Enumeration of Perfect Sequences of Chordal Graph

Total Page:16

File Type:pdf, Size:1020Kb

Enumeration of Perfect Sequences of Chordal Graph 数理解析研究所講究録 第 1644 巻 2009 年 86-94 86 Enumeration of Perfect Sequences of Chordal Graph Yasuko Matsui1, Ryuhei Uehara2, and Takeaki Uno3 1 Department of Mathematical Sciences, School of Science, Tokai University, Kitakaname 1117, Hiratsuka, Kanagawa 259-1292, Japan. [email protected] 2 School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan. uehara@jaist. ac. jp 3 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, [email protected] Abstract. A graph is chordal if and only if it has no chordless cycle of length more than three. The set of maximal cliques in a chordal graph admits special tree structures called clique trees. A perfect sequence is a sequence of maximal cliques obtained by using the reverse order of repeatedly removing the leaves of a clique tree. This paper addresses the problem of enumerating all the perfect sequences. Although this problem has statistical applications, no efficient algorithm has been proposed. There are two difficulties with developing this type of algorithms. First, a chordal graph does not generally have a unique clique tree. Second, a perfect sequence can normally be generated by two or more distinct clique trees. Thus it is hard using a straightforward way to generate perfect sequences from each possible clique tree. In this paper, we propose a method to enumerate perfect sequences without constructing clique trees. As a result, we have developed the first polynomial delay algorithm for dealing with this problem. In particular, the time complexity of the algorithm on average is $O(1)$ for each perfect sequence. Keywords: chordal graph, clique tree, enumeration, perfect sequence. 1 Introduction A graph is said to be chordal if every cycle of length at least 4 has a chord. Chordal graphs have been investigated for a long time for many areas. From the viewpoint of graph theory, this class has a simple characterization; a graph is chordal if and only if it is an intersection graph of the subtrees of a tree. That is, there is a set of subtrees $T_{v}$ of a tree $\mathcal{T}$ that correspond to the vertices $v$ of a chordal graph $G$ such that $u$ and $v$ are adjacent in $G$ if and only if the corresponding subtrees $T_{u}$ and $T_{v}$ have non-empty intersection. From an algorithmic point of view, a chordal graph is characterized by a simple vertex ordering called a perfect elimination ordering (PEO). Its geometrical property of rigidity plays an important role in many practical areas, and the property of its adjacency matrix is useful in matrix manipulations. Since the class appears in different contexts in so many areas they also are called “rigid circuit graphs” or “triangulated graphs” (see e.g., [13, 5]). Recently, the probabilistic relationships between random variables are represented by a graph called ”graphical model” in the science of statistics. On a graphical model, the random variables are represented by the vertices and the conditional dependencies are represented by the edges. In particular, if a graphical model is chordal, we can easily compute its maximum likelihood estimator. In the computation, a chordal graph is decomposed into its subgraphs by removing a separator which induces a clique. Therefore, chordal graphs are also called “decomposable graphs” or “decomposable models” in this area (see, e.g., [9]). Even if a given graphical model is not decomposable, we sometimes add edges to make it decomposable to obtain a good approximation value of the maximum likelihood estimator $oi$ the graphical model (see, e,g., [4] $)$ . This corresponds to the notion of ”chordal completion” in the area of graph algorithms [8]. Hence chordal graphs play an important role in graphical modeling in statistics. Perfect sequences are the sequences of maximal cliques in a given chordal graph that $Satis\mathfrak{h}r$ certain properties. The notion arises fiom the decomposable models, and all perfect sequences are required and 87 must not have repetitions (see, e.g., [7]) From the viewpoint of graph theory, perfect sequences can be seen in the following way. As mentioned, a chordal graph $G$ can be represented by the intersection graph $\mathcal{T}$ of the subtrees of a tree . That is, each vertex $v$ of $G=(V, E)$ corresponds to a subtree $T_{v}$ of $\mathcal{T}$ , and $T_{v}$ $T_{u}$ $\mathcal{T}$ $\{u, v\}\in E$ if and only if and intersect. We can make each node $c_{1}$ of tree correspond to a maximal $C_{i}$ $G;C_{j}$ $G$ $T_{v}$ clique of consists of all the vertices $v$ in such that contains the node $c_{i}$ . Therefore, the tree $\mathcal{T}$ $I^{l}\neg rom$ $\mathcal{T}$ is called a clique tree of G. the clique tree , we make an ordering $\pi$ over the set of maximal $\mathcal{T}$ cliques $\{C_{1}, C_{2}, \ldots , C_{k}\}$ of $G$ such that $C_{\pi(i)}$ is a leaf of tree $\mathcal{T}_{i}$ which is a subgraph of induced by $C_{\pi(1)},$ $C_{\pi(2)},$ $C_{\pi(l)}$ $i$ $\mathcal{T}$ $\ldots,$ for each . Intuitively, we cari construct such a sequence from by repeatedly pruning leaves and put them on the top of the sequence until $\mathcal{T}$ is empty. Then the sequence of maximal cliques in a chordal graph is called a perfect sequence, and it is known that a graph is chordal if and only if it has a perfect sequence. In 2006, Hara and Takemura proposed a sampling algorit}im for the perfect sequences of a given chordal graph [6] that used the Lauritzen’s method [9]. However their algorithm does not generate each perfect sequence uniformly at random, and to our knowledge, no enumeration algorithm of perfect sequences exists. There are two major reasons for the difficulty in enurnerating perfect sequences. First, the clique tree is not generally unique for a chordal graph. That is, a chordal graph has many distinct (non- isomorphic) clique trees in general. For a clique tree, we can define a set of perfect sequences consistent to the clique tree. Then, secondly, the sets of perfect sequences consistent with the distinct clique trees are not disjoint. That is, we can obtain one perfect sequence from possibly many distinct clique trees. Therefore, a straightforward algorithm based on a simple idea (generate all clique trees, and generate all perfect sequences for each clique tree) cannot avoid redundancy. In this paper, we propose an algorithm enumerating all the perfect sequences of a chordal graph. The algorithm enumerates all the perfect sequences on an average of $O(1)$ time per sequence. In order to avoid redundancy, our algorithm makes a weighted intersection graph of maximal cliques first instead of explicitly constructing the clique trees. The intersection graph is uniquely constructed, and each maxi- mum $weig\}ited$ spanning tree of the intersection graph gives a clique tree of a chordal graph. Then the algorithm generates each perfect sequence from the union of maximum weighted spanning trees without any repetitions. The algorithm is based on a new idea that characterizes the union of maximum weighted spanning trees, and that also gives us insight into the properties of the set of clique trees of a chordal graph. We note that the set of perfect sequences is strongly related to the set of PEOs. The PEO is a standard characterization of a chordal graph in the area of graph algorithms. Any PEO can be obtained by repeatedly removing a simplicial vertex, and any sequence of removals of simplicial vertices is a PEO. This property admits us to enumerate all PEOs by recursively removing simplicial vertices. The enumeration of all PEOs is investigated by Chandran et al. [3]. Intuitively, any perfect sequenoe can be obtained by removing a set of “equivalent” simplicial vertices together repeatedly. However, each removal has to follow (a kind of) lexicographical ordering. A removal of a set of simplicial vertices may produce a new set of simplicial vertices or change another set of simplicial vertices, and the new set cannot be chosen before the old sets. Thus the family of sets of equivalent simplicial vertices has to follow a partial ordering defined by the appearance in the graph to obtain a perfect sequence. This fact also implies that while some PEOs can be obtained from a perfect sequence easily, but some PEOs camiot be obtained from any perfect sequence straightforwardly by the constraint of the partial ordering. Therefore, tbe correspondence between the set of perfect sequences and the set of PEOs is not straightforward and hence we have to analyze some special cases. Indeed, using this approach, we can obtain another enumeration algorithm of all perfect sequences from the enumeration algorithm of all PEOs. However this approach does not allow us to enumerate efficiently; the algorithm takes $O(|V|+|E|)$ time for each perfect sequence. This 88 is the reason why we take completely different approach based on a maximum weighted spanning tree of a weighted clique graph, which admits us to improve the time to $O(1)$ on average. 2 Preliminaries The neighborhood of a vertex $v$ in a graph $G=(V, E)$ is the set $N_{G}(v)=\{u\in V|\{u\rangle v\}\in E\}$ , and the degree of a vertex $v$ is $|N_{G}(v)|$ and is denoted by $\deg_{G}(v)$ . For a vertex subset $U$ of $V$ we denote by $N_{G}(U)$ the set $\{v\in V|v\in N_{G}(u)$ for some $u\in U\}$ . If no confusion arises we will omit the subscript $G$ . Given a graph $G=(V, E)$ and a subset $U\subseteq V$ , the subgmph of $G$ induced by $U$ is the graph $(U, F)$ , where $F=\{\{u, v\}\in E|u, v\in U\}$ , and denoted by $G[U]$ .
Recommended publications
  • Interval Completion with Few Edges∗
    Interval Completion with Few Edges∗ Pinar Heggernes Christophe Paul Department of Informatics CNRS - LIRMM, and University of Bergen School of Computer Science Norway McGill Univ. Canada [email protected] [email protected] Jan Arne Telle Yngve Villanger Department of Informatics Department of Informatics University of Bergen University of Bergen Norway Norway [email protected] [email protected] ABSTRACT Keywords We present an algorithm with runtime O(k2kn3m) for the Interval graphs, physical mapping, profile minimization, following NP-complete problem [8, problem GT35]: Given edge completion, FPT algorithm, branching an arbitrary graph G on n vertices and m edges, can we obtain an interval graph by adding at most k new edges to G? This resolves the long-standing open question [17, 6, 24, 1. INTRODUCTION AND MOTIVATION 13], first posed by Kaplan, Shamir and Tarjan, of whether Interval graphs are the intersection graphs of intervals of this problem could be solved in time f(k) nO(1). The prob- the real line and have a wide range of applications [12]. lem has applications in Physical Mapping· of DNA [11] and Connected with interval graphs is the following problem: in Profile Minimization for Sparse Matrix Computations [9, Given an arbitrary graph G, what is the minimum number 25]. For the first application, our results show tractability of edges that must be added to G in order to obtain an in- for the case of a small number k of false negative errors, and terval graph? This problem is NP-hard [18, 8] and it arises for the second, a small number k of zero elements in the in both Physical Mapping of DNA and Sparse Matrix Com- envelope.
    [Show full text]
  • A Subexponential Parameterized Algorithm for Proper Interval Completion
    A subexponential parameterized algorithm for Proper Interval Completion Ivan Bliznets1 Fedor V. Fomin2 Marcin Pilipczuk2 Micha l Pilipczuk2 1St. Petersburg Academic University of the Russian Academy of Sciences, Russia 2Department of Informatics, University of Bergen, Norway ESA'14, Wroc law, September 9th, 2014 Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 1/17 Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t. no interval contains any other interval. Unit interval graphs: graphs admitting an intersection model of unit intervals on a line. PIG = UIG. (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 2/17 Unit interval graphs: graphs admitting an intersection model of unit intervals on a line. PIG = UIG. (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t. no interval contains any other interval. Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 2/17 PIG = UIG. (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t. no interval contains any other interval. Unit interval graphs: graphs admitting an intersection model of unit intervals on a line. Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 2/17 (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t.
    [Show full text]
  • Parallel Gaussian Elimination with Linear Fill
    Parallelizing Elimination Orders with Linear Fill Claudson Bornstein Bruce Maggs Gary Miller R Ravi ;; School of Computer Science and Graduate School of Industrial Administration Carnegie Mellon University Pittsburgh PA Abstract pivoting step variable x is eliminated from equa i This paper presents an algorithm for nding parallel tions i i n elimination orders for Gaussian elimination Viewing The system of equations is typically represented as a system of equations as a graph the algorithm can be a matrix and as the pivots are p erformed some entries applied directly to interval graphs and chordal graphs in the matrix that were originally zero may b ecome For general graphs the algorithm can be used to paral nonzero The number of new nonzeros pro duced in lelize the order produced by some other heuristic such solving the system is called the l l Among the many as minimum degree In this case the algorithm is ap dierent orders of the variables one is typically chosen plied to the chordal completion that the heuristic gen so as to minimize the ll Minimizing the ll is desir erates from the input graph In general the input to able b ecause it limits the amount of storage needed to the algorithm is a chordal graph G with n nodes and solve the problem and also b ecause the ll is strongly m edges The algorithm produces an order with height correlated with the total number of op erations work p erformed at most O log n times optimal l l at most O m and work at most O W G where W G is the Gaussian elimination can also b e viewed
    [Show full text]
  • The Wonderful World of Chordal Graphs
    The Wonderful World of Chordal Graphs Martin Charles Golumbic University of Haifa, Israel The 32nd European Conference on Combinatorial Optimization, ECCO XXXII, Malta, 2019 Preamble In 1970, Claude Berge published the original French version his fundamental and perhaps most important book, Graphes et Hypergraphes. To many graph theorists, its chapters were saplings ready to be cultivated into the vast forest that we know today. As we enter this 50th (Jubilee) anniversary year, we celebrate Le Bois de Berge with its mathematical palms, pines and poplars, firs, fruit and ficuses, oaks, maples and cacti. One of those sapling chapters was on Perfect Graphs. Berge challenged us with his Perfect Graph Conjecture, and surveyed its core subclasses: comparability graphs, interval graphs, and triangulated (chordal) graphs. —citing Fulkerson, Gallai, Ghouila-Houri, Gilmore, Hoffman, Hojós, Lovász. By the time the English version appeared in 1973, more sprouts could have been added to the blossoming family —Benzer, Dirac, Fishburn, Gavril, Roberts, Rose, Trotter. However, these and others would wait until 1980, when my own book Algorithmic Graph Theory and Perfect Graphs first appeared. —a direct outgrowth of Berge’s inspiring chapter. Triangulated graphs – also known as rigid circuit graphs (Dirac), acyclic graphs (Lekkerkerker and Boland) But it was Fanica Gavril who coined the term chordal graphs. A graph G is a chordal graph, if every cycle in G of length greater than or equal to 4 has a chord, that is, an edge connecting two vertices that are not consecutive on the cycle. NOT a chordal graph This IS a It has many copies of C4 chordal graph Fanica Gavril: “I knew that these graphs occurred before as triangulated graphs, but the term triangulated was also used for maximal planar graphs, implying the statement, ‘some planar triangulated graphs are not triangulated graphs’ (like the complete wheels).
    [Show full text]
  • An O(N 2) Algorithm for the Minimal Interval Completion Problem
    An O(n2) algorithm for the minimal interval completion problem Christophe Crespelle1 and Ioan Todinca2 1 LIP6, Universite´ Paris 6 [email protected] 2 LIFO, Universite´ d’Orleans, BP 6759, F-45067 Orleans Cedex 2, France [email protected] Abstract. The minimal interval completion problem consists in adding edges to an arbitrary graph so that the resulting graph is an interval graph; the objective is to add an inclusion minimal set of edges, which means that no proper subset of the added edges can result in an interval graph when added to the original graph. We give an O(n2) time algorithm to obtain a minimal interval completion of an arbitrary graph. 1 Introduction Arbitrary graphs are complex combinatorial objects, thus it is very common to tempt to ”simplify” them using few transformations. Classically, we want to know if an in- put graph can be modified into a graph with a special property (e. g. into a planar or chordal graph) using only a few operations like edge and/or vertex additions or dele- tions. Several important graph parameters like treewidth, pathwidth or bandwidth can be defined in terms of graph completion problems. In graph completions we are only allowed to add edges to the input graph G = (V; E), in order to obtain a new graph H = (V; E [ F ) with the required property. For example the treewidth problem con- sists in computing a chordal completion H – also known as triangulation – of the input graph G, such that the maximum cliquesize of H is as small as possible.
    [Show full text]
  • Interval Deletion Is Fixed-Parameter Tractable∗
    Interval Deletion is Fixed-Parameter Tractable∗ Yixin Caoy Daniel´ Marxy Abstract in F; interval graphs and chordal graphs, among oth- We study the minimum interval deletion problem, which ers, are hereditary. For such graph classes, the vertex asks for the removal of a set of at most k vertices to make deletion version can be considered as the most robust a graph on n vertices into an interval graph. We present variant, which in some sense encompasses both edge ad- a parameterized algorithm of runtime 10k · nO(1) for this dition and edge deletion: if G can be made a member problem, thereby showing its fixed-parameter tractability. of F by k1 edge additions and k2 edge deletions, then it can be also made a member of F by deleting at most 1 Introduction k1 + k2 vertices (e.g., by deleting one endvertex of each added/deleted edge). A graph is an interval graph if its vertices can be as- Unfortunately, most of these graph modification signed to intervals of the real line such that there is problems are computationally hard: for example, a an edge between two vertices if and only if their cor- classical result of Lewis and Yannakakis [23] shows responding intervals intersect. Interval graphs are the that the vertex deletion problem is NP-hard for every natural models for DNA chains in biology and many nontrivial and hereditary class F, and according to other applications, among which the most cited ones Lund and Yannakakis [24], they are also MAX SNP- include jobs scheduling in industrial engineering [2] and hard.
    [Show full text]
  • Chordal Deletion Is Fixed-Parameter Tractable
    Chordal deletion is fixed-parameter tractable Daniel´ Marx Humboldt-Universitat¨ zu Berlin [email protected] June 22, 2006 WG 2006 Bergen, Norway Chordal deletion is fixed-parameter tractable – p.1/17 Graph modification problems Problems of the following form: Given a graph G and an integer k, is it possible to add/delete k edges/vertices such that the result belongs to class G? Make the graph bipartite by deleting k vertices. Make the graph chordal by adding k edges. Make the graph an empty graph by deleting k vertices (VERTEX COVER). ... Chordal deletion is fixed-parameter tractable – p.2/17 Notation for graph classes A notation introduced by Cai [2003]: Definition: If G is a class of graphs, then we define the following classes of graphs: G + ke: a graph from G with k extra edges. G− ke: a graph from G with k edges deleted. G + kv: graphs that can be made to be in G by deleting k vertices. G− kv: a graph from G with k vertices deleted. Chordal deletion is fixed-parameter tractable – p.3/17 Notation for graph classes A notation introduced by Cai [2003]: Definition: If G is a class of graphs, then we define the following classes of graphs: G + ke: a graph from G with k extra edges. G− ke: a graph from G with k edges deleted. G + kv: graphs that can be made to be in G by deleting k vertices. G− kv: a graph from G with k vertices deleted. Theorem: [Lewis and Yannakakis, 1980] If G is a nontrivial hereditary graph property, then it is NP-hard to decide if a graph is in G + kv (k is part of the input).
    [Show full text]
  • Arxiv:1903.02904V1 [Cs.DS] 7 Mar 2019
    Halin graphs are 3-vertex-colorable except even wheels A. Kapanowski∗ and A. Krawczyk Institute of Physics, Jagiellonian University, ulica Łojasiewicza 11, 30-348 Kraków, Poland (Dated: March 8, 2019) Abstract A Halin graph is a graph obtained by embedding a tree having no nodes of degree two in the plane, and then adding a cycle to join the leaves of the tree in such a way that the resulting graph is planar. According to the four color theorem, Halin graphs are 4-vertex-colorable. On the other hand, they are not 2-vertex-colorable because they have triangles. We show that all Halin graphs are 3-vertex-colorable except even wheels. We also show how to find the perfect elimination ordering of a chordal completion for a given Halin graph. The algorithms are implemented in Python using the graphtheory package. Generators of random Halin graphs (general or cubic) are included. The source code is available from the public GitHub repository. arXiv:1903.02904v1 [cs.DS] 7 Mar 2019 ∗ Corresponding author: [email protected] 1 I. INTRODUCTION A Halin graph H = T [ C is a simple graph obtained by embedding a tree T , which has no nodes of degree two, in the plane. Then new edges connecting leaves and forming a cycle C are added in such a way that the resulting graph H is planar. These graphs were studied by Halin [1] and Kirkman (cubic graphs) [2]. Every Halin graph is Hamiltonian, 3-connected, and polyhedral. The simplest Halin graphs with n vertices and m edges are wheels Wn, then T is a star and C is formed from n − 1 vertices.
    [Show full text]
  • Exploiting Chordal Structure in Systems of Polynomial Equations
    Exploiting Chordal Structure in Systems of Polynomial Equations by Diego Fernando Cifuentes Pardo Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2014 ○c Massachusetts Institute of Technology 2014. All rights reserved. Author.................................................................. Department of Electrical Engineering and Computer Science August 29, 2014 Certified by . Pablo Parrilo Professor Thesis Supervisor Accepted by............................................................. Leslie A. Kolodziejski Chairman, Department Committee on Graduate Theses 2 Exploiting Chordal Structure in Systems of Polynomial Equations by Diego Fernando Cifuentes Pardo Submitted to the Department of Electrical Engineering and Computer Science on August 29, 2014, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Chordal structure and bounded treewidth allow for efficient computation in linear al- gebra, graphical models, constraint satisfaction and many other areas. Nevertheless, it has not been studied whether chordality might also help solve systems of polynomials. We propose a new technique, which we refer to as chordal elimination, that relies in elimination theory and Gröbner bases. Chordal elimination can be seen as a general- ization of sparse linear algebra. Unlike the linear case, the elimination process may not be exact. Nonetheless, we show that our methods are well-behaved for a large family of problems. We also use chordal elimination to obtain a good sparse description of a structured system of polynomials. By mantaining the graph structure in all computa- tions, chordal elimination can outperform standard Gröbner basis algorithms in many cases.
    [Show full text]
  • A Cubic Vertex-Kernel for Trivially Perfect Editing
    A cubic vertex-kernel for Trivially Perfect Editing Ma¨elDumas1, Anthony Perez1, and Ioan Todinca1 1Univ. Orl´eans,INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orl´eans,France May 19, 2021 Abstract We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = (V; E) and a parameter k 2 N and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree- depth width parameter and to social network analysis. All variants of the problem are known to be NP-Complete [6, 28] and to admit so-called polynomial kernels [13, 22]. More precisely, the existence of an O(k3) vertex-kernel for Trivially Perfect Completion was announced by Guo [22] but without a stand-alone proof. More recently, Drange and Pilipczuk [13] provided O(k7) vertex- kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Introduction A broad range of optimization problems on graphs are particular cases of so-called modification problems. Given an arbitrary graph G = (V; E) and an integer k, the question is whether G can be turned into a graph satisfying some desired property by at most k modifications. By modifications we mean, according to the problem, vertex deletions (as for Vertex Cover and Feedback Vertex Set where we aim to obtain graphs with no edges, or without cycles respectively) or edge deletions and/or additions (as for Minimum Fill-In, also known as Chordal Completion, where the goal is to obtain a chordal graph, with no induced cycles with four or more vertices, by adding at most k edges).
    [Show full text]
  • Chordal Completions of Planar Graphs
    Reprinted from JOURNAL OF COMBINATORIAL THEORY, Series B Vol. 62, No. I, September 1994 All Rights Reserved by Academic Press, New York and London Printed in Belgium Chordal Completions of Planar Graphs F. R. K. CHUNG Bell Communications Research, 445 South Street, Morristown, New Jersey 07960 AND DAVID MUMFORD Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138 Received March 2, 1993 We prove that every planar graph on n vertices is contained in a chordal graph with at most cn log n edges for some abolsute constant c and this is best possible to within a constant factor. © 1994 Academic Press, Inc. 1. INTRODUCTION A graph is said to be chordal if every cycle with at least four vertices always contains a chord. (A chordal graph is sometimes called a triangulated graph in the literature. For graph-theoretical terminology, the reader is referred to [4].) A chordal completion of a graph G is a chordal graph with the same vertex set as G which contains all edges of G. The problem of interest is to find for a given graph a chordal completion with as few edges as possible. Also, it is desirable to have a chordal completion with small maximum degree. These problems are motivated by applications in computer vision and artificial intelligence (for further discussion see Section 6). We will prove the following. THEOREM 1. Every planar graph on n vertices has a chordal completion with cn log n edges for some absolute constant c. We remark that there is an 0(n log n) algorithm for constructing a chordal completion of a planar graph.
    [Show full text]
  • Stacked Treewidth and the Colin De Verdière Number
    Bachelorthesis Stacked Treewidth and the Colin de Verdière Number Lasse Wulf September 30th, 2016 Reviewers: Prof. Dr. Dorothea Wagner Prof. Maria Axenovich, Ph.D. Advisors: Dr. Ignaz Rutter Dr. Torsten Ueckerdt At the Department of Informatics Institute of Theoretical Computer Science Karlsruhe Institute of Technology Statement of Authorship I hereby declare that this document has been composed by myself and describes my own work, unless otherwise acknowledged in the text. Karlsruhe, September 30, 2016 iii Abstract: For k N, a k-tree is constructed by starting with a (k+1)-clique and then repeatedly connecting2 a new vertex to all vertices of an existing k-clique. A k-tree is called a stacked k-tree, if during its construction no two vertices are stacked onto the same k-clique. We introduce the stacked treewidth stw(G) of a graph G as the smallest integer k such that G is subgraph of a stacked k-tree. The Colin de Verdière number µ is a graph parameter introduced 1993 by Yves Colin de Verdière which has the interesting property that the outerplanar, planar and linklessly embeddable graphs are characterized by µ(G) 2, µ(G) 3, and µ(G) 4, respectively. Recent results by Fallat and Mitchell show≤ that for all≤ chordal graphs≤G, stw(G) = tw(G) + 1 if and only if µ(G) = tw(G) + 1. We show that the same relation holds for all planar graphs, but for each k 4, we find a counterexample H, such that stw(H) = tw(H)+1 = k+1, but µ(H) k.≥ Along the way, we develop new tools for handling stw( ) and we prove that stw( )≤is minor-monotone and behaves identical to µ( ) on clique-sums.· · · v Contents 1 Introduction 1 1.1 Overview .
    [Show full text]