestivum L. ) cultivar IAC-18 by gamma radiation-induced mutations. Brazilian J. Genetics. 19:275-281. 86.Yun B.W,, Lee, H.S,, Kwon, S.Y,, Kim J.S,, Kwak, S.S.1999. Responses of transgenic tobacco plants expressing sweet potato peroxidases to gamma radiation. Korean J Plant Tissue Culture 26: 265-269 87.McCord, J.M,, Fridovich, 1. 1969. Superoxide dismutase. An enzymatic function for erythrocuprein (Hemocuprein). J Biol Chem 244: 6049-6055 88.Torsethaugen, G,, Pitcher, L. H,, Zilinskas, B.A,, Pell, E.J. 1997. Over production of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114: 529-537 89.Cho, H.S,, Lee, H.S,, Pai, H.S.2000.Differential gene expression in response to gamma irradiation in Nicotiana tabacum. J. Plant Biology.

- 113 - X] x] ^ iL <# -6]

IMS nMl 2£

KAERI/RR- / A* / *A

^^^ ( :^^- 3 ? *> £ * A1 »3 g-^^F^ )

L«j( , )

# « *1 ^v*S7m KAERI 2000^ Sf| °] *1 113 p. £ S. a. 7) 21 x 29.5 Cm

%31A>*J- &•§- fi.JLAl ^^> ^iLJlAi

§: ^^fe hormesis JL^ Sd^^) y-ray» £4^ 41 1^- ^ S^'HlA-)^) ^^

^ r-ray SA^V JL^ •^i'td^1 SAf^ gn]-g° t}- £"^7 *t}*A]-Ai 2:A)-o^| S^

M BIBLIOGRAPHIC INFORMATION SHEET Performing Org. Sponsoring Org. Standard Report No. INIS Subject Code Report No. Report No. KAERI/RR- / Title/Subtitle

Radiation Hormesis in Plant

Project Manager and Department Kim, Jae-Sung (Isotope Radiation Application Research team) Researcher and Department Song, Hi-Sup, Lee, Young-Keun, Lee, Byung-Hun , Shin, In-Chul, Lim, Young-Taek

Publication Place Taejon Publisher KAERI Publication Date 2000 Page 113p. 111. & Tab. Yes( O ), No ( ) Size 21 x 29.5 Cm Note Classified Open(O), Restricted( ), _Class Document Report Type Research Report Performing Org. KAERI Contract No.

This research was performed to investigate the effects of low dose r -ray radiation on the seed germination and the following physiological responses in vegetable crops. Special attention was focused on whether the resistance of vegetables against the unfavorable conditions of environment such as subsequent high doses of radiation or Phytophthora blight of pepper could be enhanced as an aspect of radiation hormesis. Analysis and characterization of antioxidant enzyme from plant culture cells and radiation tolerant of transformed plants from antioxidant enzyme (POD) were accomplished in the plant irradiated with different dose of 7 -ray.

Subject Keywords radiation hormesis. crops, vegetables, germination rate. (About 10 words) early growth, yield, subsequent high dose, phytophthora blight, antioxidant enzyme. transgenic plant