(Warp) Drive Now for Discussion That Probably Should Be Classified As Science fiction, but Who Knows!!!!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
18Th International Conference on General
18TH INTERNATIONAL CONFERENCE ON GENERAL RELATIVITY AND GRAVITATION (GRG18) 8 – 13 July 2007 7TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI7) www.grg18.com 8 – 14 July 2007 www.Amaldi7.com Sydney Convention & Exhibition Centre • Darling Harbour • Sydney Australia INSPIRALLING BLACK HOLES RAPID EPANSION OF AN UNSTABLE NEUTRON STAR Credit: Seidel (LSU/AEI) / Kaehler (ZIB) Credit: Rezzolla (AEI) / Benger (ZIB) GRAZING COLLISION OF TWO BLACK HOLES VISUALISATION OF A GRAVITATIONAL WAVE HAVING Credit: Seidel (AEI) / Benger (ZIB) TEUKOLSKY'S SOLUTION AS INITIAL DATA Credit: Seidel (AEI) / Benger (ZIB) ROLLER COASTER DISTORTED BY SPECIAL RELATIVISTIC EFFECTS Credit: Michael Hush, Department of Physics, The Australian National University The program for GRG18 will incorporate all areas of General Relativity and Gravitation including Classical General Relativity; Numerical Relativity; Relativistic Astrophysics and Cosmology; Experimental Work on Gravity and Quantum Issues in Gravitation. The program for Amaldi7 will cover all aspects of Gravitational Wave Physics and Detection. PLENARY LECTURES Peter Schneider (Bonn) Donald Marolf USA Bernard Schutz Germany Bernd Bruegman (Friedrich-Schiller-University Jena) Gravitational lensing David McClelland Australia Robin Stebbins United States Numerical relativity Daniel Shaddock (JPL California Institute of Technology) Jorge Pullin USA Kimio Tsubono Japan Daniel Eisenstein (University of Arizona) Gravitational wave detection from space: technology challenges Norna Robertson USA Stefano Vitale Italy Dark energy Stan Whitcomb (California Institute of Technology) Misao Sasaki Japan Clifford Will United States Ground-based gravitational wave detection: now and future Bernard F Schutz Germany Francis Everitt (Stanford University) Susan M. Scott Australia LOCAL ORGANISING COMMITTEE Gravity Probe B and precision tests of General Relativity Chair: Susan M. -
Arxiv:1310.7985V1 [Gr-Qc] 29 Oct 2013 Life Inside the Bubble Is Colourful and Sexy and Fun
Traversable Achronal Retrograde Domains In Spacetime Doctor Benjamin K. Tippett Gallifrey Polytechnic Institute Doctor David Tsang Gallifrey Institute of Technology (GalTech) (Dated: October 31, 2013) There are many spacetime geometries in general relativity which contain closed timelike curves. A layperson might say that retrograde time travel is possible in such spacetimes. To date no one has discovered a spacetime geometry which emulates what a layperson would describe as a time machine. The purpose of this paper is to propose such a space-time geometry. In our geometry, a bubble of curvature travels along a closed trajectory. The inside of the bubble is Rindler spacetime, and the exterior is Minkowski spacetime. Accelerating observers inside of the bubble travel along closed timelike curves. The walls of the bubble are generated with matter which violates the classical energy conditions. We refer to such a bubble as a Traversable Achronal Retrograde Domain In Spacetime. I. INTRODUCTION t A. Exotic spacetimes x How would one go about building a time machine? Let us begin with considering exactly what one might mean by “time machine?” H.G. Wells (and his successors) might de- scribe an apparatus which could convey people “backwards in time”. That is to say, convey them from their current location in spacetime to a point within their own causal past. If we de- scribe spacetime as a river-bed, and the passage of time as our unrelenting flow along our collective worldlines towards our B future; a time machine would carry us back up-stream. Let us A describe such motion as retrograde time travel. -
Tippett 2017 Class. Quantum Grav
Citation for published version: Tippett, BK & Tsang, D 2017, 'Traversable acausal retrograde domains in spacetime', Classical Quantum Gravity, vol. 34, no. 9, 095006. https://doi.org/10.1088/1361-6382/aa6549 DOI: 10.1088/1361-6382/aa6549 Publication date: 2017 Document Version Peer reviewed version Link to publication Publisher Rights CC BY-NC-ND This is an author-created, un-copyedited version of an article published in Classical and Quantum Gravity. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at: https://doi.org/10.1088/1361-6382/aa6549 University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 Classical and Quantum Gravity PAPER Related content - A time machine for free fall into the past Traversable acausal retrograde domains in Davide Fermi and Livio Pizzocchero - The generalized second law implies a spacetime quantum singularity theorem Aron C Wall To cite this article: Benjamin K Tippett and David Tsang 2017 Class. -
Dark Energy Warp Drive
Dark Energy Warp Drive Frank Dodd (Tony) Smith, Jr. - 2016 - viXra 1605.0084 Abstract Gabriele U. Varieschi and Zily Burstein in arXiv 1208.3706 showed that with Conformal Gravity Alcubierre Warp Drive does not need Exotic Matter. In E8 Physics of viXra 1602.0319 Conformal Gravity gives Dark Energy which expands our Universe and can curve Spacetime. Clovis Jacinto de Matos and Christian Beck in arXiv 0707.1797 said “... based on the model of dark energy a proposed by Beck and Mackey ... assume... that photons ... can exist in two different phases: A gravitationally active phase where the zeropoint fluctuations contribute to the [dark energy] cosmological constant /\, and a gravitationally inactive phase where they do not contribute to /\. ... this type of model of dark energy can lead to measurable effects in supeconductors, via ... interaction with the Cooper pairs in the superconductor. ... the transition between the two graviphoton’s phases ... occurs at the critical temperature Tc of the superconductor, which defines a cutoff frequency of opoint fluctuations ... Graviphotons can form weakly bounded states with Cooper pairs ... [which] ... form a condensate ...[in]... superconduct[ors] ... the cosmological cutoff frequency [could be measured] through the measurement of the spectral density of the noise current in resistively shunted Josephson Junctions ...”. Xiao Hu and Shi-Zeng Lin in arXiv 0911.5371 and 1206.516 showed that BSCCO superconducting crystals are natural Josephson Junctions. A Pentagonal Dipyramid configuration of 16 BSCCO crystals cannot close in flat 3-dim space, but can close if Conformal Dark Energy accumulated in the BSCCO Josephson Junctions curves spacetime. Such spacetime curvature allows construction of a Conformal Gravity Alcubierre Warp Drive that does not need Exotic Matter. -
Excerpts from “It's Official: NASA's Peer-Reviewed EM Drive Paper
CAVE PAINTINGS – I. MOVEMENT – EXCERPTS Excerpts from “It’s Official: NASA’s Peer-Reviewed EM Drive Paper Has Finally Been Published” By Fiona McDonald, Science Alert, November 19, 2016 It works. After months of speculation and leaked documents, NASA’s long-awaited EM Drive paper has finally been peer-reviewed and published. And it shows that the ‘impossible’ propulsion system really does appear to work. The NASA Eagleworks Laboratory team even put forward a hypothesis for how the EM Drive could produce thrust – something that seems impossible according to our current understanding of the laws of physics. In case you’ve missed the hype, the EM Drive, or Electromagnetic Drive, is a propulsion system first proposed by British inventor Roger Shawyer back in 1999. Instead of using heavy, inefficient rocket fuel, it bounces microwaves back and forth inside a cone-shaped metal cavity to generate thrust. *** But, there’s a not-small problem with the system. It defies Newton’s third law, which states that everything must have an equal and opposite reaction. According to the law, for a system to produce thrust, it has to push something out the other way. The EM Drive doesn’t do this. Yet in test after test it continues to work. Last year, NASA’s Eagleworks Laboratory team got their hands on an EM Drive to try to figure out once and for all what was going on. *** The new peer-reviewed paper is titled “Measurement of Impulsive Thrust from a Closed Radio- Frequency Cavity in Vacuum,” and has been published online as an open access ‘article in ad- vance’ in the American Institute of Aeronautics and Astronautics (AIAA)’s Journal of Propul- sion and Power. -
Designing Force Field Engines Solomon BT* Xodus One Foundation, 815 N Sherman Street, Denver, Colorado, USA
ISSN: 2319-9822 Designing Force Field Engines Solomon BT* Xodus One Foundation, 815 N Sherman Street, Denver, Colorado, USA *Corresponding author: Solomon BT, Xodus One Foundation, 815 N Sherman Street, Denver, Colorado, USA, Tel: 310- 666-3553; E-mail: [email protected] Received: September 11, 2017; Accepted: October 20, 2017; Published: October 24, 2017 Abstract The main objective of this paper is to present sample conceptual propulsion engines that researchers can tinker with to gain a better engineering understanding of how to research propulsion that is based on gravity modification. A Non- Inertia (Ni) Field is the spatial gradient of real or latent velocities. These velocities are real in mechanical structures, and latent in gravitational and electromagnetic field. These velocities have corresponding time dilations, and thus g=τc2 is the mathematical formula to calculate acceleration. It was verified that gravitational, electromagnetic and mechanical accelerations are present when a Ni Field is present. For example, a gravitational field is a spatial gradient of latent velocities along the field’s radii. g=τc2 is the mathematical expression of Hooft’s assertion that “absence of matter no longer guarantees local flatness”, and the new gravity modification based propulsion equation for force field engines. To achieve Force Field based propulsion, a discussion of the latest findings with the problems in theoretical physics and warp drives is presented. Solomon showed that four criteria need to be present when designing force field engines (i) the spatial gradient of velocities, (ii) asymmetrical non-cancelling fields, (iii) vectoring, or the ability to change field direction and (iv) modulation, the ability to alter the field strength. -
William A. Hiscock Michio Kaku Gordon Kane J-M Wersinger
WILLIAM A. HISCOCK From Wormholes to the Warp Drive: Using Theoretical Physics to Place Ultimate Bounds on Technology MICHIO KAKU M-Theory: Mother of All Superstrings GORDON KANE Anthropic Questions Peering into the Universe: Images from the Hubble Space Telescope J-M WERSINGER The National Space Grant Student Satellite Program: Crawl, Walk, Run, Fly! The Honor Society of Phi Kappa Phi was founded in 1897 and became a national organization Board of Directors through the efforts of the presidents of three state Wendell H. McKenzie, PhD universities. Its primary objective has been from National President the first the recognition and encouragement of Dept. of Genetics superior scholarship in all fields of study. Good Box 7614 NCSU character is an essential supporting attribute for Raleigh, NC 27695 those elected to membership. The motto of the Paul J. Ferlazzo, PhD Society is philosophia krateit¯oph¯ot¯on, which is National President-Elect freely translated as “Let the love of learning rule Northern Arizona University Phi Kappa Phi Forum Staff humanity.” Dept. of English, Bx 6032 Flagstaff, AZ 86011 Editor: JAMES P. KAETZ Donna Clark Schubert National Vice President Associate Editors: Troy State University Phi Kappa Phi encourages and recognizes aca- 101 C Wallace Hall STEPHANIE J. BOND demic excellence through several national pro- Troy, AL 36082 LAURA J. KLOBERG grams. Its flagship National Fellowship Program now awards more than $460,000 each year to Neil R. Luebke, PhD Copy Editor: student members for the first year of graduate Past President 616 W. Harned Ave. AMES ARRS study. In addition, the Society funds Study J T. -
New Classes of Warp Drive Solutions in General Relativity
New Classes of Warp Drive Solutions in General Relativity Alexey Bobrick, Gianni Martire, Lorenzo Pieri, Parsa Ghorbani Applied Physics Institute Advanced Propulsion Laboratory 2019 The Alcubierre Drive (Alcubierre, 1994) Shape function: Properties: • Superluminal • Event horizons • Negative energy (a lot of) Energy density: Warp Drive Research Most studied directions: • Negative energy, e.g. Phenning & Ford (1997), Olum (1998) • Quantum instabilities, e.g. Vollick (2000) • Causality/existence, e.g. Coutant (2012) • Wormholes, e.g. Rahaman (2007) • Time machines, e.g. Amo (2005) • Physical properties, e.g. Natario (2006) Existing Optimizations • Expanding the space inside the warp (van den Broek, 1999) • Warp drive without volume deformations (Natario, 2002) • Time-related modifications (Loup et al. 2001), (Janka, 2007) • Krasnikov tubes, wormholes, e.g. Krasnikov (1998) • NASA Eagleworks Drive, e.g. White (2011) What more can be done? Optimising the Shape Function Original shape function: Optimising the total energy: Optimised shape function: Relation to point-mass geometry? Deforming the Alcubierre Drive Cylindrical coordinates: Generally-shaped Alcubierre drive New energy density: Optimized shape function: What is a Warp Drive? Alcubierre: Inside: Outside: Coordinates: Generating New Classes When generalised: • Same possible for other coordinates • With individual shape functions Can choose the internal spacetime! Lorenz Drive Impose: Uniquely diagonal New metric: Energy density: Positive- and negative-energy regions Yet More Classes Connecting metrics: Alternative version of the Alcubierre drive: Signature-Switch Drives • Arbitrary internal spacetimes • But a fixed way of connecting Extreme example: Energy density: Complexity Realising the Penrose Process Taking advantage of the metric: Penrose process Summary Warp drives: • Many optimizations possible • Arbitrary internal spacetimes • Energy optimizations Applied Physics Institute: • Comments welcome • Collaborations welcome • Positions open. -
Numerical Relativity: Instituto De Ciencias Instituto De Ciencias UNAMUNAM Nuclearesnucleares on Overview of the Field and Recent Results on Black Hole Simulations
Numerical Relativity: Instituto de Ciencias Instituto de Ciencias UNAMUNAM NuclearesNucleares On overview of the field and recent results on black hole simulations Miguel Alcubierre Instituto de Ciencias Nucleares UNAM, Mexico SIAM Conference, Philadelphia, August 2010 Gravitational wave detectors InstitutoInstitutode de Ciencias Ciencias UNAM Nucleares UNAM NuclearesA global network of gravitational wave detectors in now either in an advanced state of construction, or actually taking data! The collision of compact objects (black holes, neutron stars) is considered one of the most promising sources for detection in the next few years. TAMA, Tokio VIRGO, Pisa LIGO,Washington GEO 600, Hanover LIGO, Louisiana The future: LISA (Laser Interferometer Space Antenna) Instituto de Ciencias Instituto de Ciencias UNAMUNAM NuclearesNucleares Einstein’s field equations Instituto de Ciencias Instituto de Ciencias UNAMUNAM NuclearesNucleares The dynamics of the gravitational field are described by the Einstein field equations: G 8 3,2,1,0 These equations relate the geometry of space‐time (the left hand side) with the distribution of mass and energy (the right hand side). Einstein’s equations form a system of 10 non‐linear, coupled, partial differential equations in 4 dimensions. Written on a general coordinate system they can have thousands of terms! Numerical relativity Instituto de Ciencias Instituto de Ciencias UNAMUNAM NuclearesNucleares There are books full of exact solutions to Einstein’s equations, but few of those solutions have a clear astrophysical interpretation. Exact solutions are typically found by asking for space‐time to have a high degree of symmetry: • Schwarzschild black hole: Static and spherically symmetric. • Kerr black hole: Stationary and axially symmetric. -
There Is Found Actual Science After the Opinions of Force Areas and Invisibility Cloaks
Things that were once just fantastic fiction of science fiction make up many of today's technologies. Did you know that Jules Verne, who was a nineteenth-century science fiction writer, has already dreamed about devices such as fax machines, a worldwide network, and moon rocket ships? Although we accepted these technologies today, Verne's contemporaries, even the leading physicists, laughed them, convinced them to be impossible. Even when you watch sci-fi movies that aren't that old, you can see that some of the technologies depicted today are considered rough, like large computers with lots of flashing bulbs. In some respects, the science of now has exceeded fiction yesterday, although it has not yet passed through other galaxies wearing catsuits. And are you wondering about what will technologies that seem impossible today be? Which of these is going to be achieved in the future and how? You are going to discover if you keep reading. Chapter 1 - There is found actual science after the opinions of force areas and invisibility cloaks. Do you recognize the force fields applied in Star Trek? Challenging energy barriers that preserve starships from rockets and enemy fire? Imaginary, isn't it? The one, that is known in classical physics, is force fields. As it understands, many objects can have an impact on other objects around them without direct contact with them. For example, a magnet pulls or pushes things in an exact field around it. In the nineteenth century, by Michael Faraday who was an English scientist named, it is told that uncovered the concept of force fields, invisible fields, or lines of force surrounding a magnet. -
The Alcubierre Warp Drive Using Lorentz Boosts According to the Harold White Spacetime Metric Potential Θ
The Alcubierre Warp Drive using Lorentz Boosts according to the Harold White Spacetime Metric potential θ. Fernando Loup, Rocha Daniel To cite this version: Fernando Loup, Rocha Daniel. The Alcubierre Warp Drive using Lorentz Boosts according to the Harold White Spacetime Metric potential θ.. 2012. hal-00768779 HAL Id: hal-00768779 https://hal.archives-ouvertes.fr/hal-00768779 Submitted on 23 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Alcubierre Warp Drive using Lorentz Boosts according to the Harold White Spacetime Metric potential θ. Fernando Loup ∗ Daniel Rocha † December 23, 2012 Abstract Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within the framework of General Relativity. The first of these solutions was discovered by the Mexican math- ematician Miguel Alcubierre in 1994.The Alcubierre warp drive seems to be very attractive because allows interstellar space travel at arbitrarily large speeds avoiding the time dilatation and mass increase paradoxes of Special Relativity. However it suffers from a very serious drawback:Interstellar space is not empty:It is fulfilled with photons and particle dusts and a ship at superluminal speeds would impact these obstacles in highly energetic collisions disrupting the warp field and placing the astronauts in danger.This was pointed out by a great number of authors like Clark,Hiscock,Larson,McMonigal,Lewis,O’Byrne, Barcelo,Finazzi and Liberati. -
Parallel Worlds
www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page i PARALLEL WORLDS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iii Also by Michio Kaku Beyond Einstein Hyperspace Visions Einstein’s Cosmos www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iv MICHIO KAKU DOUBLEDAY New York London Toronto Sydney Auckland www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page v PARALLEL WORLDS A JOURNEY THROUGH CREATION, HIGHER DIMENSIONS, AND THE FUTURE OF THE COSMOS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vi published by doubleday a division of Random House, Inc. doubleday and the portrayal of an anchor with a dolphin are regis- tered trademarks of Random House, Inc. Book design by Nicola Ferguson Illustrations by Hadel Studio Library of Congress Cataloging-in-Publication Data Kaku, Michio. Parallel worlds : a journey through creation, higher dimensions, and the future of the cosmos/Michio Kaku.—1st ed. p. cm. Includes bibliographical references 1. Cosmology. 2. Big bang theory. 3. Superstring theories. 4. Supergravity. I. Title. QB981.K134 2004 523.1—dc22 2004056039 eISBN 0-385-51416-6 Copyright © 2005 Michio Kaku All Rights Reserved v1.0 www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vii This book is dedicated to my loving wife, Shizue. www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page viii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ix CONTENTS acknowledgments xi