AST-103L Spring 2001: the Sun
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Solar Chromosphere Observed at the Limb with Hinode
The Astrophysical Journal, 719:469–473, 2010 August 10 doi:10.1088/0004-637X/719/1/469 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ON THE SOLAR CHROMOSPHERE OBSERVED AT THE LIMB WITH HINODE Philip G. Judge1 and Mats Carlsson2 1 High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA 2 Institute of Theoretical Astrophysics, P.O. Box 1029, Blindern, N-0315 Oslo, Norway Received 2010 March 8; accepted 2010 April 8; published 2010 July 21 ABSTRACT Broadband images in the Ca ii H line, from the Broadband Filter Imager (BFI) instrument on the Hinode spacecraft, show emission from spicules emerging from and visible right down to the observed limb. Surprisingly, little absorption of spicule light is seen along their lengths. We present formal solutions to the transfer equation for given (ad hoc) source functions, including a stratified chromosphere from which spicules emanate. The model parameters are broadly compatible with earlier studies of spicules. The visibility of Ca ii spicules down to the limb in Hinode data seems to require that spicule emission be Doppler shifted relative to the stratified atmosphere, either by supersonic turbulent or organized spicular motion. The non-spicule component of the chromosphere is almost invisible in the broadband BFI data, but we predict that it will be clearly visible in high spectral resolution data. Broadband Ca ii H limb images give the false impression that the chromosphere is dominated by spicules. Our analysis serves as a reminder that the absence of a signature can be as significant as its presence. -
What Causes the High Apparent Speeds in Chromospheric and Transition Region Spicules on the Sun?
The Astrophysical Journal Letters, 849:L7 (7pp), 2017 November 1 https://doi.org/10.3847/2041-8213/aa9272 © 2017. The American Astronomical Society. All rights reserved. What Causes the High Apparent Speeds in Chromospheric and Transition Region Spicules on the Sun? Bart De Pontieu1,2 , Juan Martínez-Sykora1,3 , and Georgios Chintzoglou1,4 1 Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA; [email protected] 2 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway 3 Bay Area Environmental Research Institute, Petaluma, CA 94952, USA 4 University Corporation for Atmospheric Research, Boulder, CO 80307-3000, USA Received 2017 June 22; revised 2017 October 5; accepted 2017 October 9; published 2017 October 23 Abstract Spicules are the most ubuiquitous type of jets in the solar atmosphere. The advent of high-resolution imaging and spectroscopy from the Interface Region Imaging Spectrograph (IRIS) and ground-based observatories has revealed the presence of very high apparent motions of order 100–300 km s−1 in spicules, as measured in the plane of the sky. However, line of sight measurements of such high speeds have been difficult to obtain, with values deduced from Doppler shifts in spectral lines typically of order 30–70 km s−1. In this work, we resolve this long-standing discrepancy using recent 2.5D radiative MHD simulations. This simulation has revealed a novel driving mechanism for spicules in which ambipolar diffusion resulting from ion-neutral interactions plays a key role. In our simulation, we often see that the upward propagation of magnetic waves and electrical currents from the low chromosphere into already existing spicules can lead to rapid heating when the currents are rapidly dissipated by ambipolar diffusion. -
The Sun's Dynamic Atmosphere
Lecture 16 The Sun’s Dynamic Atmosphere Jiong Qiu, MSU Physics Department Guiding Questions 1. What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere cool off farther away from the Sun’s center? 2. What intrinsic properties of the Sun are reflected in the photospheric observations of limb darkening and granulation? 3. What are major observational signatures in the dynamic chromosphere? 4. What might cause the heating of the upper atmosphere? Can Sound waves heat the upper atmosphere of the Sun? 5. Where does the solar wind come from? 15.1 Introduction The Sun’s atmosphere is composed of three major layers, the photosphere, chromosphere, and corona. The different layers have different temperatures, densities, and distinctive features, and are observed at different wavelengths. Structure of the Sun 15.2 Photosphere The photosphere is the thin (~500 km) bottom layer in the Sun’s atmosphere, where the atmosphere is optically thin, so that photons make their way out and travel unimpeded. Ex.1: the mean free path of photons in the photosphere and the radiative zone. The photosphere is seen in visible light continuum (so- called white light). Observable features on the photosphere include: • Limb darkening: from the disk center to the limb, the brightness fades. • Sun spots: dark areas of magnetic field concentration in low-mid latitudes. • Granulation: convection cells appearing as light patches divided by dark boundaries. Q: does the full moon exhibit limb darkening? Limb Darkening: limb darkening phenomenon indicates that temperature decreases with altitude in the photosphere. Modeling the limb darkening profile tells us the structure of the stellar atmosphere. -
What Controls Spicule Velocities and Heights? Color of R
ado. What Controls Spicule Velocities and Heights? Color of R. Hammer, A. Nesis Kiepenheuer-Institut furÄ Sonnenphysik University Abstract. Numerous mechanisms have been suggested to drive spicules. Many of them need a careful ¯ne-tuning of free parameters in order to achieve the basic characteristics, like velocity and height, of observed 2003 spicules. There might, however, be general physical mechanisms that control these properties. We show that whenever upper chromospheric Sun, plasma is exposed to a signi¯cantly non-hydrostatic pressure gradient, The it starts moving upward at the observed speeds. The plasma can reach & signi¯cant heights, at least if it receives some net chromospheric heat- ing during the rising phase. Therefore, such a hydrodynamic mechanism might help other (magnetic) drivers to control the basic properties of spicules. We suggest therefore to consider a new class of spicule driv- Systems, ing mechanisms, in which the plasma is not only accelerated by wave or magnetic forces from below, but also by the generation of a low pressure lar region above the chromosphere. Such a situation could arise e.g. due to Stel an instability in magnetic loops or as a result of the recon¯guration of open ¯eld lines. Stars, ol Co 1. Introduction on Classical spicules are needle-shaped chromospheric extensions, which can be seen in strong chromospheric lines to protrude out of the solar limb. They are highly dynamic and consist of plasma with properties characteristic of the upper 4 11 ¡3 Workshop chromosphere (temperature ¼ 10 K, electron density of order 10 cm ) that moves at supersonic speeds of 20 ¡ 30 km s¡1 up to heights of 5000 ¡ 10000 km, with a typical lifetime of 5 ¡ 10 min (e.g., Beckers 1972). -
Vigorous Atmospheric Motions in the Red Supergiant Supernova Progenitor Antares
Vigorous atmospheric motions in the red supergiant supernova progenitor Antares K. Ohnaka1, G. Weigelt2 & K.-H. Hofmann2 1. Instituto de Astronom´ıa, Universidad Catolica´ del Norte, Avenida Angamos 0610, Antofagasta, Chile 2. Max-Planck-Institut fur¨ Radioastronomie, Auf dem Hugel¨ 69, 53121 Bonn, Germany Red supergiants represent a late stage of the evolution of stars more massive than about 9 solar masses. At this evolutionary stage, massive stars develop complex, multi-component at- mospheres. Bright spots were detected in the atmosphere of red supergiants by interferometric imaging1–5. Above the photosphere, the molecular outer atmosphere extends up to about two stellar radii6–14. Furthermore, the hot chromosphere (5,000–8,000 K) and cool gas (<3,500 K) are coexisting within ∼3 stellar radii15–18. The dynamics of the complex atmosphere have been probed by ultraviolet and optical spectroscopy19–22. However, the most direct, unambiguous approach is to measure the velocity at each position over the image of stars as in observations of the Sun. Here we report mapping of the velocity field over the surface and atmosphere of the prototypical red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdraft- ing motions of several huge gas clumps at velocities ranging from about −20 to +20 km s−1 in the atmosphere extending out to ∼1.7 stellar radii. Convection alone cannot explain the ob- served turbulent motions and atmospheric extension, suggesting the operation of a yet-to-be identified process in the extended atmosphere. +35 Antares is a well-studied, close red supergiant (RSG) at a distance of 170−25 pc (based on the parallax of 5:891:00 milliarcsecond = mas, ref. -
Solar X-Ray Jets, Type-Ii Spicules, Granule-Size Emerging Bipoles, and the Genesis of the Heliosphere
SOLAR X-RAY JETS, TYPE-II SPICULES, GRANULE-SIZE EMERGING BIPOLES, AND THE GENESIS OF THE HELIOSPHERE Ronald L. Moore1, Alphonse C. Sterling1, Jonathan W. Cirtain1, and David A. Falconer1, 2, 3 1 Space Science Office, VP62, Marshall Space Flight Center, Huntsville, AL, 35812, USA: [email protected] 2 Physics Departrment, University of Alabama in Huntsville, Huntsville, AL 35899, USA 3 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899, USA ABSTRACT From Hinode observations of solar X-ray jets, Type-II spicules, and granule-size emerging bipolar magnetic fields in quiet regions and coronal holes, we advocate a scenario for powering coronal heating and the solar wind. In this scenario, Type-II spicules and Alfven waves are generated by the granule-size emerging bipoles in the manner of the generation of X-ray jets by larger magnetic bipoles. From observations and this scenario, we estimate that Type-II spicules and their co-generated Alfven waves carry into the corona an area-average flux of mechanical energy of ∼ 7 x 105 erg cm-2 s-1. This is enough to power the corona and solar wind in quiet regions and coronal holes, and therefore indicates that the granule-size emerging bipoles are the main engines that generate and sustain the entire heliosphere. Key words: Sun: heliosphere – Sun: corona – Sun: chromosphere – Sun: surface magnetism – Sun: magnetic topology – Sun: activity Submitted to The Astrophysical Journal Letters January 2011 1 1. INTRODUCTION The heliosphere, the bubble that the solar wind blows in the interstellar wind, is ∼ 104 times bigger in diameter than the Sun. -
Power Spectrum Analysis of Limb and Disk Spicule Using Hinode Ca H Line Broadband Filter E
Power spectrum analysis of limb and disk spicule using Hinode Ca H line broadband filter E. Tavabi Physics Department, Payame Noor University (PNU), 19395-3697-Tehran, Iran Abstract We present observations of a solar quiet region obtained using Hinode Solar Optical telescope (SOT) in Ca II H line with broadband filter taken on November 2006. We study off-limb and on disk spicules to find a counterpart of limb spicule on the disk. This investigation shows a strong correspondence between the limb and near limb spicules (on- disk spicules that historically were called dark or bright mottles especially when observed in H α rather cool line) from the dynamical behavior (e.g., periodicity). An excellent time sequence of images obtained near the equatorial region with a cadence of 8 s was selected for analysis. 1-D Fourier power spectra made at different positions on the disk and above the limb are shown. We take advantage of the so-called mad-max operator to reduce effects of overlapping and improve the visibility of these hair-like features. A definite signature with strong power in the 3 min. (5.5 mHz.) and 5 min. (3.5 mHz) oscillations for both places exist. A full range of oscillations was found and the high frequency intensity fluctuation (greater than 10 mHz or less than 100 sec.) corresponding to the occurrence of the so- called type II spicules and, even more impressively, dominant peaks of Fourier power spectra are seen in a wide range of frequencies and for all places of “on” and “off” disk spicules, in rough agreement with what historical works were reporting regarding the disk mottles and limb spicules. -
Study on Effect of Radiative Loss on Waves in Solar Chromosphere
Master Thesis Study on effect of radiative loss on waves in solar chromosphere Wang Yikang Department of Earth and Planetary Science Graduate School of Science, The University of Tokyo September 4, 2017 Abstract The chromospheric and coronal heating problem that why the plasma in the chromosphere and the corona could maintain a high temperature is still unclear. Wave heating theory is one of the candidates to solve this problem. It is suggested that Alfven´ wave generated by the transverse motion at the photosphere is capable of transporting enough energy to the corona. During these waves propagating in the chromosphere, they undergo mode conver- sion and generate longitudinal compressible waves that are easily steepening into shocks in the stratified atmosphere structure. These shocks may contribute to chromospheric heating and spicule launching. However, in previous studies, radiative loss, which is the dominant energy loss term in the chromosphere, is usually ignored or crudely treated due to its difficulty, which makes them unable to explain chromospheric heating at the same time. In our study, based on the previous Alfven´ wave driven model, we apply an advanced treatment of radiative loss. We find that the spatial distribution of the time averaged radiative loss profile in the middle and higher chromosphere in our simulation is consistent with that derived from the observation. Our study shows that Alfven´ wave driven model has the potential to explain chromospheric heating and spicule launching at the same time, as well as transporting enough energy to the corona. i Contents Abstract i 1 Introduction 1 1.1 General introduction . .1 1.2 Radiation in the chromosphere . -
Comparing Different Methods for Estimating Total Open Heliospheric Magnetic Flux
Dissertations and Theses 4-2015 Comparing Different Methods for Estimating Total Open Heliospheric Magnetic Flux Samantha J. Wallace Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Wallace, Samantha J., "Comparing Different Methods for Estimating Total Open Heliospheric Magnetic Flux" (2015). Dissertations and Theses. 286. https://commons.erau.edu/edt/286 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. COMPARING DIFFERENT METHODS FOR ESTIMATING TOTAL OPEN HELIOSPHERIC MAGNETIC FLUX BY SAMANTHA J. WALLACE A Thesis Submitted to the Department of Physical Sciences and the Committee on Graduate Studies In partial fulfillment of the requirements for the degree of Master in Science in Engineering Physics April 2015 Embry-Riddle Aeronautical University Daytona Beach, Florida © Copyright by Samantha J. Wallace 2015 All Rights Reserved COMPARING DIFFERENT METHODS FOR ESTIMATING TOTAL OPEN HELIOSPHERIC MAGNETIC FLUX by Samantha J. Wallace This thesis was prepared under the direction of the candidate’s Thesis Committee Chair, Dr. John Hughes, Associate Professor, Daytona Beach Campus, and Thesis Committee Members Dr. Katariina Nykyri, Associate Professor, Daytona Beach Campus and Dr. Matthew Zettergren, Assistant Professor, Daytona Beach Campus, and has been approved by the Thesis Committee. It was submitted to the Department of Physical Sciences in partial fulfillment of the requirements for the degree of Master of Science in Engineering Physics THESIS COMMITTEE: Dr. John Hughes, Committee Chair Dr. -
Aerodynamic Phenomena in Stellar Atmospheres, a Bibliography
- PB 151389 knical rlote 91c. 30 Moulder laboratories AERODYNAMIC PHENOMENA STELLAR ATMOSPHERES -A BIBLIOGRAPHY U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ^M THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. -
Astrophysics
Publications of the Astronomical Institute rais-mf—ii«o of the Czechoslovak Academy of Sciences Publication No. 70 EUROPEAN REGIONAL ASTRONOMY MEETING OF THE IA U Praha, Czechoslovakia August 24-29, 1987 ASTROPHYSICS Edited by PETR HARMANEC Proceedings, Vol. 1987 Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences Publication No. 70 EUROPEAN REGIONAL ASTRONOMY MEETING OF THE I A U 10 Praha, Czechoslovakia August 24-29, 1987 ASTROPHYSICS Edited by PETR HARMANEC Proceedings, Vol. 5 1 987 CHIEF EDITOR OF THE PROCEEDINGS: LUBOS PEREK Astronomical Institute of the Czechoslovak Academy of Sciences 251 65 Ondrejov, Czechoslovakia TABLE OF CONTENTS Preface HI Invited discourse 3.-C. Pecker: Fran Tycho Brahe to Prague 1987: The Ever Changing Universe 3 lorlishdp on rapid variability of single, binary and Multiple stars A. Baglln: Time Scales and Physical Processes Involved (Review Paper) 13 Part 1 : Early-type stars P. Koubsfty: Evidence of Rapid Variability in Early-Type Stars (Review Paper) 25 NSV. Filtertdn, D.B. Gies, C.T. Bolton: The Incidence cf Absorption Line Profile Variability Among 33 the 0 Stars (Contributed Paper) R.K. Prinja, I.D. Howarth: Variability In the Stellar Wind of 68 Cygni - Not "Shells" or "Puffs", 39 but Streams (Contributed Paper) H. Hubert, B. Dagostlnoz, A.M. Hubert, M. Floquet: Short-Time Scale Variability In Some Be Stars 45 (Contributed Paper) G. talker, S. Yang, C. McDowall, G. Fahlman: Analysis of Nonradial Oscillations of Rapidly Rotating 49 Delta Scuti Stars (Contributed Paper) C. Sterken: The Variability of the Runaway Star S3 Arietis (Contributed Paper) S3 C. Blanco, A. -
New Physics and the Solar Corona
New Physics and The Solar Corona The Big Solar Corona1 by Clark M. Thomas © November 9, 2017 Introduction The physics of the 20th century ends, and the new physics of the 21st century begins with better understanding our sun’s corona. Even though our local star’s halo-like corona has been observed for decades with increasingly advanced instruments, science still does not fully know why the relatively ethereal corona is in some parts more than 200 times as hot as the sun’s average photosphere surface.2 1 https://apod.nasa.gov/apod/ap170920.html 2 https://www.space.com/5521-sun-hold-secret-dark-matter.html !1 of 22! A very recent NASA sounding rocket above Earth’s atmosphere appears to have located the source of this energy within numerous nanoflares, or spicules – but the modest ascent of these plasma jets does not fully answer the total coronal question:3 Sounding rockets on very brief flights have been equipped with advanced spectrographs capable of detecting clustered nanoflares in active areas of the photosphere. They have detected large numbers of individually undetectable flares that shoot up 6,000 miles into the chromosphere, then dissipate – and thereby inject in aggregate large amounts of energy at multi-million degrees into the chromosphere and lowest solar corona. This is an exciting experimental finding, but it is incomplete by itself.4 Not answered is the amount of dissipated heat energy that immediately returns to the cooler photosphere. Understanding the corona’s great secret requires less physics of the past, and more of the future.