STORM SCALE ANALYSIS Charles A

Total Page:16

File Type:pdf, Size:1020Kb

STORM SCALE ANALYSIS Charles A NOAA Technical Memorandum ERL ESG-15 THE OPERATIONAL METEOROLOGY OF CONVECTIVE WEATHER VOLUME II: STORM SCALE ANALYSIS Charles A. Doswell III Environmental Sciences Group Boulder, Colorado April 1985 2012 e-book version Edition 1 (9/3/2012) [Draft version 1] TIM VASQUEZ Weather Graphics / www.weathergraphics.com Editing & Layout LEE McDERMOT Scanning & OCR NATIONAL OCEANIC AND Environmental Research noaa ATMOSPHERIC ADMINISTRATION Laboratories PREFACE CONVECTIVE WEATHER: VOLUME II (2012 EDITION) Like any written document in science, this Technical Memorandum published in 1985 [“The Operational Meteorology of Convective Weather: Volume II: Storm Scale Analysis,” NOAA Tech. Memo. NWS ESG-15] becomes increasingly obsolete as it ages. This document was begun while I was working in my first post-doctoral employment at what was then called the National Severe Storms Forecast Center (NSSFC), in Kansas City, MO. Given the time between starting the writing and the publication of the final manuscript after I had moved to the Weather Research Program in Boulder, CO, in late 1982 , it represents my understanding of the “storm scale” meteorology of severe convective storms as it was in 1984. This writing of this volume was done about a decade after what I call the “1970s revolution” in severe storms research, a scientific revolution driven by three elements that appeared in the early 1970s: 1) research Doppler radars, 2) the inception of scientific storm chasing, and 3) the development of 3-dimensional computer-based numerical models of deep convection. The results of this revolution were coming to be used in various operational applications and it was evident that a lot of ideas developed in the research world needed to be introduced in an understandable way (i.e., without much mathematics) to the operational community. Originally, it was planned that this document was to be written by my friend and NSSFC colleague, Les Lemon, but circumstances didn’t permit him to do so and I was recruited to finish this companion volume to the first Technical Memorandum I had published in 1982 [“The Operational Meteorology of Convective Weather: Volume I: Operational Mesoanalysis,” NOAA Tech. Memo. NWS NSSFC-5]. A third volume presenting application concepts and case studies was scheduled to be written but never was completed. As of writing this foreword in the late summer of 2012, numerous new contributions to our scientific understanding of severe storms have been made that have altered our way of thinking about storm scale processes since late 1984 - too numerous to mention here. Many important new findings have come from the field observational campaigns under the banner of the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX-1 in 1994/95 and VORTEX-2 in 2009/10). Research on the data from VORTEX-2 is still underway as I write this, with the prospect of even more revisions to our understanding on the horizon. Although some aspects of the contents of this volume remain valid today, a reader interested in an up-to-date understanding of severe storms meteorology would need to review a considerable amount of scientific literature, some of which might be too technical for the non-meteorologist to grasp. Therefore, readers of this work are encouraged to see it not as a comprehensive understanding of severe convective storm science, but rather as a historical snapshot of my personal understanding of that science in 1984. I hope that will still be of value to non-specialist readers. Perhaps someone else will choose to provide an updated version of this Tech. Memo. in the future. Science is always a moving target, which complicates the efforts of anyone hoping to explain it to an audience that includes non-specialists. Some people see that as a problem, but I consider it to be one of the reasons I’ve remained excited about being a scientist for the duration of my professional career, right up to the present moment. To have contributed to the advance of scientific understanding, even in a small way, is a great privilege. It is also a great honor that my published work remains of interest long after it has been superseded by newer research. I hope you will enjoy reading it even a tenth as much as I enjoyed learning it and writing about it! My thanks to my friend Tim Vasquez for his efforts on behalf of making a PDF version of this document available. All the hard copies I once had to distribute are gone, and the document has not been reprinted. I want to thank all my colleagues over the years for helping me to learn and benefit from their insights into the subject of this volume. These are far too numerous to mention them all, but I especially want to thank Les Lemon for his immense contributions to the science of severe storms, his enthusiasm for the project that resulted in these documents, and his enduring friendship. Drs. Joseph Schaefer (Vol. I) and Robert A. Maddox (Vol. II) were responsible for the eventual publication of these manuscripts, and both contributed significantly to any scientific insights I might have. Chuck Doswell September 2, 2012 ii FOREWORD BY THE EDITOR CONVECTIVE WEATHER: VOLUME II (2012 EDITION) Charles (Chuck) Doswell’s series The Operational Meteorology of Convective Weather attracted considerable notice among forecasters when it was released in the 1980s and rapidly found its way to forecast desks. Though severe weather forecasting has advanced considerably since then and meteorologists have a whole new arsenal of tools available, there is still consistent demand for this book, and supplies dried up about 10 years ago. In 2000 I released “Volume I: Operational Mesoanalysis” (1982) in PDF format, having converted it to a full-text scan to make it fully searchable. That left only “Volume II: Storm Scale Analysis”. That said, a Volume III, is mentioned in this document, but it does not exist since Chuck had been unable to find the time to begin it. Unfortunately time constraints and the much larger size of Volume II made this a difficult job. I made some progress in 2007, but had to shelve it again as my scanner was unbearably slow and other commitments soon eclipsed the project. Finally In January 2012 I was contacted by Lee McDermot, a former U.S. Air Force forecaster who served at Loring AFB in the late 1980s and early 1990s. He was interested in reviving the project, and backed up his enthusiasm by promising to send me fully scanned and OCR’d copies of Volume II. He followed through on this. The quality of the scans and the OCR output was impressive. Lee’s scanning software was also able to render a machine-made PDF of Volume II, but because of the significance of this tech memo series, I felt we needed to create a replica. Preserving a replica of a noteworthy scientific work should entail a commitment to accuracy and the placement of every single word and diagram on the page where it was originally found to allow proper citation. For historical sake, it should also recreate the “feel and texture” of the original work, so I used the IBM Selectric typewriter font found in the original. All of this was composed in Adobe InDesign CS4, and a copy of this “raw” project is available on the weathergraphics.com download page, sans fonts. Why go through all this trouble when a bunch of page scans can be rapidly collated into a PDF document (i.e. an “image PDF”)? On the fast/cheap/good triangle (in which you can have only one!) that is the fast and cheap way to do it. The text is not extracted, meaning the content cannot be searched or copy/pasted and Internet search engines can’t integrate the text into the body of online literature. These are major disadvantages. Ironically, last week while digging around in NOAA’s Document Rescue website I found that NOAA had scanned this document in May 2011 (see the URL on the next page), but it is merely an image PDF, as described above. And of course, it lacks Chuck’s new preface. Though severe weather research has progressed tremendously since the 1980s, most of the resources available to forecasters are still written for an academic or research audience and there are few publications which distill technical knowledge directly to the forecast desk. Because of this, the Operational Meteorology of Convective Weather series has aged quite well and will still provide valuable insights for forecasters, especially if Chuck’s earlier comments are taken into perspective. Many thanks to Lee McDermot for getting us to the finish line after 12 years on the drawing board, and to Chuck Doswell of course for his enthusiasm and support. Tim Vasquez August 31, 2012 iii When using a wide-screen monitor and Adobe Acrobat, this document is best viewed using View > Page Display > Two Page View. This document is maintained at http://www.weathergraphics.com and will be revised for any typesetting or proofreading errors that are found. An official image PDF version of this document (not searchable) exists at: http://docs.lib.noaa.gov/noaa_documents/OAR/ERL_ESG/TM_ERL_ESG_15.pdf iv NOAA Technical Memorandum ERL ESG-15 THE OPERATIONAL METEOROLOGY OF CONVECTIVE WEATHER VOLUME II: STORM SCALE ANALYSIS Charles A. Doswell III Weather Research Program Environmental Sciences Group Boulder, Colorado April 1985 UNITED STATES NATIONAL OCEANIC AND Environmental Research DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Laboratories Malcolm Baldridge, Vernon E. Derr, Secretary Director v NOTICE Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.
Recommended publications
  • Rapid Intensification of a Sheared Tropical Storm
    OCTOBER 2010 M O L I N A R I A N D V O L L A R O 3869 Rapid Intensification of a Sheared Tropical Storm JOHN MOLINARI AND DAVID VOLLARO Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York (Manuscript received 10 February 2010, in final form 28 April 2010) ABSTRACT A weak tropical storm (Gabrielle in 2001) experienced a 22-hPa pressure fall in less than 3 h in the presence of 13 m s21 ambient vertical wind shear. A convective cell developed downshear left of the center and moved cyclonically and inward to the 17-km radius during the period of rapid intensification. This cell had one of the most intense 85-GHz scattering signatures ever observed by the Tropical Rainfall Measuring Mission (TRMM). The cell developed at the downwind end of a band in the storm core. Maximum vorticity in the cell exceeded 2.5 3 1022 s21. The cell structure broadly resembled that of a vortical hot tower rather than a supercell. At the time of minimum central pressure, the storm consisted of a strong vortex adjacent to the cell with a radius of maximum winds of about 10 km that exhibited almost no tilt in the vertical. This was surrounded by a broader vortex that tilted approximately left of the ambient shear vector, in a similar direction as the broad precipitation shield. This structure is consistent with the recent results of Riemer et al. The rapid deepening of the storm is attributed to the cell growth within a region of high efficiency of latent heating following the theories of Nolan and Vigh and Schubert.
    [Show full text]
  • Nasa.Gov Determine Their Severity Now Are a Little Less Mysterious
    Print Close Related Links January 12, 2004 - (date of web publication) For more information contact: Elvia Thompson A "HOT TOWER" ABOVE THE EYE CAN MAKE HURRICANES Headquarters, Washington STRONGER (Phone: 202/358-1696) They are called hurricanes in the Rob Gutro Atlantic, typhoons in Goddard Space Flight Center, Greenbelt, the West Pacific, Md. and tropical (Phone: 301/286-4044) cyclones worldwide; but wherever these For information about the TRMM Satellite storms roam, the on the Internet, visit: forces that http://trmm.gsfc.nasa.gov determine their http://www.eorc.nasda.go.jp/TRMM severity now are a little less mysterious. NASA scientists, For information about NOAA's National Hurricane Center click here. using data from the Tropical Rainfall For information about Hurricane Measuring Mission Item 1 (TRMM) satellite, Bonnie, click here. have found "hot High resolution image tower" clouds are associated with tropical cyclone intensification. Viewable Images Owen Kelley and John Stout of NASA's Goddard Space Flight Center, Greenbelt, Md., and George Mason University will present their findings at the American Meteorological Society annual meeting in Seattle on Monday, January 12. Caption for Item 1: AN UNUSUALLY DEEP CONVECTIVE TOWER IN Kelley and Stout define a "hot tower" as a rain cloud that reaches at HURRICANE BONNIE AS BONNIE least to the top of the troposphere, the lowest layer of the atmosphere. INTENSIFIED It extends approximately nine miles (14.5 km) high in the tropics. These towers are called "hot" because they rise to such altitude due to This TRMM Precipitation Radar overflight of Hurricane Bonnie shows an 11 mile the large amount of latent heat.
    [Show full text]
  • Statistical Analysis of Sub-Synoptic Meteorological Patterns
    ILLINOIS STATE WATER SURVEY ATMOSPHERIC SCIENCES SECTION at the University of Illinois Urbana, Illinois STATISTICAL ANALYSIS OF SUB-SYNOPTIC METEOROLOGICAL PATTERNS by Pieter J. Feteris Principal Investigator Glenn E. Stout Project Director FINAL REPORT National Science Foundation GA-1321 October 15, 1968 CONTENTS Page Introduction 1 Background 1 Objectives 2 Source of data 4 Data editing 4 Problems encountered 8 Acknowledgments 8 Reports written during period of the grants 8 Results of various phases of the work , . 9 Relationships between stability and vertical velocity 9 Influence of windshear on low and medium level convection .... 21 Relationships between synoptic scale flow characteristics and low level circulation patterns 25 Interpretation of the time dependence of the vertical motion field from nephanalyses 34 Feasibility of displaying synoptic data as the time dependence of space averages and standard deviations 40 Summary and conclusions ..... 44 References 46 Appendix A Lightning and rain in relation to sub-synoptic flow parameters, by John W. Wilson and Pieter J. Feteris . 49 Appendix B Computation of kinematic vertical velocities, by Pieter J. Feteris and John W. Wilson 68 Appendix C Synoptic repunch program, by Parker T. Jones III and Robert C. Swaringen 72 INTRODUCTION Background This paper is the last in a series of research reports covering a three-year period during which the National Science Foundation, under Grants GP-5196 and GA-1321, has supported the research. A complete list of reports appears elsewhere in this paper. The first two Progress Reports have dealt mainly with techniques, data preparation, and selected case studies; in this Final Report are presented the results of the past year's efforts.
    [Show full text]
  • Late Holocene Climate Variability in South- Central Chile: a Lacustrine Record of Southern Westerly Wind Dynamics
    Late Holocene Climate Variability in South- Central Chile: a Lacustrine Record of Southern Westerly Wind Dynamics. Jonas Vandenberghe ACKNOWLEDGEMENTS First of all, I would like to thanks Prof. Dr. Marc De Batist for the support and supervision of my thesis and for providing this interesting subject as a master thesis project. He was always available for questions and added meaningful corrections and insights on more difficult topics. Special thanks goes to my advisor Willem Vandoorne for his endless support, corrections and answers to my questions in both the lab and during the writing of my thesis. Also I would like to thank other researchers at RCMG especially Maarten and Katrien for very useful explanations and discussions. I am very thankful for the help of all other personel who, directly or indirectly, contributed to this work. Prof. Dr. Eddy Keppens, Leen and Michael from the VUB for their efforts during the carbon and nitrogen isotopic analysis and Rieneke Gielens for her great help with the XRF core scanning at NIOZ. Finally I would like to thank my parents for their support and my girlfriend Celine for coping with me when I was under stress and for providing solutions to all kinds of problems. 1 SAMENVATTING In de laatste decennia was er een opmerkelijke stijging van onderzoek in klimaat reconstructies van de voorbije 1000 jaar. Deze reconstructies moeten een bijdrage leveren aan het begrijpen van de recente klimaatsveranderingen. Klimaatsreconstructies van het laatste millennium kunnen informatie geven over de significantie van deze stijgende trend, de oorzaak van de opwarming en de invloed ervan op andere omgeveingsmechanismes op Aarde.
    [Show full text]
  • Thesis Latent Heating and Mixing Due to Entrainment In
    THESIS LATENT HEATING AND MIXING DUE TO ENTRAINMENT IN TROPICAL DEEP CONVECTION Submitted by Clayton J. McGee Department of Atmospheric Science In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2013 Master’s Committee: Advisor: Susan van den Heever Eric Maloney Richard Eykholt ABSTRACT LATENT HEATING AND MIXING DUE TO ENTRAINMENT IN TROPICAL DEEP CONVECTION Recent studies have noted the role of latent heating above the freezing level in reconciling Riehl and Malkus' Hot Tower Hypothesis (HTH) with evidence of diluted tropical deep convective cores. This study evaluates recent modifications to the HTH through Lagrangian trajectory analysis of deep convective cores in an idealized, high-resolution cloud-resolving model (CRM) simulation. A line of tropical convective cells develops within a high-resolution nested grid whose boundary conditions are obtained from a large-domain CRM simulation approaching radiative-convective equilibrium (RCE). Microphysical impacts on latent heating and equivalent potential temperature (!e) are analyzed along trajectories ascending within convective regions of the high-resolution nested grid. Changes in !e along backward trajectories are partitioned into contributions from latent heating due to ice processes and a residual term. This residual term is composed of radiation and mixing. Due to the small magnitude of radiative heating rates in the convective inflow regions and updrafts examined here, the residual term is treated as an approximate representation of mixing within these regions. The simulations demonstrate that mixing with dry air decreases !e along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase !e above the freezing level.
    [Show full text]
  • Latent Heating and Mixing Due to Entrainment in Tropical Deep Convection
    816 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 71 Latent Heating and Mixing due to Entrainment in Tropical Deep Convection CLAYTON J. MCGEE AND SUSAN C. VAN DEN HEEVER Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado (Manuscript received 13 May 2013, in final form 31 July 2013) ABSTRACT Recent studies have noted the role of latent heating above the freezing level in reconciling Riehl and Malkus’ hot tower hypothesis (HTH) with evidence of diluted tropical deep convective cores. This study evaluates recent modifications to the HTH through Lagrangian trajectory analysis of deep convective cores in an idealized, high-resolution cloud-resolving model (CRM) simulation that uses a sophisticated two-moment microphysical scheme. A line of tropical convective cells develops within a finer nested grid whose boundary conditions are obtained from a large-domain CRM simulation approaching radiative convective equilibrium (RCE). Microphysical impacts on latent heating and equivalent potential temperature (ue) are analyzed along trajectories ascending within convective regions of the high-resolution nested grid. Changes in ue along backward trajectories are partitioned into contributions from latent heating due to ice processes and a re- sidual term that is shown to be an approximate representation of mixing. The simulations demonstrate that mixing with dry environmental air decreases ue along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase ue above the freezing level. Latent heating contributions along trajectories from cloud nucleation, condensation, evaporation, freezing, deposition, and sublimation are also quantified. Finally, the source regions of trajectories reaching the upper troposphere are identified.
    [Show full text]
  • Convective Towers in Eyewalls of Tropical Cyclones Observed by the Trmm Precipitation Radar in 1998–2001
    P1.43 CONVECTIVE TOWERS IN EYEWALLS OF TROPICAL CYCLONES OBSERVED BY THE TRMM PRECIPITATION RADAR IN 1998–2001 Owen A. Kelley* and John Stout TRMM Science Data and Information System, NASA Goddard, Greenbelt, Maryland Center for Earth Observation and Space Research, George Mason University, Fairfax, Virginia Abstract—The Precipitation Radar of the Tropical cyclone. In the mid-1960s, the mesoscale structure Rainfall Measuring Mission (TRMM) is the first surrounding convective towers became a topic of space-borne radar that is capable of resolving the research (Malkus and Riehl 1964). Since the 1980s, detailed vertical structure of convective towers. one mesoscale structure in particular has been studied: During 1998 to 2001, the Precipitation Radar convective bursts, which include multiple convective overflew approximately one hundred tropical towers (Steranka et al. 1986; Rodgers et al. 2000; cyclones and observed their eyewalls. Many Heymsfield et al. 2001). Most papers about convective eyewalls had one or more convective towers in towers and convective bursts are descriptive. In them, especially the eyewalls of intensifying contrast, only a few papers attempted to be predictive, cyclones. A convective tower in an eyewall is such as showing how a convective tower or burst most likely to be associated with cyclone intensi- contributes to tropical cyclone formation (Simpson et al. fication if the tower has a precipitation rate of 2 1998) or intensification (Steranka et al. 1986). mm/h at or above an altitude of 14 km. Alterna- Before the 1997 launch of the Tropical Rainfall tively, the tower can have a 20 dBZ radar reflec- Measuring Mission (TRMM), no dataset existed that tivity at or above 14.5 km.
    [Show full text]
  • Fireline Leadership in the Brave New World of Weather Modification & Modern Wildland Fire Behavior
    FIRELINE LEADERSHIP IN THE BRAVE NEW WORLD OF WEATHER MODIFICATION & MODERN WILDLAND FIRE BEHAVIOR Keep Informed on Fire Weather Conditions and Obtain Forecasts Base All Actions on Current and Expected Fire Behavior Unfamiliar with Weather and Local Factors Influencing Fire Behavior LEARNING NEW INDICATORS Fred J. Schoeffler Sheff, LLC January 2008 INTRODUCTION It’s almost ten years ago to the day that I wrote a similar paper and made a similar presentation to my esteemed Hot Shot colleagues. My goal is to hopefully educate you all about a very real, very disturbing phenomenon occurring worldwide on a daily basis. In fact NOAA readily admits to over fifty (50) on-going Weather Modification projects occurring in the United States today. This doesn’t include what “The Government,” the military, and…(others)…are doing. Weather Modification affects us all. I bet it’s safe to say you often look at clouds and think they look artificial or you just know they are not real. The very first Fire Order is “Keep Informed on Fire Weather Conditions and Forecasts.” So by extension, Weather Modification affects us as Fireline Supervisors, because weather influences fire behavior. The most unpredictable element of weather is, of course, the wind. Many of the Weather Modification projects radically affect the wind, especially HAARP, so much of the following information is about other weather and the new indicators you’ll need to watch for. And please note that not all the information presented in this paper deals with “weather modification,” per se. My goal is to show you, among other things, what indicators to look for – in the clouds and in the smoke columns.
    [Show full text]
  • Downloaded 09/30/21 07:50 AM UTC 668 JOURNAL of the ATMOSPHERIC SCIENCES VOLUME 66
    MARCH 2009 K U M J I A N A N D R Y Z H K O V 667 Storm-Relative Helicity Revealed from Polarimetric Radar Measurements MATTHEW R. KUMJIAN AND ALEXANDER V. RYZHKOV Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma (Manuscript received 14 April 2008, in final form 27 August 2008) ABSTRACT The dual-polarization radar variables are especially sensitive to the microphysical processes of melting and size sorting of precipitation particles. In deep convective storms, polarimetric measurements of such processes can provide information about the airflow in and around the storm that may be used to elucidate storm behavior and evolution. Size sorting mechanisms include differential sedimentation, vertical transport, strong rotation, and wind shear. In particular, winds that veer with increasing height typical of supercell environments cause size sorting that is manifested as an enhancement of differential reflectivity (ZDR) along the right or inflow edge of the forward-flank downdraft precipitation echo, which has been called the ZDR arc signature. In some cases, this shear profile can be augmented by the storm inflow. It is argued that the magnitude of this enhancement is related to the low-level storm-relative environmental helicity (SRH) in the storm inflow. To test this hypothesis, a simple numerical model is constructed that calculates trajectories for raindrops based on their individual sizes, which allows size sorting to occur. The modeling results indicate a strong positive correlation between the maximum ZDR in the arc signature and the low-level SRH, regardless of the initial drop size distribution aloft.
    [Show full text]
  • A Vortical Hot Tower Route to Tropical Cyclogenesis
    JANUARY 2006 M ONTGOMERY ET AL. 355 A Vortical Hot Tower Route to Tropical Cyclogenesis M. T. MONTGOMERY,M.E.NICHOLLS,T.A.CRAM, AND A. B. SAUNDERS Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado (Manuscript received 5 December 2003, in final form 22 February 2005) ABSTRACT A nonhydrostatic cloud model is used to examine the thermomechanics of tropical cyclogenesis under realistic meteorological conditions. Observations motivate the focus on the problem of how a midtropo- spheric cyclonic vortex, a frequent by-product of mesoscale convective systems during summertime condi- tions over tropical oceans, may be transformed into a surface-concentrated (warm core) tropical depression. As a first step, the vortex transformation is studied in the absence of vertical wind shear or zonal flow. Within the cyclonic vorticity-rich environment of the mesoscale convective vortex (MCV) embryo, the simulations demonstrate that small-scale cumulonimbus towers possessing intense cyclonic vorticity in their cores [vortical hot towers (VHTs)] emerge as the preferred coherent structures. The VHTs acquire their vertical vorticity through a combination of tilting of MCV horizontal vorticity and stretching of MCV and VHT-generated vertical vorticity. Horizontally localized and exhibiting convective lifetimes on the order of 1 h, VHTs overcome the generally adverse effects of downdrafts by consuming convective available po- tential energy in their local environment, humidifying the middle and upper troposphere, and undergoing diabatic vortex merger with neighboring towers. During metamorphosis, the VHTs vortically prime the mesoscale environment and collectively mimic a quasi-steady diabatic heating rate within the MCV embryo. A quasi-balanced toroidal (transverse) circu- lation develops on the system scale that converges cyclonic vorticity of the initial MCV and small-scale vorticity anomalies generated by subsequent tower activity.
    [Show full text]
  • Educator's Guide
    Christenberry Planetarium Educator’s Guide ALABAMA SKIES Credit: Hubble Telescope INSIDE: www.samford.edu/departments/planetarium/ • Connections to Education Standards • Preparation Questions • Solar System Breakdown • Synopsis • Glossary of Terms • Classroom Activities 1 Table of Contents FOR THE EDUCATOR Connections to Education Standards…………………….………………….. 2 BEFORE THE SHOW Preparation Questions………………………………………………………… 3 Solar System Breakdown……………………………………………………… 4 AFTER THE SHOW Synopsis…………………………………………………………………………. 6 Classroom Activities……...………………………………………..………..…. 8 Glossary of Terms………………………………………………………………12 Online Resources……………………………………………………………….13 2 Connections to Education Standards Below you will find the national education content standards that we explore in our presentation: NATIONAL EDUCATION CONTENT STANDARDS GRADE CONTENT STANDARD All: Science as a human endeavor K – 4: Objects in the sky Changes in the earth and sky 5 – 8: Motion and forces Earth in the solar system 9 – 12: Motion and forces Interactions of energy and matter Credit: Andrew C. Freeman 3 Preparation Questions What is a Solar System? A solar system is a collection of the planets and their moons in orbit around a star (in our case, the sun). It also includes smaller bodies in the forms of asteroids, meteoroids, comets, and dwarf planets. What is a Galaxy? A system of billions or even trillions of stars along with planets, interstellar Credit: Andrew C. Freeman clouds of gas and dust, and dark matter all held together by gravitational What is the Milky Way? attraction. There are three kinds of galaxies: elliptical, spiral, and irregular. The Milky Way is a barred spiral galaxy that houses our solar system along with How Many Galaxies are There? 100-400 billion stars and at least the There are countless galaxies in the same number of planets.
    [Show full text]
  • 1 Orographic Effects on Supercell: Development and Structure
    Orographic Effects on Supercell: Development and Structure, Intensity and Tracking Galen M. Smith1, Yuh-Lang Lin1,2,@, and Yevgenii Rastigejev1,3 1Department of Energy and Environmental Systems 2Department of Physics 3Department of Mathematics North Carolina A&T State University March 1, 2016 @Corresponding Author Address: Dr. Yuh-Lang Lin, 302H Gibbs Hall, EES, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27411. Email: [email protected]. Web: http://mesolab.ncat.edu Abstract Orographic effects on tornadic supercell development, propagation, and structure are investigated using Cloud Model 1 (CM1) with idealized bell-shaped mountains of various heights and a homogeneous fluid flow with a single sounding. It is found that blocking effects are dominative compared to the terrain-induced environmental heterogeneity downwind of the mountain. The orographic effect shifted the track of the storm towards the the left of storm motion, particularly on the lee side of the mountain, when compared to the track in the case with no mountain. The terrain blocking effect also enhanced the supercells inflow, which was increased more than one hour before the storm approached the terrain peak. This allowed the central region of the storm to exhibit clouds with a greater density of hydrometeors than the control. Moreover, the enhanced inflow increased the areal extent of the supercells precipitation, which, in turn enhanced the cold pool outflow serving to enhance the storm’s updraft until becoming strong enough to undercut and weaken the storm considerably. Another aspect of the orographic effects is that down slope winds produced or enhanced low-level vertical vorticity directly under the updraft when the storm approached the mountain peak.
    [Show full text]