USGS DDS-43, Genetic Diversity Within Species

Total Page:16

File Type:pdf, Size:1020Kb

USGS DDS-43, Genetic Diversity Within Species DEBORAH L. ROGERS Institute of Forest Genetics Pacific Southwest Research Station U.S. Forest Service Berkeley, California 28 CONSTANCE I. MILLAR Institute of Forest Genetics Pacific Southwest Research Station U.S. Forest Service Berkeley, California ROBERT D. WESTFALL Institute of Forest Genetics Genetic Diversity Pacific Southwest Research Station U.S. Forest Service Berkeley, California within Species ABSTRACT cies. Fortunately, tree improvement programs in the Sierra Ne- vada (both public and private cooperatives) have long used Based on our review of literature and survey of geneticists working sophisticated and ecologically appropriate genetic diversity and on California taxa, we find genetic information lacking for most spe- genetic conservation guidelines. Similarly, in operational forest cies in the Sierra Nevada. This situation is likely to remain in the regeneration, federal, state, and local regulations regarding future, with specific groups of taxa or occasional rare or high-interest genetic diversity in planting mostly have high standards and species receiving specific study. Where we do have empirical infor- are backed by a fair amount of research. Seed banks exist for mation, we find few generalities emerging, except occasionally within public and private reforestation that maintain high standards of closely related or ecologically similar taxa. Despite these difficulties seed origin and genetic diversity, although exigencies presented in assessing genetic diversity, we direct attention to situations esti- by potentially large, severe wildfire may not be adequately met. mated to be most deserving of attention from a genetic standpoint. The focus for seed banking is the commercial conifers, and only slowly has seed banking emphasized other species with Severe wildfire: With the significantly increased risk of severe storable seeds. These programs, which have histories of sev- fires currently facing the Sierra Nevada, large, stand-replacing eral decades in the Sierra Nevada, serve as models for other fires present significant risks to gene pools of most middle- and taxa where similar activities occur (e.g., fish stocking). low-elevation Sierran forests, with direct and indirect conse- Research is inconclusive about the long-term genetic con- quences to the genetic diversity of plants and animals that live sequences of timber harvest on commercial tree species. Nev- in them. ertheless, traditional silvicultural practices, which were designed primarily to maximize growth of the target species, tended to Habitat alteration: For most taxonomic groups evaluated in the result in spatial patterns of harvest and live-tree retention that Sierra Nevada, the major threat to genetic diversity is habitat acted in concert with genetic conservation guidelines. By con- destruction, degradation, or fragmentation. Estimated effects trast, some new forestry practices, which combine fiber pro- involve not only direct losses of population-level genetic struc- duction with ecological stewardship for wildlife and nontimber tural diversity but also changes in genetic processes (gene flow, species, may have potential for minor dysgenic effects on na- selection), effective population sizes, and genetically based fit- tive timber species. For instance, leaving clumps of trees, es- ness traits. High-priority areas would be the foothill zone on the pecially suppressed individuals (e.g., for wildlife protection) may west slope, several of the trans-Sierran corridors (especially in promote inbreeding or lowered fitness if the members of the the central Sierra Nevada), and scattered locations of concen- clumps are related, as they appear to be. trated development elsewhere. Ecological restoration: Practitioners of ecological restoration Silviculture: Management actions that are extensive across the have only recently become aware of genetic concerns in plant- landscape yet intensive in manipulating individuals and popu- ing. Although many programs focus on restoring correct native lations have the greatest theoretical potential (but limited if no species, an understanding of the appropriate genetic material empirical evidence) for direct and significant genetic effects. within species, its origin, diversity, and collection, remains miss- As such, silvicultural activities, including tree improvement pro- ing or rudimentary in many programs. Thus, genetic contami- grams, operational forest regeneration (artificial and natural), nation problems may be more severe than if exotic species and timber harvest, potentially affect gene pools of target spe- Sierra Nevada Ecosystem Project: Final report to Congress, vol. II, Assessments and scientific basis for management options. Davis: University of California, Centers for Water and Wildland Resources, 1996. 759 760 VOLUME II, CHAPTER 28 had been planted. The significance of this genetic threat in the the harvesting of special forest products (especially mushrooms Sierra Nevada is lowest in projects of ecological community and other fungi, ladybird beetles, lichens, etc.), the use of bio- restoration and highest in postfire erosion control projects. Fre- cides with wide action against native insects, and forest-health quently these involve grass species and occasionally forb mixes. practices whose goals are to reduce or eliminate populations Although exotic grasses (especially rye grass) previously were of native insects and pathogens. used routinely, native grasses are increasingly becoming fa- Land management: Most human-mediated (as well as natural) vored. There is often little understanding of the potential ge- activities have some genetic consequences. The question is netic consequences of planting seeds of native species but not whether we create genetic change, but which effects are unknown (often commercial nursery) origins. significant enough to warrant altering our behavior. In general, Fish management: Management of fish species and genetic there has been a pervasive lack of awareness of the potential diversity within species in the Sierra Nevada is done in a way genetic consequences of land management, from local prac- that potentially disrupts many native gene pools. The introduc- tices to regional landscape plans. Genetic awareness, evalua- tion of hatchery, nonlocal, and genetically altered genetic stocks tion, prescription, mitigation, monitoring, and restoration have of native fish species has had the direct effect of creating con- generally been very low in public and private management and ditions for intraspecific hybridization, gene contamination, and have been concentrated in a few land-use programs (e.g., tree gene pool degradation. Indirectly, the introduction of exotic regeneration). Although it is broadly recognized that most man- fishes has large effects on biodiversity through displacement agement actions have effects on wildlife, there are few instances of native fish species and impacts on aquatic invertebrates and where environmental analyses—for instance in National Envi- amphibia, which affects gene pools through loss of populations. ronmental Policy Act (NEPA) contexts—have considered ge- netic effects. Land-management agencies do not place Range improvement: Similar to fish management, although geneticists broadly throughout the Sierra Nevada, and genetic lesser in effect in the Sierra Nevada, is the direction and intent knowledge usually resides centralized (e.g., with tree improve- of range improvement projects. In past decades, range shrubs, ment headquarters) or within silviculture staffs, where it is fo- particularly bitterbrush, were widely planted in Great Basin ar- cused mostly on the already established genetic management eas (on the border of the Sierra Nevada) to improve range- programs of commercial timber species. lands for cattle. Very little of the shrub germ plasm planted in the past derived from local seed zones or followed genetic di- What is needed is a general awareness that genetic consequences versity guidelines that maintain native genetic structure. More must be considered and evaluated for land-management activities in recently, shrubs have been planted for wildlife habitat enhance- general, and a framework and strategy for doing so. It is not enough ment. These are increasingly falling under seed transfer and to lump these concerns under general biodiversity evaluation, since genetic diversity guidelines, with the result that native local this often takes into account only immediate effects on the popula- seeds are being collected and planted. tion or species viability of a few indicator species. This chapter pro- Exotic pathogens: Exotic pathogens create direct and indirect poses some management guidelines and standards for preserving genetic threats in the Sierra Nevada. For example, white pine and enhancing genetic diversity in the Sierra Nevada. blister rust is fatal to sugar pines that carry the susceptible gene. The resistant gene exists naturally in very low frequencies in sugar pine. Although a well-funded and genetically sophisticated program exists for developing and outplanting sugar pine that is resistant to white pine blister rust, there has been limited INTRODUCTION recognition of the genetic consequences of the current federal harvest practices for the species. At present, known resistant Genetic diversity is not a front-page, public issue. Whereas old-growth sugar pines are not cut, but susceptible trees may species extinctions, loss of old-growth forests, and degrada- be harvested, and in areas where resistance is unknown,
Recommended publications
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • Patterns of Genetic Diversity Are the Result Of
    Perceiving patterns in nature is a beginning to and seed dispersal, its mating system, and its natural understanding the basis of biological diversity, sensing range) can be used to establish a reasonable idea of its some order in what may otherwise seem chaotic or random spatial genetic pattern. Sometimes environmental spatial arrays. Spatial patterns in genetic diversity, also features are indicators of the spatial genetic patterns if a called ‘genetic structure’ or ‘spatial genetic structure,’ species is adapted to changes in these features. For often reflect biologically meaningful processes. example, a species that occurs at a range of elevations Recognizing these patterns, giving genes a ‘physical may show a gradient in genetic diversity that address,’ and understanding their basis can provide a corresponds with adaptations to various elevations. stronger scientific basis for conservation and restoration However, these natural processes may not all be consistent decisions by making use of biologically meaningful or pushing in the same direction. For example, a units. These patterns are the result of natural processes, population may be locally adapted to microclimate and the characteristics of the species, and historical events. moisture availability (which would suggest local genetic structure) but also have long-distance seed and pollen [ patterns of genetic dispersal (that would tend to mix up the genes with diversity are the result of other populations and undermine local adaptations). So natural processes, the direct genetic studies are needed for confirmation of the genetic structure. characteristics of the species, A traditional approach to describing spatial patterns in and historical events ] genetic diversity of plants is to sample individuals widely Spatial patterns reflect the natural genetic processes across the species’ range and present a picture of the (described in Volume 3) — migration, natural selection, overall genetic structure based on various kinds of data.
    [Show full text]
  • Spatial and Temporal Continuity of Kangaroo Rat Populations Shown by Sequencing Mitochondrial DNA from Museum Specimens
    Spatial and Temporal Continuity of Kangaroo Rat Populations Shown by Sequencing Mitochondrial DNA from Museum Specimens W. Kelley Thomas, Svante Paabo, Francis X. Villablanca, and Allan C. Wilson Surnmary. The advent ofdirect sequencing via the region - tRNA genes - Population dynamics ­ POlymerase chain reaction (PCR) has opened up the Population tree- Molecular trees Possibility of molecular studies on museum speci­ ~~ns. Here we analyze genetic variation in popu­ attons over time by applying PCR to DNA extract­ Introduction ed from museum specimens sampled from iPulations of one species over the last 78 years. Over the past 10 years, mitochondrial DNA ncluded in this study were 43 museum specimens (mtDNA) has been a productive source of infor­ o_fthe Panamint kangaroo rat Dipodomys panamin­ mation about genetic variation at and below the lLnu.s from localities representing each ofthree geo­ species level (for reviews, see Wilson et al. 1985; graphically distinct subspecies. These specimens Hamson 1988). However, because these studies have :were originally collected and prepared as dried skins been restricted to the analysis of present-day pop­ 10 19 11 , 1917, or 1937. For each specimen, a 225­ ulations, they represent a static view ofthe historic bp segment of the mitochondrial genome was se­ processes that shape the genetic variation detected quenced. These mitochondrial DNA sequences were in contemporary populations. Due to recent tech­ compared to those of 63 specimens collected at the nical advances brought about by the polymerase same localities in 1988. The three subspecies were chain reaction (PCR) (Kocher et al. 1989; Paabo et n~a rl y completely distinct.
    [Show full text]
  • Genetic Structure and Eco-Geographical Differentiation of Lancea Tibetica in the Qinghai-Tibetan Plateau
    G C A T T A C G G C A T genes Article Genetic Structure and Eco-Geographical Differentiation of Lancea tibetica in the Qinghai-Tibetan Plateau Xiaofeng Chi 1,2 , Faqi Zhang 1,2,* , Qingbo Gao 1,2, Rui Xing 1,2 and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] (X.C.); [email protected] (Q.G.); [email protected] (R.X.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China * Correspondence: [email protected] (F.Z.); [email protected] (S.C.) Received: 14 December 2018; Accepted: 24 January 2019; Published: 29 January 2019 Abstract: The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes.
    [Show full text]
  • Genetic Variation and Human Evolution
    | NSW Department of Education Genetic Variation and Human Evolution. This article is referenced in the Module 5 and 6 guide, IQ6-1: Can population genetic patterns be predicted with any accuracy? The article is no longer available online. It is archived at the American Society of Human Genetics www.ashg.org. The article provides background information about the use of mitochondrial DNA and Y- chromosome DNA studies to determine a possible path for human evolution. Students could carry out their own research after reading this article. Genetic Variation and Human Evolution Lynn B. Jorde, Ph.D. Department of Human Genetics University of Utah School of Medicine. The past two decades have witnessed an explosion of human genetic data. Innumerable DNA sequences and genotypes have been generated, and they have led to significant biomedical advances. In addition, these data have greatly increased our understanding of patterns of genetic diversity among individuals and populations. The purpose of this brief review is to show how our knowledge of genetic variation can contribute to an understanding of our similarities and differences, our origins, and our evolutionary history. Patterns of genetic diversity inform us about population history because each major demographic event leaves an imprint on a population's collective genomic diversity. A reduction in population size reduces genetic diversity, and an increase in population size eventually increases diversity. The exchange of migrants between populations inevitably results in greater genetic similarity, while isolation preserves genetic uniqueness. These demographic signatures are passed from generation to generation, such that the genomes of modern individuals reflect their demographic history.
    [Show full text]
  • Convergent Evolution of Olfactory and Thermoregulatory Capacities in Small Amphibious Mammals
    Convergent evolution of olfactory and thermoregulatory capacities in small amphibious mammals Quentin Martineza,1, Julien Clavelb,c, Jacob A. Esselstynd,e, Anang S. Achmadif, Camille Grohég,h, Nelly Piroti,j, and Pierre-Henri Fabrea,k aInstitut des Sciences de l’Évolution de Montpellier (ISEM), CNRS, Institut de recherche pour le développement (IRD), Université de Montpellier (UM), UMR 5554, 34095 Montpellier, France; bDepartment of Life Sciences, The Natural History Museum, SW7 5DB London, United Kingdom; cUniv. Lyon Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR CNRS 5023, Université Claude Bernard Lyon 1, École Nationale des Travaux Publics de l’État (ENTPE), F‐69622 Villeurbanne, Cedex, France; dMuseum of Natural Science, Louisiana State University, Baton Rouge, LA 70803; eDepartment of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803; fMuseum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences (LIPI), 16911 Cibinong, Indonesia; gDivision of Paleontology, American Museum of Natural History, New York, NY 10024; hLaboratoire Paléontologie Évolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM, UMR 7262, CNRS-Institut écologie et environnement [INEE]), Université de Poitiers, 86073 Poitiers, Cedex 9, France; iInstitut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, U1194 UM, Institut du Cancer de Montpellier (ICM), F-34298 Montpellier, Cedex 5, France; jRéseau d’Histologie Expérimentale de Montpellier, UMS3426 CNRS-US009 INSERM-UM, 34298 Montpellier, France; and kMammal Section, Department of Life Sciences, The Natural History Museum, SW7 5DB London, United Kingdom Edited by David B. Wake, University of California, Berkeley, CA, and approved February 28, 2020 (received for review October 11, 2019) Olfaction and thermoregulation are key functions for mammals. The partitioning has been documented in histological, airflow dynamic, former is critical to feeding, mating, and predator avoidance behaviors, and performance test studies (9–13).
    [Show full text]
  • Low Genetic Diversity May Be an Achilles Heel of SARS-Cov-2 COMMENTARY Jason W
    COMMENTARY Low genetic diversity may be an Achilles heel of SARS-CoV-2 COMMENTARY Jason W. Rauscha, Adam A. Capoferria,b, Mary Grace Katusiimea, Sean C. Patroa, and Mary F. Kearneya,1 Scientists worldwide are racing to develop effective immune response. Hence, tracking genetic variation vaccines against severe acute respiratory syndrome in the SARS-CoV-2 surface glycoprotein is of para- coronavirus 2 (SARS-CoV-2), the causative agent of mount importance for determining the likelihood of the COVID-19 pandemic. An important and perhaps vaccine effectiveness or immune escape. To put this underappreciated aspect of this endeavor is ensuring variation in perspective, Fig. 1 shows a graphical illus- that the vaccines being developed confer immunity to tration of comparative genetic diversity among surface all viral lineages in the global population. Toward this glycoproteins of select human pathogenic viruses, in- end, a seminal study published in PNAS (1) analyzes cluding SARS-CoV-2, correlated with the availability 27,977 SARS-CoV-2 sequences from 84 countries and effectiveness of respective preventive vaccines. obtained throughout the course of the pandemic to Although genetic diversity is only one of many track and characterize the evolution of the novel coro- determinants of vaccine efficacy, there is a clear inverse navirus since its origination. The principle conclusion correlation between these two metrics among viral reached by the authors of this work is that SARS-CoV-2 pathogens examined in our analysis. Presumably due genetic diversity is remarkably low, almost entirely the to its relatively recent origins, genetic diversity in the product of genetic drift, and should not be expected to SARS-CoV-2 surface glycoprotein, spike, encoded by impede development of a broadly protective vaccine.
    [Show full text]
  • The California Desert CONSERVATION AREA PLAN 1980 As Amended
    the California Desert CONSERVATION AREA PLAN 1980 as amended U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT U.S. Department of the Interior Bureau of Land Management Desert District Riverside, California the California Desert CONSERVATION AREA PLAN 1980 as Amended IN REPLY REFER TO United States Department of the Interior BUREAU OF LAND MANAGEMENT STATE OFFICE Federal Office Building 2800 Cottage Way Sacramento, California 95825 Dear Reader: Thank you.You and many other interested citizens like you have made this California Desert Conservation Area Plan. It was conceived of your interests and concerns, born into law through your elected representatives, molded by your direct personal involvement, matured and refined through public conflict, interaction, and compromise, and completed as a result of your review, comment and advice. It is a good plan. You have reason to be proud. Perhaps, as individuals, we may say, “This is not exactly the plan I would like,” but together we can say, “This is a plan we can agree on, it is fair, and it is possible.” This is the most important part of all, because this Plan is only a beginning. A plan is a piece of paper-what counts is what happens on the ground. The California Desert Plan encompasses a tremendous area and many different resources and uses. The decisions in the Plan are major and important, but they are only general guides to site—specific actions. The job ahead of us now involves three tasks: —Site-specific plans, such as grazing allotment management plans or vehicle route designation; —On-the-ground actions, such as granting mineral leases, developing water sources for wildlife, building fences for livestock pastures or for protecting petroglyphs; and —Keeping people informed of and involved in putting the Plan to work on the ground, and in changing the Plan to meet future needs.
    [Show full text]
  • Assessment of Genetic Diversity and Population Genetic Structure of Norway Spruce (Picea Abies (L.) Karsten) at Its Southern Lineage in Europe
    Article Assessment of Genetic Diversity and Population Genetic Structure of Norway Spruce (Picea abies (L.) Karsten) at Its Southern Lineage in Europe. Implications for Conservation of Forest Genetic Resources Srđan Stojni´c 1,*, Evangelia V. Avramidou 2 , Barbara Fussi 3, Marjana Westergren 4, Saša Orlovi´c 1, Bratislav Matovi´c 1, Branislav Trudi´c 1, Hojka Kraigher 4, Filippos A. Aravanopoulos 5 and Monika Konnert 3 1 Institute of Lowland Forestry and Environment, University of Novi Sad, 21000 Novi Sad, Serbia; [email protected] (S.O.); [email protected] (B.M.); [email protected] (B.T.) 2 Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, HAO “DEMETER”, 11528 Athens, Greece; [email protected] 3 Bavarian Office for Forest Seeding and Planting, 83317 Teisendorf, Germany; [email protected] (B.F.); [email protected] (M.K.) 4 Slovenian Forestry Institute, 1000 Ljubljana, Slovenia; [email protected] (M.W.); [email protected] (H.K.) 5 Laboratory of Forest Genetics and Tree Breeding, Department of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] * Correspondence: [email protected]; Tel.: +381-21-540-382 Received: 5 February 2019; Accepted: 11 March 2019; Published: 14 March 2019 Abstract: In the present paper we studied the genetic diversity and genetic structure of five Norway spruce (Picea abies (L.) Karsten) natural populations situated in Serbia, belonging to the southern lineage of the species at the southern margin of the species distribution range. Four populations occur as disjunct populations on the outskirts of the Dinaric Alps mountain chain, whereas one is located at the edge of Balkan Mountain range and, therefore, can be considered as ecologically marginal due to drier climatic conditions occurring in this region.
    [Show full text]
  • Mammalian Species Surveys in the Acquisition Areas on the Tejon Ranch, California
    MAMMALIAN SPECIES SURVEYS IN THE ACQUISITION AREAS ON THE TEJON RANCH, CALIFORNIA PREPARED FOR THE TEJON RANCH CONSERVANCY Prepared by: Brian L. Cypher, Christine L. Van Horn Job, Erin N. Tennant, and Scott E. Phillips California State University, Stanislaus Endangered Species Recovery Program One University Circle Turlock, CA 95382 August 16, 2010 esrp_2010_TejonRanchsurvey.doc MAMMALIAN SPECIES SURVEYS IN THE ACQUISITION AREAS ON THE TEJON RANCH, CALIFORNIA TABLE OF CONTENTS Introduction ......................................................................................................................... 1 Study Areas ......................................................................................................................... 3 Methods............................................................................................................................... 4 Target Special Status Species .................................................................................................................... 4 Camera Station Surveys ............................................................................................................................. 4 Live-Trapping ............................................................................................................................................ 5 Spotlight Surveys ....................................................................................................................................... 5 Opportunistic Observations ......................................................................................................................
    [Show full text]
  • Evolutionary History and Genetic Connectivity Across Highly Fragmented Populations of an Endangered Daisy
    Heredity (2021) 126:846–858 https://doi.org/10.1038/s41437-021-00413-0 ARTICLE Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy 1 1 2 3 1 Yael S. Rodger ● Alexandra Pavlova ● Steve Sinclair ● Melinda Pickup ● Paul Sunnucks Received: 29 May 2020 / Revised: 24 January 2021 / Accepted: 25 January 2021 / Published online: 19 February 2021 © The Author(s) 2021. This article is published with open access Abstract Conservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate 1234567890();,: 1234567890();,: analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/ NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours.
    [Show full text]
  • How Does Ecological Disturbance Influence Genetic Diversity?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Australian National University How does ecological disturbance influence genetic diversity? Sam C. Banks 1,2 Geoffrey J. Cary 1 Annabel L. Smith 1,2 Ian Davies 1 Don A. Driscoll 1,2 A. Malcolm Gill 1 David B. Lindenmayer 1,2 Rod Peakall 3 1 The Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia 2. Australian Research Council Centre of Excellence for Environmental Decisions and the National Environmental Research Program Environmental Decisions Hub 3 Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia Corresponding author: Banks, S.C. ([email protected]) 1 Abstract Environmental disturbance underpins the dynamics and diversity of many of the world’s ecosystems, yet its influence on the patterns and distribution of genetic diversity is poorly appreciated. We argue here that disturbance history may be the major driver that shapes patterns of genetic diversity in many natural populations. We outline how disturbance influences genetic diversity through changes in both selective processes and demographically-driven, selectively-neutral processes. Our review highlights the opportunities and challenges presented by genetic approaches, such as landscape genomics, for better understanding and predicting the demographic and evolutionary responses of natural populations to disturbance. Developing this understanding is now critical as disturbance regimes are changing rapidly in a human-modified world. Why should we consider disturbance as a driver of the distribution of genetic diversity? Environmental disturbance underpins the dynamics and diversity of many of the world’s ecosystems [1, 2].
    [Show full text]