August Celestial Calendar by Dave Mitsky

Total Page:16

File Type:pdf, Size:1020Kb

August Celestial Calendar by Dave Mitsky August Celestial Calendar by Dave Mitsky All times, unless otherwise noted, are UT (subtract four hours and, when appropriate, one calendar day for EDT) 8/01 The Moon is 1.7 degrees south-southeast of Uranus at 3:00; a double Galilean shadow transit begins at 10:08; Mercury is in superior conjunction with the Sun (1.342 astronomical units from the Earth, latitude 6.9 degrees) at 14:00; the Curtiss Cross, an X-shaped clair-obscur illumination effect located between the craters Parry and Gambart, is predicted to be visible at 22:20 8/02 Saturn (magnitude +0. 2, apparent size 18.6") is at opposition at 6:00; the Moon is at apogee, subtending 29' 33" at a distance of 404,409 kilometers (251,289 miles) at 7:35; the Moon is 4.8 degrees southeast of the bright open cluster M45 (the Pleiades or Subaru) in Taurus at 11:00 8/03 The Moon is at the ascending node (longitude 68.9 degrees) at 3:00; the Moon is 5.6 degrees north of the first-magnitude star Aldebaran (Alpha Tauri) at 5:00; Mercury is at its northernmost latitude from the ecliptic plane (7.0 degrees) at 6:00 8/05 The Moon is 1.1 degrees north of the bright open cluster M35 in Gemini at 2:00; asteroid 4 Juno (magnitude +10.8) is stationary in Ophiuchus at 4:00 8/06 The Moon is 6.7 degrees south of the first-magnitude star Castor (Alpha Geminorum) at 15:00; the Moon is 3.1 degrees south of the first-magnitude star Pollux (Beta Geminorum) at 20:00 8/07 The astronomical cross-quarter day known as Lammas or Lughnasadh, the midpoint between the summer solstice and the autumnal equinox, occurs today; the Moon is 3.0 degrees north-northeast of the bright open cluster M44 (the Beehive Cluster or Praesepe) in Cancer at 22:00 8/08 A double Galilean shadow transit begins at 12:42; New Moon (lunation 1220) occurs at 13:50 8/09 The Moon is 3.2 degrees north-northeast of Mercury at 6:00; the Moon is 4.5 degrees north- northeast of the first-magnitude star Regulus (Alpha Leonis) at 16:00 8/10 The Moon is 4.0 degrees north-northeast of Mars at 4:00; the Sun enters the constellation of Leo, at longitude 138.2 degrees on the ecliptic, at 15:00 8/11 The Moon is 3.9 degrees north-northeast of Venus at 11:00 8/12 Mercury is 1.1 degrees north-northeast of Regulus at 1:00; the peak of the Perseid meteor shower (a zenithal hourly rate of 100 or more per hour) is predicted to occur at 19:00; asteroid 349 Demboska (magnitude +9.8) is at opposition in Piscis Austrinus at 21:34 8/13 The Moon is 5.5 degrees north-northeast of the first-magnitude star Spica (Alpha Virginis) at 15:00 8/15 The Lunar X, also known as the Werner or Purbach Cross, an X-shaped clair-obscur illumination effect involving various ridges and crater rims located between the craters La Caille, Blanchinus, and Purbach, is predicted to be visible at 10:28; a double Galilean shadow transit begins at 14:41; a double Galilean shadow transit begins at 15:17; First Quarter Moon occurs at 15:20; a triple Galilean satellite transit occurs at 15:31 8/16 Mars and Neptune are at heliocentric opposition (longitudes 171.6 degrees and 351.6 degrees) at 13:00; the Moon is at the descending node (longitude 247.6 degrees) at 16:00; the Moon is 4.4 degrees north-northeast of the first-magnitude star Antares (Alpha Scorpii) at 22:00 8/17 The Moon is at perigee, subtending 32' 22'' from a distance of 369,125 kilometers (229,363 miles), at 9:16 8/19 Mercury is 0.1 degrees south of Mars at 4:00; asteroid 43 Ariadne is at opposition (magnitude +9.6) in Aquarius at 19:10 8/20 Uranus is stationary, with retrograde motion to begin, at 0:00; Jupiter is at opposition (magnitude -2.9, apparent size 49.1") at 0:00 8/21 The Moon is 3.6 degrees south of Saturn at 0:00 8/22 The Moon is 3.7 degrees southeast of Jupiter at 8:00; Full Moon (known as the Fruit, Grain, Green Corn, or Sturgeon Moon) occurs at 12:02; a double Galilean shadow transit begins at 18:42; the Sun's longitude is 150 degrees at 22:00 8/24 The Moon is 3.7 degrees southeast of Neptune at 6:00; asteroid 89 Julia (magnitude +9.0) is at opposition in Aquarius at 14:22 8/25 The Martian northern hemisphere summer solstice occurs at 0:00 8/26 Mercury is at the descending node through the ecliptic plane at 15:00 8/28 The Moon is 1.4 degrees southeast of Uranus at 11:00 8/29 Venus is at the descending node through the ecliptic plane at 5:00; the Moon is 4.6 degrees southeast of M44 at 19:00; a double Galilean shadow transit begins at 22:43 8/30 The Moon is at apogee, subtending 29' 34" at a distance of 404,098 kilometers (251,096 miles) at 2:22; the Moon is at the ascending node (longitude 66.2 degrees) at 5:00; Last Quarter Moon occurs at 7:13; the Moon is 5.8 degrees north-northwest of Aldebaran at 13:00 8/31 The Curtiss Cross is predicted to be visible at 9:42 John Flamsteed, Christian Mayer, Pierre François André Méchain, Maria Mitchell, and Otto Struve were born this month. The gibbous phase of Mars was first observed by Francesco Fontana on August 24, 1638. Abraham Ihle discovered the globular cluster M22 on August 26, 1665. Nicolas Sarabat discovered Comet C/1729 P1 (Sarabat) on August 1, 1729. Caroline Herschel discovered Comet C/1786 P1 (Herschel) on August 1, 1786. The Saturnian satellite Enceladus was discovered by William Herschel on August 28, 1789. Dominique Dumouchel was the first person to observe the return of Comet 1P/Halley on August 5, 1835. John Russell Hind discovered asteroid 7 Iris on August 13, 1847. Asaph Hall discovered Deimos on August 11, 1877 and Phobos on August 17, 1877. The first extragalactic supernova, S Andromedae, was discovered by Ernst Hartwig on August 20, 1885. David Jewitt and Jane Luu discovered the trans- Neptunian object (15760) 1992 QB1 on August 30, 1992. The Jovian satellite 2002 Laomedeia was discovered by Matthew Holman on August 13th, 2002. The peak of the Perseid meteor shower takes place on the night of August 11th/August 12th and is not compromised by moonlight. The periodic comet 109P/Swift-Tuttle is the source of Perseid meteors. The shower’s radiant lies just to the southeast of the Double Cluster (NGC 869 and NGC 884). For more on this year’s Perseids, see page 52 to page 55 of the August 2021 issue of Astronomy and page 48 of the August 2021 issue of Sky & Telescope or click on https://earthsky.org/astronomy-essentials/everything- you-need-to-know-perseid-meteor-shower and https://www.imo.net/viewing-the-perseid-meteor-shower- in-2021/ Information on passes of the ISS, the USAF’s X-37B, the HST, Starlink, and other satellites can be found at http://www.heavens-above.com/ The Moon is 21.8 days old, is illuminated 47.4%, subtends 29.5 arc minutes, and is located in Aries on August 1st at 00:00 UT. The Moon is at its greatest northern declination on August 6th (+25.6 degrees) and its greatest southern declination on August 19th (-25.8 degrees). Longitudinal libration is at a maximum of +5.4 degrees on August 24th and a minimum of -4.9 degrees on August 9th. Latitudinal libration is at a maximum of +6.6 degrees on August 23rd and a minimum of -6.6 degrees on August 10th. Favorable librations for the following lunar features occur on the indicated dates: Crater Piazzi on August 4th, Crater Hayn on August 19th, Crater Compton on August 21st, and Crater Boss F on August 22th. The Moon is at apogee (at a distance 63.41 Earth-radii) on August 2nd and again (at a distance 63.26 Earth-radii) on August 30th and at perigee (at a distance of 57.87 Earth-radii) on August 17th. New Moon (i.e., the dark of the Moon) occurs on August 8th. Full Moon, a Blue Moon by the classic definition of the third Full Moon in a summer that has four, occurs on August 22nd. Browse http://www.lunar- occultations.com/iota/iotandx.htm for information on lunar occultation events. Visit https:/ /saberdoesthestars.wordpress.com/2011/07/05/saber-does-the-stars/ for tips on spotting extreme crescent Moons and https://curtrenz.com/moon.html for Full Moon and other lunar data. Browse https:/ /skyandtelescope.org/wp-content/uploads/MoonMap.pdf and https://nightsky.jpl.nasa.gov/docs/ ObserveMoon.pdf for simple lunar maps. Click on http://astrostrona.pl/moon-map for an excellent online lunar map. Visit http://www.ap-i.net/avl/en/start to download the free Virtual Moon Atlas. Consult http:/ /time.unitarium.com/moon/where.html for current information on the Moon and https:/ /www.fourmilab.ch/earthview/lunarform/lunarform.html for information on various lunar features. See https://svs.gsfc.nasa.gov/4874 for a lunar phase and libration calculator and https://quickmap.lroc.asu.edu/ ?extent=-90,-25.2362636,90,25.2362636&proj=10&layers=NrBsFYBoAZIRnpEoAsjYIHYFcA2vIBvA XwF1SizSg for the Lunar Reconnaissance Orbiter Camera (LROC) Quickmap.
Recommended publications
  • August 10Th 2019 August 2019 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message August 2019 Saturday, August 10th 2019 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Colleagues, Public Star Party follows at the I hope you found the third week of July exhilarating. The 50th Anniversary of the first Centennial Observatory moon landing was the common theme. I capped my observance by watching the C- SPAN replay of the CBS broadcast. It was not only exciting to watch the landing, but Club Officers to listen to Walter Cronkite and Wally Schirra discuss what Neil Armstrong and Buzz Robert Mayer, President Aldrin was relaying back to us. It was fascinating to hear what we have either accepted or rejected for years come across as something brand new. Hearing [email protected] Michael Collins break in from his orbit above in the command module also reminded me of the major role he played and yet others in the past have often overlooked – Gary Leavitt, Vice President fortunately, he is now receiving the respect he deserves. If you didn’t catch that, [email protected] then hopefully you caught some other commemoration, such as Turner Classic Movies showing For All Mankind, a spellbinding documentary of what it was like for Dr. Jay Hartwell, Secretary all of the Apollo astronauts who made it to the moon. Jim Tubbs, Treasurer / ALCOR For me, these moments of commemoration made reading the moon landing’s [email protected] anniversary issue from the Association of Lunar and Planetary Observers (ALPO) 208-404-2999 come to life as they wrote about the features these astronauts were examining – including the little craters named after the three astronauts.
    [Show full text]
  • ESO's VLT Sphere and DAMIT
    ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away.
    [Show full text]
  • The Impact Crater at the Origin of the Julia Family Detected with VLT/SPHERE??,?? P
    A&A 618, A154 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833477 & © ESO 2018 Astrophysics The impact crater at the origin of the Julia family detected with VLT/SPHERE??,?? P. Vernazza1, M. Brož2, A. Drouard1, J. Hanuš2, M. Viikinkoski3, M. Marsset4, L. Jorda1, R. Fetick1, B. Carry5, F. Marchis6, M. Birlan7, T. Fusco1, T. Santana-Ros8, E. Podlewska-Gaca8,9, E. Jehin10, M. Ferrais10, P. Bartczak8, G. Dudzinski´ 8, J. Berthier7, J. Castillo-Rogez11, F. Cipriani12, F. Colas7, C. Dumas13, J. Durechˇ 2, M. Kaasalainen3, A. Kryszczynska8, P. Lamy1, H. Le Coroller1, A. Marciniak8, T. Michalowski8, P. Michel5, M. Pajuelo7,14, P. Tanga5, F. Vachier7, A. Vigan1, B. Warner15, O. Witasse12, B. Yang16, E. Asphaug17, D. C. Richardson18, P. Ševecekˇ 2, M. Gillon10, and Z. Benkhaldoun19 1 Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France e-mail: [email protected] 2 Institute of Astronomy, Charles University, Prague, V Holešovickᡠch 2, 18000, Prague 8, Czech Republic 3 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland 4 Astrophysics Research Centre, Queen’s University Belfast, BT7 1NN, UK 5 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06304 Nice Cedex 4, France 6 SETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA 7 IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris Cedex, France 8 Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University,
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • August 13 2016 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, August 13th 2016 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Public Star Party Follows at the Colleagues, Centennial Observatory Club Officers It's that time of year: The City of Rocks Star Party. Set for Friday, Aug. 5th, and Saturday, Aug. 6th, the event is the gem of the MVAS year. As we've done every Robert Mayer, President year, we will hold solar viewing at the Smoky Mountain Campground, followed by a [email protected] potluck there at the campground. Again, MVAS will provide the main course and 208-312-1203 beverages. Paul McClain, Vice President After the potluck, the party moves over to the corral by the bunkhouse over at [email protected] Castle Rocks, with deep sky viewing beginning sometime after 9 p.m. This is a chance to dig into some of the darkest skies in the west. Gary Leavitt, Secretary [email protected] Some members have already reserved campsites, but for those who are thinking of 208-731-7476 dropping by at the last minute, we have room for you at the bunkhouse, and would love to have to come by. Jim Tubbs, Treasurer / ALCOR [email protected] The following Saturday will be the regular MVAS meeting. Please check E-mail or 208-404-2999 Facebook for updates on our guest speaker that day. David Olsen, Newsletter Editor Until then, clear views, [email protected] Robert Mayer Rick Widmer, Webmaster [email protected] Magic Valley Astronomical Society is a member of the Astronomical League M-51 imaged by Rick Widmer & Ken Thomason Herrett Telescope Shotwell Camera https://herrett.csi.edu/astronomy/observatory/City_of_Rocks_Star_Party_2016.asp Calendars for August Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 New Moon City Rocks City Rocks Lunation 1158 Castle Rocks Castle Rocks Star Party Star Party Almo, ID Almo, ID 7 8 9 10 11 12 13 MVAS General Mtg.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • Earth and Planetary Science Letters 490 (2018) 122–131
    Earth and Planetary Science Letters 490 (2018) 122–131 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka ∗ Matthias M.M. Meier a, , Luca Bindi b,c, Philipp R. Heck d, April I. Neander e, Nicole H. Spring f,g, My E.I. Riebe a,1, Colin Maden a, Heinrich Baur a, Paul J. Steinhardt h, Rainer Wieler a, Henner Busemann a a Institute of Geochemistry and Petrology, ETH Zurich, Zurich, Switzerland b Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy c CNR-Istituto di Geoscienze e Georisorse, Sezione di Firenze, Florence, Italy d Robert A. Pritzker Center for Meteoritics and Polar Studies, Field Museum of Natural History, Chicago, USA e Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA f School of Earth and Environmental Sciences, University of Manchester, Manchester, UK g Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada h Department of Physics, and Princeton Center for Theoretical Science, Princeton University, Princeton, USA a r t i c l e i n f o a b s t r a c t Article history: The unique CV-type meteorite Khatyrka is the only natural sample in which “quasicrystals” and associated Received 6 October 2017 crystalline Cu, Al-alloys, including khatyrkite and cupalite, have been found. They are suspected to Received in revised form 11 March 2018 have formed in the early Solar System. To better understand the origin of these exotic phases, and Accepted 13 March 2018 the relationship of Khatyrka to other CV chondrites, we have measured He and Ne in six individual, Available online 22 March 2018 ∼40–μm-sized olivine grains from Khatyrka.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]