Molecular Evolution of the Switch for Progesterone and Spironolactone from Mineralocorticoid Receptor Agonist to Antagonist

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Evolution of the Switch for Progesterone and Spironolactone from Mineralocorticoid Receptor Agonist to Antagonist Molecular evolution of the switch for progesterone and spironolactone from mineralocorticoid receptor agonist to antagonist Peter J. Fullera,b,1, Yi-Zhou Yaoa,b, Ruitao Jinc, Sitong Hec, Beatriz Martín-Fernándeza,b,2, Morag J. Younga,b, and Brian J. Smithc aCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; bDepartment of Molecular Translational Science, Monash University, Clayton, VIC 3168, Australia; and cLa Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia Edited by Huda Akil, University of Michigan, Ann Arbor, MI, and approved July 29, 2019 (received for review February 25, 2019) The mineralocorticoid receptor (MR) is highly conserved across In the present study, we demonstrate that a single residue change vertebrate evolution. In terrestrial vertebrates, the MR mediates is responsible for the switch from an agonist response to progesterone sodium homeostasis by aldosterone and also acts as a receptor for for zebrafish MR (zMR) to antagonist for human MR (hMR). This cortisol. Although the MR is present in fish, they lack aldosterone. change in the MR ligand-binding domain (LBD) is surprisingly dis- The MR binds progesterone and spironolactone as antagonists in tant from the ligand-binding site and has not previously been asso- human MR but as agonists in zebrafish MR. We have defined the ciated with agonist to antagonist switching in the MR. molecular basis of these divergent responses using MR chimeras between the zebrafish and human MR coupled with reciprocal Results site-directed mutagenesis and molecular dynamic (MD) simulation LBD Mediates the Agonist Response of the Zebrafish MR to based on the crystal structures of the MR ligand-binding domain. Spironolactone. Previous studies using full-length MR in trans- Substitution of a leucine by threonine in helix 8 of the ligand-binding activation assays demonstrated that spironolactone and progesterone domain of the zebrafish MR confers the antagonist response. This were agonists for fish MR (2, 5, 6); to formally demonstrate that the leucine is conserved across fish species, whereas threonine (serine in difference is a property of the LBD, the zMR LBD, amino acids 670 rodents) is conserved in terrestrial vertebrate MR. MD identified an MEDICAL SCIENCES to 970, was substituted for the equivalent region (amino acids 672 to interaction of the leucine in helix 8 with a highly conserved leucine in 984) in hMR (Fig. 1A). This initial chimera (zMR LBD) demon- helix 1 that stabilizes the agonist conformation including the inter- B action between helices 3 and 5, an interaction which has previously strated the same robust agonist response to spironolactone (Fig. 1 ) been characterized. This switch in the MR coincides with the evolu- as for full-length zMR (6). Antagonism of the aldosterone re- tion of terrestrial vertebrates and of aldosterone synthesis. It was sponse by spironolactone at the hMR demonstrates that there is perhaps mandatory if the appearance of aldosterone as a specific a loss of receptor activation by spironolactone, not of ligand mediator of the homeostatic salt retention was to be tolerated. The binding. The response of hMR to spironolactone alone is 4% conformational changes also provide insights into the structural basis that of aldosterone, while for the zMR LBD chimera it is 46% of agonism versus antagonism in steroid receptors with potential (Fig. 1B). implications for drug design in this important therapeutic target. Significance aldosterone | cortisol | mineralocorticoid receptor | sodium homeostasis | progesterone The mineralocorticoid receptor (MR), the receptor for aldoste- rone, appears in evolution well before the appearance of ter- he mineralocorticoid receptor (MR) is a member of the restrial vertebrates, yet aldosterone emerges in vertebrates Tnuclear receptor superfamily of ligand-dependent transcrip- only with terrestrial life. Curiously, in fish, the MR sees pro- tion factors; in vertebrates, it diverged with the glucocorticoid gesterone and spironolactone as agonists, whereas in terres- receptor (GR) by a gene duplication from the ancestral corticoid trial species, they are antagonist at the MR. We have identified > receptor 450 million years ago (1). MR has been highly con- a unique single amino acid difference between the fish MR and served across vertebrate evolution (2). In terrestrial vertebrates, the other vertebrate MR that mediates this switch, agonist to including humans, MR mediates the regulation of sodium homeo- antagonist. This striking evolutionary event was perhaps stasis by aldosterone. The MR also binds cortisol and the less potent mandatory if the appearance of aldosterone as a specific me- deoxycorticosterone (DOC), which is 21-hydroxyprogesterone. In diator of the homeostatic salt retention required for terrestrial most tetrapods (including human, rodent, alligator, and Xenopus), life was to be tolerated. The conformational changes also progesterone is an antagonist of MR, as is its derivative provide insights into the structural basis of agonism versus spironolactone (3). Although the MR is present in teleosts that lack antagonism in steroid receptors. aldosterone synthesis (4), the teleost MR responds to aldosterone, as well as to cortisol and DOC (2, 5, 6) that have been proposed as Author contributions: P.J.F. and B.J.S. designed research; Y.-Z.Y., R.J., S.H., and B.M.-F. the “physiological” mineralocorticoids for the fish MR (5, 6). performed research; P.J.F., Y.-Z.Y., R.J., S.H., M.J.Y., and B.J.S. analyzed data; P.J.F. and Characterization of various fish MR found that, in contrast to ter- B.J.S. wrote the paper; and P.J.F. led the team. restrial animals, teleost MR were activated by both progesterone The authors declare no conflict of interest. and spironolactone. These findings suggest that progesterone may This article is a PNAS Direct Submission. be a physiological agonist for the MR in teleosts. The evolutionary Published under the PNAS license. adaptability of proteins is brought into sharp focus by divergent 1To whom correspondence may be addressed. Email: [email protected]. responses to the same ligands (progesterone and spironolactone) in 2Present address: Department of Molecular Biology (Cell Biology), Faculty of Biology, such closely related receptors, while responses to other ligands are Universidad de León, 24071 León, Spain. essentially equivalent. Understanding the structural basis of agonism This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. versus antagonism in steroid receptors is also of considerable ther- 1073/pnas.1903172116/-/DCSupplemental. apeutic importance (7). www.pnas.org/cgi/doi/10.1073/pnas.1903172116 PNAS Latest Articles | 1of6 Downloaded by guest on September 25, 2021 N-terminal DBD LBD y A B ti 1.4 1 603 669 732 984 vitcAe 1.2 hMR 1 1 s 601 667 718 970 arefic 0.8 37% 97% 77% zMR 0.6 uLev LBD Chimeras 0.4 ** 672 785 845 880 933 984 ital hMR 0.2 hMR zMR e ** 670 771 831 866 970919 R 0 VASA+SVASA+S C Z Z ZZ y t HMR zMRLBD i 1.4 vit SvsA% 4±0.34 46±13 c 1.2 Ae 1 s * aref 0.8 * E i ** ** c 0.6 1.6 u y tiv L 0.4 ** 1.4 itcAes ev i taleR 0.2 1.2 ** ** 0 1 a VA SA+S VA SA+SVASA+SVA SA+S r ef i 0.8 HHHH ZZZZ HZHH ZHZZ c uL 0.6 SvsA% 4±0.3 53±6.6 58±6.7 6±0.4 ev * i 0.4 ta * ytivitcAesareficuLevi D 1.6 leR 0.2 ** ** ** * 1.4 0 1.2 VASA+SVASA+SVASA+SVASA+SVASA+SVASA+S 1 * hMR hMR-T870L zMRLBD zMRLBD- zMR zMR-L856T 0.8 ** L856T 0.6 ** SvsA% 5±3.1 55±26.3 80±42.6 5±8.6 95±75.7 6±5.3 0.4 ** t 0.2 ** aleR ** ** ** ** 0 VASA+SVASA+SVA SA+SVA SA+SVA SA+SVA SA+S HHHH ZZZZ HhzHH HzhHH ZhzZZ ZzhZZ SvsA% 4±0.4 84±4.1 51±2.3 3±0.9 44±14.1 3±0.3 Fig. 1. Identification of the critical amino acid switch that determines agonism versus antagonism for spironolactone in the MR. (A) Schematic representation of the comparison of the hMR and zMR. The MR is divided into three principal domains: the N-terminal domain, the DNA-binding domain (DBD), and the ligand-binding domain (LBD). The amino acid numbers and the percentage amino acid identity are shown (6, 24). The architecture of the LBD chimeras is shown below with the amino acid numbers of the breakpoints shown above (hMR) and below (zMR). (B) Transactivation responses of hMR and a chimera of hMR N terminus and DBD with the zMR LBD (zMRLBD) to aldosterone and spironolactone. CV-1 cells were transiently transfected with 250 ng of pRShMR or pRSzMRLBD together with 250 ng of MMTV-LUC reporter gene and 50 ng of pREN-LUC. The cells were treated with vehicle (V), 10 nM aldosterone (A), 1 μM spironolactone (S), or aldosterone plus spironolactone (A+S). Corrected luciferase activity is expressed relative to the response of the hMR to 10 nM aldosterone (mean ± SEM) derived from two in- dependent experiments with treatment groups aldosterone and aldosterone plus spironolactone being greater than vehicle alone (P < 0.05). Spironolactone and spironolactone plus aldosterone were less than aldosterone alone for hMR (**P < 0.0001) but not for zMR LBD. The activation with spironolactone alone as a percentage of that for aldosterone (S vs. A) for each MR is shown below the graph and significantly differs between the MR (P < 0.05). (C) Transactivation responses of hMR:zMR LBD chimeras to aldosterone and spironolactone highlighting the critical role of the second region in reciprocal chimeras. The four regions of the LBD are shown in A.AnalysisisasinB with aldosterone and aldosterone plus spironolactone being greater than vehicle alone (P < 0.001).
Recommended publications
  • Compositions Comprising Drospirenone Molecularly
    (19) & (11) EP 1 748 756 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/00 (2006.01) A61K 9/107 (2006.01) 29.04.2009 Bulletin 2009/18 A61K 9/48 (2006.01) A61K 9/16 (2006.01) A61K 9/20 (2006.01) A61K 9/14 (2006.01) (2006.01) (2006.01) (21) Application number: 05708751.2 A61K 9/70 A61K 31/565 (22) Date of filing: 10.03.2005 (86) International application number: PCT/IB2005/000665 (87) International publication number: WO 2005/087194 (22.09.2005 Gazette 2005/38) (54) COMPOSITIONS COMPRISING DROSPIRENONE MOLECULARLY DISPERSED ZUSAMMENSETZUNGEN AUS DROSPIRENON IN MOLEKULARER DISPERSION DES COMPOSITIONS CONTENANT DROSPIRENONE A DISPERSION MOLECULAIRE (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • FUNKE, Adrian HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR D-14055 Berlin (DE) Designated Extension States: • WAGNER, Torsten AL BA HR MK YU 13127 Berlin (DE) (30) Priority: 10.03.2004 EP 04075713 (74) Representative: Wagner, Kim 10.03.2004 US 551355 P Plougmann & Vingtoft a/s Sundkrogsgade 9 (43) Date of publication of application: P.O. Box 831 07.02.2007 Bulletin 2007/06 2100 Copenhagen Ø (DK) (60) Divisional application: (56) References cited: 08011577.7 / 1 980 242 EP-A- 1 260 225 EP-A- 1 380 301 WO-A-01/52857 WO-A-20/04022065 (73) Proprietor: Bayer Schering Pharma WO-A-20/04041289 US-A- 5 569 652 Aktiengesellschaft US-A- 5 656 622 US-A- 5 789 442 13353 Berlin (DE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • 1 Progesterone: an Enigmatic Ligand for the Mineralocorticoid Receptor
    Progesterone: An Enigmatic Ligand for the Mineralocorticoid Receptor Michael E. Baker1 Yoshinao Katsu2 1Division of Nephrology-Hypertension Department of Medicine, 0735 University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0735 2Graduate School of Life Science Hokkaido University Sapporo, Japan Correspondence to: M. E. Baker; E-mail: [email protected] Y. Katsu; E-mail: [email protected] Abstract. The progesterone receptor (PR) mediates progesterone regulation of female reproductive physiology, as well as gene transcription in non-reproductive tissues, such as brain, bone, lung and vasculature, in both women and men. An unusual property of progesterone is its high affinity for the mineralocorticoid receptor (MR), which regulates electrolyte transport in the kidney in humans and other terrestrial vertebrates. In humans, rats, alligators and frogs, progesterone antagonizes activation of the MR by aldosterone, the physiological mineralocorticoid in terrestrial vertebrates. In contrast, in elephant shark, ray-finned fishes and chickens, progesterone activates the MR. Interestingly, cartilaginous fishes and ray-finned fishes do not synthesize aldosterone, raising the question of which steroid(s) activate the MR in cartilaginous fishes and ray-finned fishes. The simpler synthesis of progesterone, compared to cortisol and other corticosteroids, makes progesterone a candidate physiological activator of the MR in elephant sharks and ray-finned fishes. Elephant shark and ray-finned fish MRs are expressed in diverse tissues, including heart, brain and lung, as well as, ovary and testis, two reproductive tissues that are targets for progesterone, which together suggests a multi-faceted physiological role for progesterone activation of the MR in elephant shark and ray-finned fish.
    [Show full text]
  • Mineralocorticoid Receptor Mutations
    234 1 M-C ZENNARO and MR mutations 234:1 T93–T106 Thematic Review F FERNANDES-ROSA 30 YEARS OF THE MINERALOCORTICOID RECEPTOR Mineralocorticoid receptor mutations Maria-Christina Zennaro1,2,3 and Fabio Fernandes-Rosa1,2,3 Correspondence 1INSERM, Paris Cardiovascular Research Center, Paris, France should be addressed 2Université Paris Descartes, Sorbonne Paris Cité, Paris, France to M-C Zennaro 3Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Email Paris, France maria-christina.zennaro@ inserm.fr Abstract Aldosterone and the mineralocorticoid receptor (MR) are key elements for maintaining Key Words fluid and electrolyte homeostasis as well as regulation of blood pressure. Loss-of- f mineralocorticoid function mutations of the MR are responsible for renal pseudohypoaldosteronism type receptor 1 (PHA1), a rare disease of mineralocorticoid resistance presenting in the newborn with f pseudohypoaldosteronism type 1- PHA1 weight loss, failure to thrive, vomiting and dehydration, associated with hyperkalemia f aldosterone and metabolic acidosis, despite extremely elevated levels of plasma renin and f hormone receptors aldosterone. In contrast, a MR gain-of-function mutation has been associated with a f nuclear receptor familial form of inherited mineralocorticoid hypertension exacerbated by pregnancy. In Endocrinology addition to rare variants, frequent functional single nucleotide polymorphisms of the of MR are associated with salt sensitivity, blood pressure, stress response and depression in the general population. This review will summarize our knowledge on MR mutations in Journal PHA1, reporting our experience on the genetic diagnosis in a large number of patients performed in the last 10 years at a national reference center for the disease.
    [Show full text]
  • Agonistic and Antagonistic Properties of Progesterone Metabolites at The
    European Journal of Endocrinology (2002) 146 789–800 ISSN 0804-4643 EXPERIMENTAL STUDY Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor M Quinkler, B Meyer, C Bumke-Vogt, C Grossmann, U Gruber, W Oelkers, S Diederich and V Ba¨hr Department of Endocrinology, Klinikum Benjamin Franklin, Freie Universita¨t Berlin, Hindenburgdamm 30, 12200 Berlin, Germany (Correspondence should be addressed to M Quinkler; Email: [email protected]) Abstract Objective: Progesterone binds to the human mineralocorticoid receptor (hMR) with nearly the same affinity as do aldosterone and cortisol, but confers only low agonistic activity. It is still unclear how aldosterone can act as a mineralocorticoid in situations with high progesterone concentrations, e.g. pregnancy. One mechanism could be conversion of progesterone to inactive compounds in hMR target tissues. Design: We analyzed the agonist and antagonist activities of 16 progesterone metabolites by their binding characteristics for hMR as well as functional studies assessing transactivation. Methods: We studied binding affinity using hMR expressed in a T7-coupled rabbit reticulocyte lysate system. We used co-transfection of an hMR expression vector together with a luciferase reporter gene in CV-1 cells to investigate agonistic and antagonistic properties. Results: Progesterone and 11b-OH-progesterone (11b-OH-P) showed a slightly higher binding affinity than cortisol, deoxycorticosterone and aldosterone. 20a-dihydro(DH)-P, 5a-DH-P and 17a-OH-P had a 3- to 10-fold lower binding potency. All other progesterone metabolites showed a weak affinity for hMR. 20a-DH-P exhibited the strongest agonistic potency among the metabolites tested, reaching 11.5% of aldosterone transactivation.
    [Show full text]
  • The Organic Chemistry of Drug Synthesis
    The Organic Chemistry of Drug Synthesis VOLUME 2 DANIEL LEDNICER Mead Johnson and Company Evansville, Indiana LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS, New York • Chichester • Brisbane • Toronto Copyright © 1980 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging in Publication Data: Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." 1. Chemistry, Medical and pharmaceutical. 2. Drugs. 3. Chemistry, Organic. I. Mitscher, Lester A., joint author. II. Title. RS421 .L423 615M 91 76-28387 ISBN 0-471-04392-3 Printed in the United States of America 10 987654321 It is our pleasure again to dedicate a book to our helpmeets: Beryle and Betty. "Has it ever occurred to you that medicinal chemists are just like compulsive gamblers: the next compound will be the real winner." R. L. Clark at the 16th National Medicinal Chemistry Symposium, June, 1978. vii Preface The reception accorded "Organic Chemistry of Drug Synthesis11 seems to us to indicate widespread interest in the organic chemistry involved in the search for new pharmaceutical agents. We are only too aware of the fact that the book deals with a limited segment of the field; the earlier volume cannot be considered either comprehensive or completely up to date.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20120129819A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0129819 A1 Vancaillie et al. (43) Pub. Date: May 24, 2012 (54) GEL COMPOSITIONS FOR Publication Classi?cation ADMINISTRATION OF (51) Int Cl PHARMACEUTICALLY ACTIVE A 61K 31/565 (200601) COMPOUNDS A61P 31/00 (2006.01) A61P 29/00 2006.01 (75) Inventors: Thierry Vancaillie, Castlecrag A 611, 5/24 g2oo6~olg (AU), Alan Hewitt, Wrexham (GB) A611) 13/00 (200601) A61P 23/00 2006.01 (73) Assignee: Medortus (UK) Ltd, Wrexham A611; 25/04 E200601; (GB) A61P 1 7/00 (2006.01) A61P 15/00 (2006.01) (21) Appl' No" 13/264311 (52) us. Cl. ........................ .. 514/170; 514/182; 514/171 (22) PCT Filed: Apr. 14, 2010 (57) ABSTRACT (86) PCT No... PCT/AU10/00408 The P resent invention P rovides a P harmaceutical com P osition in the form of a Water-based gel comprising: at least one § 371 (6X1), pharmaceutically active compound; at least one gelling agent; (2)’ (4) Date; Feb 9, 2012 a solubilising agent; and Water, Wherein said composition is free or substantially free of unsubstituted monohydric alco (30) Foreign Application Priority Data hols having between 1 and 6 carbon atoms. The invention also relates to methods for preparing the compositions and uses Apr. 14, 2009 (AU) .............................. .. 2009901585 thereof. US 2012/0129819 A1 May 24, 2012 GEL COMPOSITIONS FOR ders (such as skin disorders), a compound useful in the con ADMINISTRATION OF trol of infection, a compound useful in the treatment of PHARMACEUTICALLY ACTIVE in?ammatory conditions, a compound useful in the treatment COMPOUNDS of sexual dysfunction, a compound useful in the treatment of urological disorders, a compound useful in anaesthesia, an TECHNICAL FIELD analgesic compound, a compound Which is an ot-adrenergic [0001] The present invention relates to Water-based gel receptor agonist, a hormone or a prohormone.
    [Show full text]
  • Drug Insight: Eplerenone, a Mineralocorticoid- Receptor Antagonist Frances Mcmanus, Gordon T Mcinnes and John MC Connell*
    REVIEW www.nature.com/clinicalpractice/endmet Drug Insight: eplerenone, a mineralocorticoid- receptor antagonist Frances McManus, Gordon T McInnes and John MC Connell* SUMMARY INTRODUCTION The traditional perception of aldosterone as a Increasing recognition of the role of aldosterone in cardiovascular disease hormone of the adrenal zona glomerulosa with has been supported by a significant body of evidence from animal models. actions limited to sodium and water homeostasis This evidence has been translated into clinical practice, and large-scale, is now recognized as incomplete. Nonclassical randomized, placebo-controlled trials have confirmed the beneficial effects of mineralocorticoid blockade in patients with heart failure. As a actions of aldosterone in a variety of nonepithelial target tissues have been demonstrated;1 rapid, consequence, there has been a resurgence in the use of mineralocorticoid- 2 receptor antagonists in clinical practice that has prompted the search nongenomic effects have been identified, and the possibility of local renin–angiotensin–aldosterone for a potent and specific antagonist without the sexual side effects of 3 spironolactone. Eplerenone, a mineralocorticoid-receptor antagonist systems (RAAS) has been suggested. Increasing with minimal binding to the progesterone and androgen receptors, is recognition of aldosterone as a key cardiovascular now licensed for treatment of heart failure in Europe and heart failure hormone has provoked interest in the therapeutic and hypertension in the US; it has also been proposed as a treatment for use of mineralocorticoid-receptor antagonism in a variety of cardiovascular conditions. This article reviews the current a variety of clinical presentations. The adverse- concepts of the actions of aldosterone at a cellular level.
    [Show full text]
  • The Organic Chemistry of Drug Synthesis
    THE ORGANIC CHEMISTRY OF DRUG SYNTHESIS VOLUME 3 DANIEL LEDNICER Analytical Bio-Chemistry Laboratories, Inc. Columbia, Missouri LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS New York • Chlchester • Brisbane * Toronto • Singapore Copyright © 1984 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging In Publication Data: (Revised for volume 3) Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." Includes bibliographical references and index. 1. Chemistry, Pharmaceutical. 2. Drugs. 3. Chemistry, Organic—Synthesis. I. Mitscher, Lester A., joint author. II. Title. [DNLM 1. Chemistry, Organic. 2. Chemistry, Pharmaceutical. 3. Drugs—Chemical synthesis. QV 744 L473o 1977] RS403.L38 615M9 76-28387 ISBN 0-471-09250-9 (v. 3) Printed in the United States of America 10 907654321 With great pleasure we dedicate this book, too, to our wives, Beryle and Betty. The great tragedy of Science is the slaying of a beautiful hypothesis by an ugly fact. Thomas H. Huxley, "Biogenesis and Abiogenisis" Preface Ihe first volume in this series represented the launching of a trial balloon on the part of the authors. In the first place, wo were not entirely convinced that contemporary medicinal (hemistry could in fact be organized coherently on the basis of organic chemistry.
    [Show full text]
  • Aldosterone and Mineralocorticoid Receptors—Physiology and Pathophysiology
    International Journal of Molecular Sciences Conference Report Aldosterone and Mineralocorticoid Receptors—Physiology and Pathophysiology John W. Funder Hudson Institute of Medical Research, Monash University, 27–31 Wright St., Clayton 3168, Australia; [email protected] Academic Editors: Anastasia Susie Mihailidou, Jan Danser, Sadayoshi Ito, Fumitoshi Satoh and Akira Nishiyama Received: 8 March 2017; Accepted: 4 May 2017; Published: 11 May 2017 Abstract: Aldosterone is a uniquely terrestrial hormone, first appearing in lungfish, which have both gills and lungs. Mineralocorticoid receptors (MRs), on the other hand, evolved much earlier, and are found in cartilaginous and bony fish, presumptive ligand cortisol. MRs have equivalent high affinity for aldosterone, progesterone, and cortisol; in epithelia, despite much higher cortisol circulating levels, aldosterone selectively activates MRs by co-expression of the enzyme 11β-hydroxysteroid dehydrogenase, Type 11. In tissues in which the enzyme is not expressed, MRs are overwhelmingly occupied but not activated by cortisol, which normally thus acts as an MR antagonist; in tissue damage, however, cortisol mimics aldosterone and acts as an MR agonist. The risk profile for primary aldosteronism (PA) is much higher than that in age-, sex-, and blood pressure-matched essential hypertensives. High levels of aldosterone per se are not the problem: in chronic sodium deficiency, as seen in the monsoon season in the highlands of New Guinea, plasma aldosterone levels are extraordinarily high, but cause neither hypertension nor cardiovascular damage. Such damage occurs when aldosterone levels are out of the normal feedback control, and are inappropriately elevated for the salt status of the individual (or experimental animal). The question thus remains of how excess salt can synergize with elevated aldosterone levels to produce deleterious cardiovascular effects.
    [Show full text]
  • The Necessity and Effectiveness of Mineralocorticoid Receptor Antagonist in the Treatment of Diabetic Nephropathy
    Hypertension Research (2015) 38, 367–374 & 2015 The Japanese Society of Hypertension All rights reserved 0916-9636/15 www.nature.com/hr REVIEW The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy Atsuhisa Sato Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain ‘long-term’ antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy.
    [Show full text]
  • Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회
    REVIEW J Neurocrit Care 2017;10(2):53-59 https://doi.org/10.18700/jnc.170035 eISSN 2508-1349 Pharmacologic Characteristics of Corticosteroids 대한신경집중치료학회 Sophie Samuel, PharmD1, Thuy Nguyen, PharmD1, H. Alex Choi, MD2 1Department of Pharmacy, Memorial Hermann Texas Medical Center, Houston, TX; 2Department of Neurosurgery and Neurology, The University of Texas Medical School at Houston, Houston, TX, USA Corticosteroids (CSs) are used frequently in the neurocritical care unit mainly for their anti- Received December 7, 2017 inflammatory and immunosuppressive effects. Despite their broad use, limited evidence Revised December 7, 2017 exists for their efficacy in diseases confronted in the neurocritical care setting. There are Accepted December 17, 2017 considerable safety concerns associated with administering these drugs and should be limited Corresponding Author: to specific conditions in which their benefits outweigh the risks. The application of CSs in H. Alex Choi, MD neurologic diseases, range from traumatic head and spinal cord injuries to central nervous Department of Pharmacy, Memorial system infections. Based on animal studies, it is speculated that the benefit of CSs therapy Hermann Texas Medical Center, 6411 in brain and spinal cord, include neuroprotection from free radicals, specifically when given Fannin Street, Houston, TX 77030, at a higher supraphysiologic doses. Regardless of these advantages and promising results in USA animal studies, clinical trials have failed to show a significant benefit of CSs administration Tel: +1-713-500-6128 on neurologic outcomes or mortality in patients with head and acute spinal injuries. This Fax: +1-713-500-0665 article reviews various chemical structures between natural and synthetic steroids, discuss its E-mail: [email protected] pharmacokinetic and pharmacodynamic profiles, and describe their use in clinical practice.
    [Show full text]
  • The Role of the Mineralocorticoid Receptor in the Vasculature
    234 1 J J DUPONT and I Z JAFFE MR in the vasculature 234:1 T67–T82 Thematic Review 30 YEARS OF THE MINERALOCORTICOID RECEPTOR The role of the mineralocorticoid receptor in the vasculature Correspondence should be addressed to I Z Jaffe Jennifer J DuPont and Iris Z Jaffe Email Ijaffe@tuftsmedicalcenter. Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA org Abstract Since the mineralocorticoid receptor (MR) was cloned 30 years ago, it has become clear Key Words that MR is expressed in extra-renal tissues, including the cardiovascular system, where it is f vasculature expressed in all cells of the vasculature. Understanding the role of MR in the vasculature f hormone receptors has been of particular interest as clinical trials show that MR antagonism improves f cardiovascular cardiovascular outcomes out of proportion to changes in blood pressure. The last 30 years f renin-angiotensin system of research have demonstrated that MR is a functional hormone-activated transcription factor in vascular smooth muscle cells and endothelial cells. This review summarizes advances in our understanding of the role of vascular MR in regulating blood pressure and vascular function, and its contribution to vascular disease. Specifically, vascular MR Endocrinology contributes directly to blood pressure control and to vascular dysfunction and remodeling of in response to hypertension, obesity and vascular injury. The literature is summarized with respect to the role of vascular MR in conditions including: pulmonary hypertension; Journal cerebral vascular remodeling and stroke; vascular inflammation, atherosclerosis and myocardial infarction; acute kidney injury; and vascular pathology in the eye. Considerations regarding the impact of age and sex on the function of vascular MR are also described.
    [Show full text]