Functional Mapping of the Prosencephalic Systems Involved in Organizing Predatory Behavior in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Functional Mapping of the Prosencephalic Systems Involved in Organizing Predatory Behavior in Rats Neuroscience 130 (2005) 1055–1067 FUNCTIONAL MAPPING OF THE PROSENCEPHALIC SYSTEMS INVOLVED IN ORGANIZING PREDATORY BEHAVIOR IN RATS E. COMOLI,a É. R. RIBEIRO-BARBOSA,a N. NEGRÃO,a Predatory hunting has been regarded as an innate behav- M. GOTOb AND N. S. CANTERASa* ioral response seemingly critical for the animals’ survival aDepartment of Physiology and Biophysics, Institute of Biomedical (Eisenberg and Leyhausen, 1972). Most of our knowledge Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, CEP regarding the neural basis of this behavior derives from 05508-900 São Paulo, SP, Brazil studies done in the 1960s and 1970s, based on the use of bNeuroscience Laboratory II, City University of São Paulo, Rua lesion and electrical stimulation methods in cats and ro- Cesário Galeno, 475, CEP 00307-000 São Paulo, SP, Brazil dents. These studies suggest that the organization of pred- atory attack depends upon sites along the length of the Abstract—The study of the neural basis of predatory be- lateral hypothalamus and is mediated by a descending havior has been largely neglected over the recent years. limb of the medial forebrain bundle passing through the Using an ethologically based approach, we presently de- ventral tegmental area to the ventral mesencephalic and lineate the prosencephalic systems mobilized during pre- pontine tegmentum (Egger and Flynn, 1963; Sheard and dation by examining Fos immunoreactivity in rats perform- Flynn, 1967; Chi and Flynn, 1971; Bandler et al., 1972; ing insect hunting. These results were further compared Berntson, 1972, 1973; Proshansky et al., 1974). with those obtained from animals killed after the early However, due to methodological constraints, these nocturnal surge of food ingestion. First, predatory behav- studies were limited in terms of providing a clear definition ior was associated with a distinct Fos up-regulation in the of the neural systems underlying predatory behavior that ventrolateral caudoputamen at intermediate rostro-caudal levels, suggesting a possible candidate to organize the occurs under natural conditions. This seems to be partic- stereotyped sequence of actions seen during insect hunt- ularly true for the studies on rodents, where, depending on ing. Insect predation also presented conspicuous mobili- the intensity of stimulation, a variety of aggressive re- zation of a neural network formed by a distinct amygdalar sponses—ranging from defensive to quiet biting attack— circuit (i.e. the postpiriform-transition area, the anterior could be evoked from what had been defined as the hy- part of cortical nucleus, anterior part of basomedial nu- pothalamic attack area (see Siegel et al., 1999). cleus, posterior part of basolateral nucleus, and medial An ethologically based approach for studying preda- part of central nucleus) and affiliated sites in the bed nuclei tory behavior was attempted with the mouse-killing para- of the stria terminalis (i.e. the rhomboid nucleus) and in the digm, largely explored by Karli and colleagues (Vergnes hypothalamus (i.e. the parasubthalamic nucleus). Accord- ingly, this network is likely to encode prey-related motiva- and Karli, 1963, 1972; Chaurand et al., 1972; Vergnes, tional values, such as prey’s odor and taste, and to influ- 1975). Unfortunately, this paradigm presents serious limi- ence autonomic and motor control accompanying preda- tations constraining its use. Animals need to be food de- tory eating. Notably, regular food intake was also prived for a few days to present mouse-killing behavior, associated with a relatively weak Fos up-regulation in this which will be expressed only by a small percentage of rats network. However, during regular surge of food intake, we (around 16%; Vergnes, 1975). Moreover, the confrontation observed a much larger mobilization in hypothalamic sites with a live mouse is frequently associated with overt de- related to the homeostatic control of eating, namely, the fensive reactions, such as freezing and flight; therefore, arcuate nucleus and autonomic parts of the paraventricu- part of the attack episodes may be, in fact, related to lar nucleus. Overall, the present findings suggest potential neural systems involved in integrating prey-related moti- defensive behavior. vational values and in organizing the stereotyped se- To circumvent these problems, insect hunting appears quences of action seen during predation. Moreover, the as an ideal condition to investigate predatory behavior in comparison with regular food intake contrasts putative rats. In this paradigm, roaches have been chosen as suit- neural mechanisms controlling predatory related eating vs. able prey, since they are relatively innocuous and easily regular food intake. © 2005 Published by Elsevier Ltd on overcome; likewise, they do not seem to induce apprecia- behalf of IBRO. ble defensive reactions in rats. In addition, considering the voracity that the rats present to consume the roaches, they Key words: aggression, feeding behavior, amygdala, hypo- thalamus, basal ganglia. are supposedly very palatable with potentially high hedonic value. Remarkably, in a recent work, we were able to *Corresponding author. Tel: ϩ55-11-3091-7628; fax: ϩ55-11-3091- demonstrate that insect predation and exposure to a nat- 7285. ural predator induce an opposite activation pattern of the E-mail address: newton@fisio.icb.usp.br (N. S. Canteras). periaqueductal gray, reflecting, perhaps, the diverse moti- Abbreviations: ABC, avidin–biotin complex; BST, bed nuclei of the stria terminalis; Fos-ir, Fos immunoreactive; fx, fornix; GPl, globus vational drives underlying each of these responses pallidus, lateral segment; MCH, melanin-concentrating hormone. (Comoli et al., 2003). Importantly, as confirmed for several 0306-4522/05$30.00ϩ0.00 © 2005 Published by Elsevier Ltd on behalf of IBRO. doi:10.1016/j.neuroscience.2004.10.020 1055 1056 E. Comoli et al. / Neuroscience 130 (2005) 1055–1067 different rat strains tested, cockroach predation has been was always stained with Thionin to serve as a reference series for shown to be vividly expressed by all individuals (Rebouças cytoarchitectonic purposes. and Schmidek, 1997). The relative strength of expression of Fos immunoreactivity was evaluated by an observer without the knowledge of the ex- In the present study, we attempted to delineate the perimental status using a semiquantitative rating scale derived prosencephalic sites involved in the integration of innate from the mean values of Fos labeling density. In all animals of predatory responses by examining Fos immunoreactivity each experimental group, these measurements were taken from in the prosencephalon of rats performing insect hunting. To the prosencephalic regions, which were individually outlined at a differentiate the Fos increase likely to be related to food selected level, and the Fos-labeled cells and the outlined area intake, the results were further compared with those ob- were quantified using a Nikon Eclipse E600 microscope (Nikon, ϫ tained from animals killed after the early nocturnal surge of Japan) (10 magnification) equipped with a Spot digital camera (Diagnostic Instruments, Inc., Sterling Heights, MI, USA) inter- food ingestion. faced to an image analysis system (Image-Pro Plus; Media Cy- bernetics, Silver Spring, MD, USA). EXPERIMENTAL PROCEDURES To provide an independent assessment of the validity of these ratings, counts of the number of Fos immunoreactive (Fos-ir) neu- Adult male Wistar rats (nϭ15), weighing about 250 g and obtained rons as a function of experimental status were generated for selected from the local breeding facilities, were used in the present study. cell groups by using the 10ϫ objective of a Nikon Eclipse E600 The animals were kept under controlled temperature (23 °C) and microscope equipped with a camera lucida. These were performed illumination (12-h light/dark cycle) in the animal quarters, and had by counting all Fos-ir nuclei in a complete series of sections (where free access to water and standard laboratory diet (Nutrilab CR1; the sections were 120 ␮m apart) through the structures of interest, as Nuvital Nutrientes, Ribeirão Preto, SP, Brazil). Experiments were defined in adjoining Thionin-stained series. The extrapolating esti- carried out in accordance with the National Institutes of Health mated counts were obtained by using the method of Abercrombie Guide for the Care and Use of Laboratory Animals (1996) and the (1946) that takes into account the crude count of number of Fos-ir University of São Paulo’s Institute of Biomedical Sciences Com- nuclei seen in the sections, the thickness of the sections and the mittee for Ethics and Animal Care in Experimental Research. In average length of the Fos-ir nuclei. These data were analyzed by a the present study, we attempted to minimize the number of ani- multivariate analysis of variance (one way MANOVA, where we mals used and their suffering. treated cell counting in each selected region as dependent variables, One week before the experimental procedures, animals were and the experimental groups as the between-group independent individually housed into a Plexiglas cage (50ϫ35ϫ16 cm), and variable), followed by multiple comparisons using the Tukey HSD were handled repeatedly by the same investigator who conducted test. The significant level was set at 5%. All the values are expressed the behavioral tests. Two experimental groups were tested be- as meanϮS.E.M. tween 15:00 and 16:00 h. One of these group of animals (nϭ5) The figures were prepared for publication by using
Recommended publications
  • Resting State Connectivity of the Human Habenula at Ultra-High Field
    Author’s Accepted Manuscript Resting State Connectivity of the Human Habenula at Ultra-High Field Salvatore Torrisi, Camilla L. Nord, Nicholas L. Balderston, Jonathan P. Roiser, Christian Grillon, Monique Ernst www.elsevier.com PII: S1053-8119(16)30587-0 DOI: http://dx.doi.org/10.1016/j.neuroimage.2016.10.034 Reference: YNIMG13531 To appear in: NeuroImage Received date: 26 August 2016 Accepted date: 20 October 2016 Cite this article as: Salvatore Torrisi, Camilla L. Nord, Nicholas L. Balderston, Jonathan P. Roiser, Christian Grillon and Monique Ernst, Resting State Connectivity of the Human Habenula at Ultra-High Field, NeuroImage, http://dx.doi.org/10.1016/j.neuroimage.2016.10.034 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Resting State Connectivity of the Human Habenula at Ultra-High Field Salvatore Torrisi1, Camilla L. Nord2, Nicholas L. Balderston1, Jonathan P. Roiser2, Christian Grillon1, Monique Ernst1 Affiliations 1 Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD 2 Neuroscience and Cognitive Neuropsychiatry group, University of College, London, UK Abstract The habenula, a portion of the epithalamus, is implicated in the pathophysiology of depression, anxiety and addiction disorders.
    [Show full text]
  • Single-Cell Reconstruction of Oxytocinergic Neurons Reveals Separate Hypophysiotropic and Encephalotropic Subtypes in Larval Zebrafish
    New Research Development Single-Cell Reconstruction of Oxytocinergic Neurons Reveals Separate Hypophysiotropic and Encephalotropic Subtypes in Larval Zebrafish Ulrich Herget,1 Jose Arturo Gutierrez-Triana,1 Oriana Salazar Thula,1 Boris Knerr,1 and Soojin Ryu1,2 DOI:http://dx.doi.org/10.1523/ENEURO.0278-16.2016 1Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany, 2Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany Visual Abstract Significance Statement We used the Brainbow technique to reconstruct the morphology and projection patterns of oxytocinergic neurons in larval zebrafish, revealing diverse and complex brainwide innervation patterns originating from a small cluster of cells within the neurosecretory preoptic area. Central target areas include the tectum, hypothalamus, and telencephalon. This is the first comprehensive whole-brain morphology characterization of oxytocinergic neurons, to our knowledge. 3D registration reveals spatially distinct subtypes of oxytocinergic neurons. One group with morphologically complex projections reaches into distinct brain regions, presumably for neuromodulation, whereas another group features simpler projections innervating the pituitary, presumably for endocrine release. These two groups are spatially segregated, suggesting an evolutionarily ancient anatomical separation of oxytocin cell subtypes. January/February 2017, 4(1) e0278-16.2016 1–16 New Research 2 of 16 Oxytocin regulates a diverse set of processes including stress, analgesia, metabolism, and social behavior. How such diverse functions are mediated by a single hormonal system is not well understood. Different functions of oxytocin could be mediated by distinct cell groups, yet it is currently unknown whether different oxytocinergic cell types exist that specifically mediate peripheral neuroendocrine or various central neuromodulatory processes via dedicated pathways.
    [Show full text]
  • Resting State Connectivity of the Human Habenula at Ultra-High Field
    NeuroImage 147 (2017) 872–879 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/neuroimage fi Resting state connectivity of the human habenula at ultra-high eld MARK ⁎ Salvatore Torrisia, , Camilla L. Nordb, Nicholas L. Balderstona, Jonathan P. Roiserb, Christian Grillona, Monique Ernsta a Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States b Neuroscience and Cognitive Neuropsychiatry group, University of College, London, UK ARTICLE INFO ABSTRACT Keywords: The habenula, a portion of the epithalamus, is implicated in the pathophysiology of depression, anxiety and 7T addiction disorders. Its small size and connection to other small regions prevent standard human imaging from Anxiety delineating its structure and connectivity with confidence. Resting state functional connectivity is an established Depression method for mapping connections across the brain from a seed region of interest. The present study takes Seed-based functional connectivity advantage of 7 T fMRI to map, for the first time, the habenula resting state network with very high spatial resolution in 32 healthy human participants. Results show novel functional connections in humans, including functional connectivity with the septum and bed nucleus of the stria terminalis (BNST). Results also show many habenula connections previously described only in animal research, such as with the nucleus basalis of Meynert, dorsal raphe, ventral tegmental area (VTA), and periaqueductal grey (PAG). Connectivity with caudate, thalamus and cortical regions such as the anterior cingulate, retrosplenial cortex and auditory cortex are also reported. This work, which demonstrates the power of ultra-high field for mapping human functional connections, is a valuable step toward elucidating subcortical and cortical regions of the habenula network.
    [Show full text]
  • The POU Domain Transcription Factor Brn- Is Required for the Determination of Specific Neuronal Lineages M the Hypothalamus of the Mouse
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The POU domain transcription factor Brn- is required for the determination of specific neuronal lineages m the hypothalamus of the mouse Shigeyasu Nakai, 1 Hitoshi Kawano, 2 Tamaki Yudate, ~ Miyuki Nishi, 1 Junko Kuno, 1 Aki Nagata, 1 Kou-ichi Jishage, 1 Hiroshi Hamada, ~ Hideta Fujii, 3 Koki Kawamura, 2 Kiyotaka Shiba, 1 and Tetsuo Noda 1'4 1Department of Cell Biology, Cancer Institute, Toshima-ku, Tokyo 170; 2Department of Anatomy, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160; "3Institute for Molecular and Cellular Biology, Osaka University, Suita-shi, Osaka 565, Japan We generated mice carrying a loss-of-function mutation in Brn-2, a gene encoding a nervous system specific POU transcription factor, by gene targeting in embryonic stem cells. In homozygous mutant embryos, migratory precursor cells for neurons of the paraventricular nuclei (PVN) and the supraoptic nuclei (SO) of the hypothalamus die at -E12.5. All homozygous mutants suffered mortality within 10 days after birth, possibly because of a complete deficiency of these neurons in the hypothalamus. Although neither developmental nor histological abnormalities were observed in heterozygous mice, the levels of expression of vasopressin and oxytocin in the hypothalamus of these animals were half these of wild-type mice. These results strongly suggest that Brn-2 plays an essential role in the determination and development of the PVN and SO neuronal lineages in the hypothalamus. [Key Words: POU transcription factor; Brn-2; neuronal development; magnocellular neurons; paraventricular nucleus; supraoptic nucleus] Received August 10, 1995; revised version accepted October 31, 1995.
    [Show full text]
  • Surgical Neurology International
    SSurgicalurgical NNeurologyeurology IInternationalnternational OPEN ACCESS Editor: Antonio A. F. DeSalles, MD SSNI:NI: SStereotactictereotactic, a ssupplementupplement ttoo SSurgicalurgical NNeurologyeurology IInternationalnternational For entire Editorial Board visit : University of California, http://www.surgicalneurologyint.com Los Angeles, CA, USA Maps of the adult human hypothalamus Jean-Jacques Lemaire1,2, Hachemi Nezzar1,3, Laurent Sakka1,2, Yves Boirie4, Denys Fontaine1,5, Aurélien Coste2, Guillaume Coll2, Anna Sontheimer1, Catherine Sarret1,6, Jean Gabrillargues1,7, Antonio De Salles8 1Univ Clermont 1, UFR Médecine, EA 7282, Image-Guided Clinical Neuroscience and Connectomics, Clermont-Ferrand, F-63001, 2Service de Neurochirurgie, 3Service d’Ophtalmologie, 4Service de Nutrition, 6Service de Pédiatrie, 7Unité de Neuroradiologie, CHU Clermont-Ferrand, Clermont-Ferrand, F-63003, 5Service de Neurochirurgie, CHU de Nice, Nice, F-06200, France, 8Department of Neurosurgery, University of California, Los Angeles, USA E-mail: *Jean-Jacques Lemaire - [email protected]; Hachemi Nezzar - [email protected]; Laurent Sakka - [email protected]; Yves Boirie - [email protected]; Denys Fontaine - [email protected]; Aurélien Coste - [email protected]; Guillaume Coll - [email protected]; Anna Sontheimer - [email protected]; Catherine Sarret - [email protected]; Jean Gabrillargues - [email protected]; Antonio De Salles - [email protected] *Corresponding author Received: 01 February 13 Accepted: 01 February 13 Published: 17 April 13 This article may be cited as: Lemaire J, Nezzar H, Sakka L, Boirie Y, Fontaine D, Coste A, et al. Maps of the adult human hypothalamus. Surg Neurol Int 2013;4:156-63. Available FREE in open access from: http://www.surgicalneurologyint.com/text.asp?2013/4/4/156/110667 Copyright: © 2013 Lemaire J.
    [Show full text]
  • Acetylcholine As a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron Review Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior Marina R. Picciotto,1,2,3,* Michael J. Higley,2,3 and Yann S. Mineur1 1Department of Psychiatry 2Department of Neurobiology 3Program in Cellular Neuroscience, Neurodegeneration and Repair Yale University School of Medicine, New Haven, CT 06511, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2012.08.036 Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity, and coordinates firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuro- modulator. Here, we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on site of release, receptor subtypes, and target neuronal population; however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. Acetylcholine (ACh) is a fast-acting, point-to-point neurotrans- ergic activation of interneurons in the auditory cortex that con- mitter at the neuromuscular junction and in the autonomic tribute to learning (Letzkus et al., 2011).
    [Show full text]
  • Saccadic Eye Movements Modulate Visual Responses in the Lateral Geniculate Nucleus
    Neuron, Vol. 35, 961–974, August 29, 2002, Copyright 2002 by Cell Press Saccadic Eye Movements Modulate Visual Responses in the Lateral Geniculate Nucleus John B. Reppas,1 W. Martin Usrey,1,3 and O’Keefe, 1998; Gallant et al., 1998; Gur and Snod- and R. Clay Reid1,2 derly, 1997; Leopold and Logothetis, 1998; Martinez- 1Department of Neurobiology Conde et al., 2000). However, it is not yet generally Harvard Medical School established whether eye movements have an additional Boston, Massachusetts 02115 effect on the organization of visual receptive fields. Ex- periments that have carefully controlled the spatial prop- erties of the retinal stimulus present during saccades Summary have argued both for (Tolias et al., 2001) and against (DiCarlo and Maunsell, 2000; Wurtz, 1969) such an influ- We studied the effects of saccadic eye movements ence on cortical responses to briefly presented stimuli. on visual signaling in the primate lateral geniculate Defining the impact of eye movements on neural re- nucleus (LGN), the earliest stage of central visual pro- sponses is also a requirement for understanding the cessing. Visual responses were probed with spatially well-known effects of saccades on human perception. uniform flickering stimuli, so that retinal processing Eye movements influence many aspects of low-level was uninfluenced by eye movements. Nonetheless, vision, including saccadic suppression of overall sensi- saccades had diverse effects, altering not only re- tivity (reviewed in Volkmann, 1986), as well as spatial sponse strength but also the temporal and chromatic (Cai et al., 1997; Lappe et al., 2000; Ross et al., 1997), properties of the receptive field.
    [Show full text]
  • Segregation Within Afferent Pathways in Primate Vision Sujata Roy March
    Segregation Within Afferent Pathways in Primate Vision Sujata Roy Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy March 2009 Department of Optometry & Vision Sciences The University of Melbourne Abstract The current knowledge of the visual pathways in primates includes the patterns of projection from the retina through the dorsal lateral geniculate nucleus (dLGN) to the striate cortex (V1) and the extra-striate projections towards the dorsal and ventral streams. Cells with short wavelength sensi- tive cone (S-cone) inputs in the dLGN have been studied extensively in New World marmosets but not in Old World macaques. This thesis presents re- sults from studies in the macaque monkey which are more relevant to humans since humans are closer in evolution to Old World than New World monkeys. The spatial, temporal, chromatic and orientation preferences of neurons in the dLGN of the macaque were investigated by electrophysiological meth- ods. The physiological findings of cells with S-cone inputs were compared to cells with opponent inputs from the long and medium wavelength sensitive cones (L-cones & M-cones, respectively). The cells receiving S-cone inputs (blue-yellow or B-Y cells) preferred lower spatial frequencies than the cells with opponent L-cone and M-cone inputs (red-green or R-G cells). Ortho- dromic latencies from optic chiasm stimulation were measured where possible to distinguish differences in conduction velocity between the cell groups. Al- though the B-Y cells usually had longer latencies than R-G cells, there was considerable overlap between the cell groups. The recorded cells were localised through histological reconstruction of dLGN sections stained for Nissl substance.
    [Show full text]
  • Resting State Functional Connectivity of the Basal Nucleus of Meynert in Humans: in Comparison to the Ventral Striatum and the Effects of Age
    NeuroImage 97 (2014) 321–332 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Resting state functional connectivity of the basal nucleus of Meynert in humans: In comparison to the ventral striatum and the effects of age Chiang-shan R. Li a,b,c,⁎, Jaime S. Ide a,d, Sheng Zhang a,SienHua, Herta H. Chao e,f, Laszlo Zaborszky g a Department of Psychiatry, Yale University, New Haven, CT 06519, USA b Department of Neurobiology, Yale University, New Haven, CT 06520, USA c Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA d Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, SP 12231, Brazil e Department of Internal Medicine, Yale University New Haven, CT 06519, USA f Medical Service, VA Connecticut Health Care System, West Haven, CT 06516, USA g Center for Molecular and Behavioral Neuroscience, Rutgers, NJ 07102, USA article info abstract Article history: The basal nucleus of Meynert (BNM) provides the primary cholinergic inputs to the cerebral cortex. Loss of Accepted 6 April 2014 neurons in the BNM is linked to cognitive deficits in Alzheimer's disease and other degenerative conditions. Nu- Available online 13 April 2014 merous animal studies described cholinergic and non-cholinergic neuronal responses in the BNM; however, work in humans has been hampered by the difficulty of defining the BNM anatomically. Here, on the basis of a Keywords: previous study that delineated the BNM of post-mortem human brains in a standard stereotaxic space, we sought Functional connectivity to examine functional connectivity of the BNM, as compared to the nucleus accumbens (or ventral striatum, VS), fMRI Resting state in a large resting state functional magnetic resonance imaging data set.
    [Show full text]
  • Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus
    The Journal of Neuroscience, July 15, 2002, 22(14):6158–6175 Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus R. Clay Reid1,2 and Robert M. Shapley1 1Center for Neural Science, New York University, New York, New York 10003, and 2Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115 We studied neurons in the central visual field representation of overlapped in space, as sampled by our stimulus grid, but that the lateral geniculate nucleus (LGN) in macaque monkeys by had somewhat different extents. For example, an Lϩ center mapping their receptive fields in space and time. The mapping parvocellular neuron would be Lϩ/MϪ in both center and was performed by reverse correlation of a spike train of a surround, but the Lϩ signal would be stronger in the center and neuron with pseudorandom, binary level stimuli (m-sequence the MϪ signal stronger in the surround. Accordingly, the lumi- grids). Black and white m-sequence grids were used to map the nance receptive field would be spatially antagonistic: on- receptive field for luminance. The locations of receptive field center/off-surround. The space–time maps also characterized center and surround were determined from this luminance map. LGN dynamics. For example, magnocellular responses were To map the contribution of each cone class to the receptive transient, red–green parvocellular responses were more sus- field, we designed red–green or blue–yellow m-sequence grids tained, and blue-on responses were the most sustained for to isolate the influence of that cone (long, middle, or short both luminance and cone-isolating stimuli.
    [Show full text]
  • Hypothalamus
    Hypothalamus Objectives • To learn the general organization of the hypothalamus and the functions of the major nuclei NTA Ch 14, pgs. 419-422 Key Figs: 14-2, 14-3 • To learn how the brain regulates neuroendocrine secretions NTA Ch 14, pgs. 422-427 Key Figs: 14-3; 14-4, • To learn how the hypothalamus regulates the autonomic nervous system and how brain stem and spinal lesions disrupt autonomic functions NTA Ch 14, pgs. 427-433; 440-442 Key Figs: 14-8, 14-9 Clinical Case #14 Menstrual irregularity; CC12-1 Note We will not spend any time on the peripheral organization of the autonomic nervous system. That topic is covered in SPBM. Instead, we focus on the central pathways and how they control autonomic functions. Self evaluation • Be able to identify all structures listed in key terms and describe briefly their principal functions • Use neuroanatomy on the web to test your understanding G-1 Gross anatomy of hypothalamus The ventral view of the brain. Note the relationships of the floor of the hypothalamus to the caudal edge of the chiasm and the basis pedunculi. The caudal hypothalamus lies deep to the mammillary bodies. The middle or tuberal hypothalamus lies deep to the tuber cinereum, the low protuberance extending from the mammillary bodies to the posterior chiasm. SA03 Inferior brain view Identify the mammillary bodies, region of other hypothalamic nuclei, and optic chiasm and tracts SA01 Medial brain view 1 Identify the following landmarks and hypothalamic components: Mammillary body, region of hypothalamus, thalamus, optic nerve and chiasm, and oculomotor nerve. hypothaltrans Hypothalamus (movie) Key: Hypothalamus=yellow Ventricular system=aqua G-3 Hypothalamic nuclei A schematic drawing of a dissected human brain showing the major hypothalamic nuclei in parasagittal section.
    [Show full text]
  • On Cells Are Part of the Third Geniculocortical Pathway in Primates
    European Journal of Neuroscience, Vol. 9, pp. 1536-1541, 1997 0 European Neuroscience Association SHORT COMMUNICATION Evidence that Blue-on Cells are Part of the Third Geniculocortical Pathway in Primates Paul R. Martin, Andrew J. R. White, Ann K. Goodchild, Heath D. Wilder and Ann E. Sefton Department of Physiology and Institute for Biomedical Research, University of Sydney, NSW 2006, Australia Keywords: colour vision, Callithrix jacchus, magnocellular, parvocellular, koniocellular Abstract Colour vision in primates is mediated by cone opponent ganglion cells in the retina, whose axons project to the dorsal lateral geniculate nucleus in the visual thalamus. It has long been assumed that cone opponent ganglion cells project to the parvocellular layers of the geniculate. Here, we examine the role of a third subdivision of the geniculocortical pathway: the interlaminar or koniocellular geniculate relay cells. We made extracellular recordings in the dorsal lateral geniculate nucleus of the common marmoset Callithrix jacchus, a New World monkey in which the interlaminar cells are well segregated from the parvocellular layers. We found that one group of colour opponent cells, the blue-on cells, was largely segregated to the interlaminar zone. This segregation was common to dichromatic (‘red-green colour-blind’) and trichromatic marmosets. The result calls into question the traditional notion that all colour information passes through the parvocellular division of the retino-geniculo-cortical pathway in primates. Introduction The marmoset (CaEZithrix jacchus), in common with several other 1984; Ts’o and Gilbert, 1988; Hendry and Yoshioka, 1994). This species of New World monkeys (Jacobs, 1993), shows sex-linked connectivity has led to speculation about the role of the inter- polymorphism of colour vision.
    [Show full text]