Apicomplexa: Eimeriorina)

Total Page:16

File Type:pdf, Size:1020Kb

Apicomplexa: Eimeriorina) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarsArchive@OSU Parasitol Res (2012) 111:1331–1342 DOI 10.1007/s00436-012-2969-8 ORIGINAL PAPER Phylogeny of fish-infecting Calyptospora species (Apicomplexa: Eimeriorina) Christopher M. Whipps & John W. Fournie & David A. Morrison & Carlos Azevedo & Edilson Matos & Per Thebo & Michael L. Kent Received: 28 November 2011 /Accepted: 9 May 2012 /Published online: 29 May 2012 # Springer-Verlag 2012 Abstract There are numerous species of apicomplexans that experimental transmission studies, it may be difficult to dem- infect poikilothermic vertebrates, such as fishes, and possess onstrate whether all Calyptospora species are heteroxenous. unique morphological features that provide insight into the Other distinct morphological characteristics of Calyptospora evolution of this important phylum of parasites. Here, the such as an incomplete sporocyst suture, an apical opening for relationship of the fish-infecting Calyptospora species to other sporozoite release, a thin veil surrounding sporocysts supported coccidians was investigated based on DNA sequence analysis. by sporopodia, and a lack of Stieda and sub-Stieda bodies Genetic data from the small subunit ribosomal DNA region of suggest there may be adequate features to delineate these taxa. the genome were obtained for three of the five nominal species Even without life cycle data for all species, the morphology and in the genus Calyptospora. Phylogenetic analyses supported a genetic data provide a means to reliably classify Calyptospora monophyletic lineage sister to a group composed of mostly species. Placement in either the Calyptosporidae or Eimeriidae Eimeria species. The monophyly of Calyptospora species sup- is discussed, along with issues relating to the phylogeny of the ports the validity of the family Calyptosporidae, but the sister genus Goussia. relationship to Eimeria species might also suggest the Eimer- iidae be expanded to encompass Calyptospora. The validity of the family Calyptosporidae has been questioned because it is Introduction delineated from the Eimeriidae largely based on life cycle characteristics and sporocyst morphology. In general, Eimeria Members of the phylum Apicomplexa are parasites of a vast species have a homoxenous life cycle, whereas the type species range of invertebrate and vertebrate animal taxa (Levine of Calyptospora is heteroxenous. In the absence of 1988). Research has tended to focus on species that infect C. M. Whipps (*) C. Azevedo SUNY‐ESF, State University of New York, College of Environmental Department of Cell Biology, Institute of Biomedical Sciences, Science and Forestry, Environmental and Forest Biology, University of Porto, 246 Illick Hall, 1 Forestry Drive, Porto, Portugal Syracuse,NY13210,USA e-mail: [email protected] C. Azevedo Zoology Department, College of Science, King Saud University, J. W. Fournie 11451 Riyadh, Saudi Arabia Gulf Ecology Division, National Health and Environmental Effects Research Laboratory, E. Matos U.S. Environmental Protection Agency, Laboratório de Pesquisa Carlos Azevedo, 1 Sabine Island Dr., Universidade Federal Rural da Amazônia, Gulf Breeze, FL 32561, USA Belém, PA, Brazil D. A. Morrison : P. Thebo M. L. Kent Section for Parasitology (SWEPAR), Center for Fish Disease Research, Department of Microbiology, Department of Biomedical Sciences and Veterinary Public Health, Oregon State University, Swedish University of Agricultural Sciences, 220 Nash Hall, 75189 Uppsala, Sweden Corvallis, OR 97331-3404, USA 1332 Parasitol Res (2012) 111:1331–1342 and cause disease in birds and mammals, where potential grass shrimp, Palaemonetes pugio (Fournie and Overtstreet control is possible and incentive for action is strong. In other 1983). Sporozoites develop in the invertebrate digestive tract vertebrate hosts, such as fishes, there is much more of a and do occur intracellularly in basal cells (Fournie et al. 2000). limited understanding of apicomplexan diversity with only a A two-host life cycle, however, has yet to be demonstrated for few hundred described species, mostly Eimeria and Goussia other species of Calyptospora,weakeningthestatusofthe species (Lom and Dyková 1992). The morphological diver- family Calyptosporidae based primarily on that characteristic. sity represented in other genera of fish-infecting Apicom- Fournie et al. (1985) did observe numerous motile sporozoites plexa may provide clues to understanding the evolution of free in the intestinal contents of experimentally infected this important phylum. Palaemonetes kadiakensis and suggested that benthic crusta- Calyptospora species are apicomplexan parasites of tele- ceans are likely candidates for intermediate hosts in Calypto- ost fishes. Five species have been described to date: one spora empristica because the fish-host must apparently die occurs in estuarine fishes from coastal waters of the northern before oocysts can be dispersed. Still, the validity of the Gulf of Mexico and the southeast Atlantic, one from an Calyptosporidae based on a heteroxenous life cycle has been inland creek in southern Mississippi, and three from fresh- questioned primarily because of the lack of asexual multipli- water systems in Brazil. An undescribed species in cation in the intermediate host (Lom and Dyková 1992). the arapaima is also from Brazil (de Albuquerque and de However, for C. funduli,anintermediatehostisrequiredfor Carvalho Brasil‐Sato 2010). All described species have fish transmission (Fournie and Overtstreet 1983) and a develop- definitive hosts and primarily infect the hepatic parenchy- mental period of about 5 days in grass shrimp is necessary to ma. The impact of Calyptospora infections on fish species is become infective to killifishes. Fournie et al. (2000)subse- largely unknown, but studies suggest that these can have a quently demonstrated that sporozoites do occur within gut significant effect. Solangi and Overstreet (1980) reported basal cells and suggested that development into an infective that up to 85 % of the hepatic parenchyma can be replaced sporozoite takes place in these basal cells. by oocysts in heavily infected gulf killifish. The infection To address some of these challenges of coccidian classifica- provokes an inflammatory response by day 10 post- tion, DNA sequence analysis has become commonplace for infection (p.i.) which intensifies by day 20 p.i. during gam- investigations into the systematics of these species (Morrison ogony. By day 30, when oocyst walls are fully formed, 2009). Molecular data supplement morphological analyses and inflammatory infiltrates disappeared and many aggregates help identify taxonomically significant characteristics. For ex- were encapsulated with pigmented macrophage aggregate ample, Morrison et al. (2004) noted some phylogenetic patterns development. Fournie and Overstreet (1993) reported that with regard to host specificity and life cycle. Species within a some experimentally infected fishes with abnormal cocci- particular family or genus of coccidia tend to cluster by broad dian development displayed more extensive host responses taxonomic groups of hosts (i.e., mammals, birds, reptiles, etc.), and pathological changes than those seen in natural defini- albeit an imperfect pattern. With regard to life cycle, hetero- tive hosts. Gulf killifish (Fundulus grandis) that are infected xenous sarcocystids form a distinct lineage from homoxenous with Calyptospora funduli can be severely impacted by eimeriids, again with some exceptions; notably, the genus Iso- exposure to low temperatures. Fournie (1985) showed that spora within the Sarcocystidae is homoxenous. From the per- exposure of experimentally infected killifish to 3–4°C spective of sporocyst morphology, Jirků et al. (2002) resulted in mortalities in infected fish, whereas uninfected emphasized the importance of the excystation structures in fish survived. Bonar et al. (2006) associated a Calyptospora coccidian taxonomy. Excystation structures may be useful for sp. as a contributing cause of mortality in arapaima imported Calyptospora species which possess a unique membrane- to the USA from Brazil. covered, oblong apical opening for sporozite excystation The genus Calyptospora Overstreet, Hawkins and Fournie (Fournie et al. 1985). An incomplete suture extends posteriorly 1984 was proposed to accommodate Eimeria species of fishes from the opening to about midway on the sporocyst wall where possessing atypical characteristics. Specifically, sporocysts it becomes fused, and a prominent ridge occurs on the posterior (Fig. 1) with a posterior thickening or extension and sporopo- one third of the sporocyst wall (Hawkins et al. 1983). This is dia surrounded by a membranous veil lack Stieda and sub- reminiscent of a bivalved Goussia species, but Calyptospora is Stieda bodies and have an apical opening for sporozoite ultimately univalved like Eimeria because the suture is partially release continuing to the opposite pole first as a tapering fused. If these features represent a stage of coccidian evolution suture, then as a protruding ridge (Overstreet et al. 1984). between valved and non-valved species, then we expect this to The family Calyptosporidae was also proposed to accommo- be reflected in the phylogeny of the coccidia. Likewise, these date Calyptospora and Goussia, distinguishing these genera features alone may warrant distinct familial status. It was our from the Eimeriidae in having species with a heteroxenous life goal to estimate the
Recommended publications
  • Phylogenetic Relationships of the Genus Frenkelia
    International Journal for Parasitology 29 (1999) 957±972 Phylogenetic relationships of the genus Frenkelia: a review of its history and new knowledge gained from comparison of large subunit ribosomal ribonucleic acid gene sequencesp N.B. Mugridge a, D.A. Morrison a, A.M. Johnson a, K. Luton a, 1, J.P. Dubey b, J. Voty pka c, A.M. Tenter d, * aMolecular Parasitology Unit, University of Technology, Sydney NSW, Australia bUS Department of Agriculture, ARS, LPSI, PBEL, Beltsville MD, USA cDepartment of Parasitology, Charles University, Prague, Czech Republic dInstitut fuÈr Parasitologie, TieraÈrztliche Hochschule Hannover, BuÈnteweg 17, D-30559 Hannover, Germany Received 3 April 1999; accepted 3 May 1999 Abstract The dierent genera currently classi®ed into the family Sarcocystidae include parasites which are of signi®cant medical, veterinary and economic importance. The genus Sarcocystis is the largest within the family Sarcocystidae and consists of species which infect a broad range of animals including mammals, birds and reptiles. Frenkelia, another genus within this family, consists of parasites that use rodents as intermediate hosts and birds of prey as de®nitive hosts. Both genera follow an almost identical pattern of life cycle, and their life cycle stages are morphologically very similar. How- ever, the relationship between the two genera remains unresolved because previous analyses of phenotypic characters and of small subunit ribosomal ribonucleic acid gene sequences have questioned the validity of the genus Frenkelia or the monophyly of the genus Sarcocystis if Frenkelia was recognised as a valid genus. We therefore subjected the large subunit ribosomal ribonucleic acid gene sequences of representative taxa in these genera to phylogenetic analyses to ascertain a de®nitive relationship between the two genera.
    [Show full text]
  • New Species of Choleoeimeria (Apicomplexa: Eimeriidae) from The
    FOLIA PARASITOLOGICA 53: 91–97, 2006 New species of Choleoeimeria (Apicomplexa: Eimeriidae) from the veiled chameleon, Chamaeleo calyptratus (Sauria: Chamaeleonidae), with taxonomic revision of eimerian coccidia from chameleons Michal Sloboda1 and David Modrý1,2 1Department of Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1–3, 612 42 Brno, Czech Republic; 2Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic Key words: Coccidia, Eimeriorina, Choleoeimeria, taxonomy Abstract. Coprological examination of 71 samples from a breeding colony of veiled chameleons, Chamaeleo calyptratus Duméril et Duméril, 1851, revealed a presence of two species of coccidia. In 100% of the samples examined, oocysts of Isospora jaracimrmani Modrý et Koudela, 1995 were detected. A new coccidian species, Choleoeimeria hirbayah sp. n., was discovered in 32.4% of samples from the colony. Its oocysts are tetrasporocystic, cylindrical, 28.3 (25–30) × 14.8 (13.5–17.5) µm, with smooth, bilayered, ~1 µm thick wall. Sporocysts are dizoic, ovoidal to ellipsoidal, 10.1 (9–11) × 6.9 (6–7.5) µm, sporocyst wall is composed of two plates joined by a meridional suture. Endogenous development is confined to the epithelium of the gall blad- der, with infected cells being typically displaced from the epithelium layer towards lumen. A taxonomic revision of tetrasporo- cystic coccidia in the Chamaeleonidae is provided. In reptilian hosts, monoxenous coccidia, namely Ei- of individuals are kept in North America and Europe meria Schneider, 1875 sensu lato and Isospora Schnei- (Nečas 2004). der, 1881 represent commonly diagnosed protozoans of Until now, Isospora jaracimrmani Modrý et Kou- remarkable diversity (Barnard and Upton 1994, Greiner dela, 1995 is the only eimerian coccidium described 2003).
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • New Developments in Cryptosporidium Research
    MURDOCH RESEARCH REPOSITORY This is the author’s final version of the work, as accepted for publication following peer review but without the publisher’s layout or pagination. The definitive version is available at http://dx.doi.org/10.1016/j.ijpara.2015.01.009 Ryan, U. and Hijjawi, N. (2015) New developments in Cryptosporidium research. International Journal for Parasitology, 45 (6). pp. 367-373. http://researchrepository.murdoch.edu.au/26044/ Crown copyright © 2015 Australian Society for Parasitology Inc. It is posted here for your personal use. No further distribution is permitted. Accepted Manuscript Invited review New developments in Cryptosporidium research Una Ryan, Nawal Hijjawi PII: S0020-7519(15)00047-8 DOI: http://dx.doi.org/10.1016/j.ijpara.2015.01.009 Reference: PARA 3745 To appear in: International Journal for Parasitology Received Date: 30 October 2014 Revised Date: 20 January 2015 Accepted Date: 21 January 2015 Please cite this article as: Ryan, U., Hijjawi, N., New developments in Cryptosporidium research, International Journal for Parasitology (2015), doi: http://dx.doi.org/10.1016/j.ijpara.2015.01.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Invited Review 2 3 New developments in Cryptosporidium research 4 5 Una Ryana*1, Nawal Hijjawib 6 7 aSchool of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, 8 Murdoch University, Murdoch, Western Australia 6150, Australia 9 bDepartment of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite 10 University PO Box 150459, Zarqa, 13115, Jordan 11 12 13 14 *Corresponding author.
    [Show full text]
  • Prevalence of Cryptosporidium Spp. \(Eucoccidiorida
    Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2007144335 PREVALENCE OF CRYPTOSPORIDIUM SPP. (EUCOCCIDIORIDA: CRYPTOSPORIIDAE) IN SEVEN SPECIES OF FARM ANIMALS IN TUNISIA SOLTANE R.*, GUYOT K.**, DEI-CAS E.** & AYADI A.* Summary: Résumé : PRÉVALENCE DE CRYPTOSPORIDIUM SPP. (EUCOCCIDIORIDA : CRYPTOSPORIIDAE) CHEZ SEPT ESPÈCES D’ANIMAUX DE FERME EN TUNISIE 1,001 faecal samples were obtained from 89 sheep (lambs and adult), 184 goats, 190 horses, 178 rabbits, 110 camels, 1001 prélèvements fécaux ont été obtenus à partir de 89 moutons, 200 broiler chicken and 50 turkeys housed in farms from different 184 chèvres, 190 chevaux, 178 lapins, 110 chameaux, localities in Tunisia. All samples were analysed for 200 poulets et 50 dindes élevés dans des fermes de différentes Cryptosporidium oocysts by microscopic examination of smears localités en Tunisie. Tous les prélèvements ont été analysés pour la stained by modified Ziehl Neelsen technique. The parasite was recherche de Cryptosporidium par examen microscopique des detected in ten lambs and adult sheep (11.2 %) and nine broiler frottis colorés au Ziehl Neelsen modifié. Le parasite a été détecté chicken (4.5 %). Molecular characterization, performed in four chez dix ovins (11,2 %) et neuf poulets (4,5 %). La caractérisation animals, identified C. bovis in three lambs and C. meleagridis in moléculaire réalisée pour quatre isolats a identifié C. bovis chez one broiler chicken. This work is the first report on trois agneaux et C. meleagridis chez un poulet. Ce travail est le Cryptosporidium in farm animals in Tunisia. premier rapport sur Cryptosporidium chez des animaux de ferme en Tunisie.
    [Show full text]
  • Journal of Parasitology
    Journal of Parasitology Eimeria taggarti n. sp., a Novel Coccidian (Apicomplexa: Eimeriorina) in the Prostate of an Antechinus flavipes --Manuscript Draft-- Manuscript Number: 17-111R1 Full Title: Eimeria taggarti n. sp., a Novel Coccidian (Apicomplexa: Eimeriorina) in the Prostate of an Antechinus flavipes Short Title: Eimeria taggarti n. sp. in Prostate of Antechinus flavipes Article Type: Regular Article Corresponding Author: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc University of Melbourne Melbourne, Victoria AUSTRALIA Corresponding Author Secondary Information: Corresponding Author's Institution: University of Melbourne Corresponding Author's Secondary Institution: First Author: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc First Author Secondary Information: Order of Authors: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc Joanne Maree Devlin, BVSc(Hons), MVPHMgt, PhD Liliana Tatarczuch David Augustine Taggart David J Schultz Jenny A Charles Ian Beveridge Order of Authors Secondary Information: Abstract: A novel coccidian species was discovered in the prostate of an Antechinus flavipes (yellow-footed antechinus) in South Australia, during the period of post-mating male antechinus immunosuppression and mortality. This novel coccidian is unusual because it develops extra-intestinally and sporulates endogenously within the prostate gland of its mammalian host. Histological examination of prostatic tissue revealed dense aggregations of spherical and thin-walled tetrasporocystic, dizoic sporulated coccidian oocysts within tubular lumina, with unsporulated oocysts and gamogonic stages within the cytoplasm of glandular epithelial cells. This coccidian was observed occurring concurrently with dasyurid herpesvirus 1 infection of the antechinus' prostate. Eimeria- specific 18S small subunit ribosomal DNA PCR amplification was used to obtain a partial 18S rDNA nucleotide sequence from the antechinus coccidian.
    [Show full text]
  • Culture of Exoerythrocytic Forms in Vitro
    Advances in PARASITOLOGY VOLUME 27 Editorial Board W. H. R. Lumsden University of Dundee Animal Services Unit, Ninewells Hospital and Medical School, P.O. Box 120, Dundee DDI 9SY, UK P. Wenk Tropenmedizinisches Institut, Universitat Tubingen, D7400 Tubingen 1, Wilhelmstrasse 3 1, Federal Republic of Germany C. Bryant Department of Zoology, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2600, Australia E. J. L. Soulsby Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK K. S. Warren Director for Health Sciences, The Rockefeller Foundation, 1133 Avenue of the Americas, New York, N.Y. 10036, USA J. P. Kreier Department of Microbiology, College of Biological Sciences, Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA M. Yokogawa Department of Parasitology, School of Medicine, Chiba University, Chiba, Japan Advances in PARASITOLOGY Edited by J. R. BAKER Cambridge, England and R. MULLER Commonwealth Institute of Parasitology St. Albans, England VOLUME 27 1988 ACADEMIC PRESS Harcourt Brace Jovanovich, Publishers London San Diego New York Boston Sydney Tokyo Toronto ACADEMIC PRESS LIMITED 24/28 Oval Road LONDON NW 1 7DX United States Edition published by ACADEMIC PRESS INC. San Diego, CA 92101 Copyright 0 1988, by ACADEMIC PRESS LIMITED All Rights Reserved No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers British Library Cataloguing in Publication Data Advances in parasitology.-Vol. 27 1. Veterinary parasitology 591.2'3 SF810.A3 ISBN Cb12-031727-3 ISSN 0065-308X Typeset by Latimer Trend and Company Ltd, Plymouth, England Printed in Great Britain by Galliard (Printers) Ltd, Great Yarmouth CONTRIBUTORS TO VOLUME 27 B.
    [Show full text]
  • Clerissi-2018-Frontiersmicrobi
    Protists Within Corals: The Hidden Diversity Camille Clerissi, Sébastien Brunet, Jeremie Vidal-Dupiol, Mehdi Adjeroud, Pierre Lepage, Laure Guillou, Jean-Michel Escoubas, Eve Toulza To cite this version: Camille Clerissi, Sébastien Brunet, Jeremie Vidal-Dupiol, Mehdi Adjeroud, Pierre Lepage, et al.. Protists Within Corals: The Hidden Diversity. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.2043. 10.3389/fmicb.2018.02043. hal-01887637 HAL Id: hal-01887637 https://hal.archives-ouvertes.fr/hal-01887637 Submitted on 7 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-09-02043 August 30, 2018 Time: 10:39 # 1 ORIGINAL RESEARCH published: 31 August 2018 doi: 10.3389/fmicb.2018.02043 Protists Within Corals: The Hidden Diversity Camille Clerissi1*, Sébastien Brunet2, Jeremie Vidal-Dupiol3, Mehdi Adjeroud4, Pierre Lepage2, Laure Guillou5, Jean-Michel Escoubas6 and Eve Toulza1* 1 Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France, 2 McGill University and Génome Québec Innovation Centre, Montréal, QC, Canada, 3 IFREMER, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, Montpellier, France, 4 Institut de Recherche pour le Développement, UMR 9220 ENTROPIE & Laboratoire d’Excellence CORAIL, Université de Perpignan, Perpignan, France, 5 CNRS, UMR 7144, Sorbonne Universités, Université Pierre et Marie Curie – Paris 6, Station Biologique de Roscoff, Roscoff, France, 6 CNRS, IHPE UMR 5244, Univ.
    [Show full text]
  • Seroprevalence and Clinical Outcomes of Neospora Caninum, Toxoplasma Gondii and Besnoitia Besnoiti Infections in Water Buffaloes (Bubalus Bubalis)
    animals Article Seroprevalence and Clinical Outcomes of Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti Infections in Water Buffaloes (Bubalus bubalis) Lavinia Ciuca, Giuliano Borriello , Antonio Bosco, Luigi D’Andrea * , Giuseppe Cringoli, Paolo Ciaramella, Maria Paola Maurelli, Antonio Di Loria , Laura Rinaldi and Jacopo Guccione Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; [email protected] (L.C.); [email protected] (G.B.); [email protected] (A.B.); [email protected] (G.C.); [email protected] (P.C.); [email protected] (M.P.M.); [email protected] (A.D.L.); [email protected] (L.R.); [email protected] (J.G.) * Correspondence: [email protected] Received: 26 February 2020; Accepted: 19 March 2020; Published: 22 March 2020 Simple Summary: Over the recent years, increasing demand for buffalo products and consequently expanding its productivity has generated concerns regarding diseases that reduce fertility or cause abortion but the attention has been focused mostly on infectious diseases. Thus, exploration on the capacity of parasitic pathogens in relation to reproductive losses in this species are needed. This was the first study investigating, simultaneously, the role and changes induced by Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti in water buffaloes in southern Italy. The outcome of this study revealed a high exposure of water buffaloes to both N. caninum and T. gondii, whereas all the animals resulted negative to B. besnoiti. The mono-infection with N. caninum seems mainly associated with abortion and presence of retained foetal membranes, while mono-infection with T.
    [Show full text]
  • NEW CLASSIFICATION for Toxoplasma Gondii
    LETTER TO THE EDITOR NEW CLASSIFICATION FOR Toxoplasma gondii Claudio Bruno Silva de Oliveira Dear Editor, I have been following the latest publications in the field of parasitology and have noticed that, despite the changes in the group that host the parasite Toxoplasma gondii that have been suggested since 2012 (Adl et al. 2012), many articles in several journals have not been updated (Liempi et al. 2014; Ning et al. 2015; Lorenzi et al. 2016). This can be explained by a certain protectionism regarding the form that has been used for several years. However, it is important to consider that this can also be due to some unfamiliarity with the current classification of eukaryotes and protozoa. Classically this protozoan is classified within the Protista kingdom, Apicomplexa phylum, Sporozoasida class, Eucoccidiorida order, Sarcocystidae family, and Toxoplasma genus (Current et al. 1990). This classification has been used for many decades, and it is well accepted by research groups in the area. Recently, however, Adl et al. (2012) seeking to standardize and organize different groups of eukaryotes, mainly protists, suggested a new classification based on phylogenetic and ultra-structural similarity. Now Toxoplasma gondii appears within a super group called SAR comprising: Stramenopiles, Alveolata, and Rhizaria. More precisely, it appears inside the Alveolata group (first group); among Alveolata it is classified as Apicomplexa (second group); among the Apicomplexa it is classified as Conoidasida (third group); among these it is classified as Coccidia (fourth group); and finally among the Coccidia it is part of Eimeriorina group (fifth group), along with other associated parasites such as Cyclospora and Neospora.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]