Stat-JR Advanced User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Stat-JR Advanced User's Guide An Advanced User’s Guide to Stat-JR version 1.0.6 Programming and Documentation by William J. Browne*, Christopher M.J. Charlton*, Danius T. Michaelides**, Richard M.A. Parker*, Bruce Cameron*, Camille Szmaragd*, Huanjia Yang**, Zhengzheng Zhang*, Harvey Goldstein*, Kelvyn Jones*, George Leckie* and Luc Moreau** *Centre for Multilevel Modelling, University of Bristol. **Electronics and Computer Science, University of Southampton. November 2018 i An Advanced User’s Guide to Stat-JR version 1.0.6 © 2018. William J. Browne, Christopher M.J. Charlton, Danius T. Michaelides, Richard M.A. Parker, Bruce Cameron, Camille Szmaragd, Huanjia Yang, Zhengzheng Zhang, Harvey Goldstein, Kelvyn Jones, George Leckie and Luc Moreau. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, for any purpose other than the owner's personal use, without the prior written permission of one of the copyright holders. ISBN: To be confirmed Printed in the United Kingdom ii Contents Contents ................................................................................................................................................. iii 1 About Stat-JR ................................................................................................................................... 1 1.1 Stat-JR: software for scaling statistical heights. ..................................................................... 1 1.2 About the Advanced User’s Guide .......................................................................................... 2 2 Installation instructions .................................................................................................................. 3 3 A simple regression template example ........................................................................................... 4 3.1 Running a first template ......................................................................................................... 4 3.2 Opening the bonnet and looking at the code ......................................................................... 9 3.2.1 Inputs ............................................................................................................................ 11 3.2.2 Model ............................................................................................................................ 12 3.2.3 Latex .............................................................................................................................. 13 3.2.4 Some points to note ...................................................................................................... 15 3.3 Writing your own first template ........................................................................................... 15 3.3.1 Exercise 1 ...................................................................................................................... 16 4 Running templates with the eStat engine .................................................................................... 17 4.1 Algebra and Code Generation ............................................................................................... 17 4.2 The algebraic software system ............................................................................................. 22 5 Including Interoperability .............................................................................................................. 26 5.1 eStat.py ................................................................................................................................. 26 5.2 Regression2.py ...................................................................................................................... 27 5.3 WinBUGS and Winbugsscript.py ........................................................................................... 28 5.4 MLwiN ................................................................................................................................... 32 5.5 R ............................................................................................................................................ 37 5.6 Other packages ..................................................................................................................... 43 6 Input, data manipulation and output templates .......................................................................... 45 6.1 Generate template (generate.py) ......................................................................................... 45 iii 6.1.1 Exercise 2 ...................................................................................................................... 48 6.2 Recode template (recode.py) ............................................................................................... 48 6.2.1 Exercise 3 ...................................................................................................................... 50 6.3 AverageAndCorrelation template ......................................................................................... 50 6.3.1 Exercise 4 ...................................................................................................................... 52 6.4 XYPlot template .................................................................................................................... 53 6.4.1 Exercise 5 ...................................................................................................................... 55 7 Single level models of all flavours – A logistic regression example .............................................. 56 7.1 Inputs .................................................................................................................................... 58 7.2 Engines .................................................................................................................................. 59 7.3 Model .................................................................................................................................... 59 7.4 LaTeX ..................................................................................................................................... 61 7.4.1 Exercise 6 ...................................................................................................................... 61 8 Including categorical predictors .................................................................................................... 63 9 Multilevel models ......................................................................................................................... 68 9.1 2LevelMod template ............................................................................................................. 68 9.1.1 Exercise 7 ...................................................................................................................... 73 9.2 NLevelMod template ............................................................................................................ 73 9.2.1 Exercise 8 ...................................................................................................................... 79 10 Using the Preccode method ...................................................................................................... 80 10.1 The 1LevelProbitRegression template .................................................................................. 80 10.2 preccode and deviancecode attributes ................................................................................ 83 11 Multilevel models with Random slopes and the inclusion of Wishart priors ........................... 86 11.1 An example with random slopes........................................................................................... 86 11.2 Preccode for NLevelRS .......................................................................................................... 91 11.2.1 Exercise 9 ...................................................................................................................... 93 12 Improving mixing (1LevelBlock and 1LevelOrthogParam) ........................................................ 94 iv 12.1 Rats example ......................................................................................................................... 94 12.2 The 1LevelBlock template ..................................................................................................... 95 12.3 The 1LevelOrthogParam template ........................................................................................ 98 12.3.1 Exercise 10 .................................................................................................................. 102 12.4 Multivariate Normal response models ............................................................................... 102 12.5 The preccode function for this template ............................................................................ 105 13 Out of sample predictions ....................................................................................................... 111 13.1 The 1LevelOutSampPred template – using the zxfd trick ................................................... 111 13.1.1 Exercise 11 .................................................................................................................. 113 14 References .............................................................................................................................. 114
Recommended publications
  • Chapter 7 Assessing and Improving Convergence of the Markov Chain
    Chapter 7 Assessing and improving convergence of the Markov chain Questions: . Are we getting the right answer? . Can we get the answer quicker? Bayesian Biostatistics - Piracicaba 2014 376 7.1 Introduction • MCMC sampling is powerful, but comes with a cost: dependent sampling + checking convergence is not easy: ◦ Convergence theorems do not tell us when convergence will occur ◦ In this chapter: graphical + formal diagnostics to assess convergence • Acceleration techniques to speed up MCMC sampling procedure • Data augmentation as Bayesian generalization of EM algorithm Bayesian Biostatistics - Piracicaba 2014 377 7.2 Assessing convergence of a Markov chain Bayesian Biostatistics - Piracicaba 2014 378 7.2.1 Definition of convergence for a Markov chain Loose definition: With increasing number of iterations (k −! 1), the distribution of k θ , pk(θ), converges to the target distribution p(θ j y). In practice, convergence means: • Histogram of θk remains the same along the chain • Summary statistics of θk remain the same along the chain Bayesian Biostatistics - Piracicaba 2014 379 Approaches • Theoretical research ◦ Establish conditions that ensure convergence, but in general these theoretical results cannot be used in practice • Two types of practical procedures to check convergence: ◦ Checking stationarity: from which iteration (k0) is the chain sampling from the posterior distribution (assessing burn-in part of the Markov chain). ◦ Checking accuracy: verify that the posterior summary measures are computed with the desired accuracy • Most
    [Show full text]
  • University of North Carolina at Charlotte Belk College of Business
    University of North Carolina at Charlotte Belk College of Business BPHD 8220 Financial Bayesian Analysis Fall 2019 Course Time: Tuesday 12:20 - 3:05 pm Location: Friday Building 207 Professor: Dr. Yufeng Han Office Location: Friday Building 340A Telephone: (704) 687-8773 E-mail: [email protected] Office Hours: by appointment Textbook: Introduction to Bayesian Econometrics, 2nd Edition, by Edward Greenberg (required) An Introduction to Bayesian Inference in Econometrics, 1st Edition, by Arnold Zellner Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2nd Edition, by Joseph M. Hilbe, de Souza, Rafael S., Emille E. O. Ishida Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ, 2nd Edition, by Osvaldo Martin The Oxford Handbook of Bayesian Econometrics, 1st Edition, by John Geweke Topics: 1. Principles of Bayesian Analysis 2. Simulation 3. Linear Regression Models 4. Multivariate Regression Models 5. Time-Series Models 6. State-Space Models 7. Volatility Models Page | 1 8. Endogeneity Models Software: 1. Stan 2. Edward 3. JAGS 4. BUGS & MultiBUGS 5. Python Modules: PyMC & ArviZ 6. R, STATA, SAS, Matlab, etc. Course Assessment: Homework assignments, paper presentation, and replication (or project). Grading: Homework: 30% Paper presentation: 40% Replication (project): 30% Selected Papers: Vasicek, O. A. (1973), A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas. Journal of Finance, 28: 1233-1239. doi:10.1111/j.1540- 6261.1973.tb01452.x Shanken, J. (1987). A Bayesian approach to testing portfolio efficiency. Journal of Financial Economics, 19(2), 195–215. https://doi.org/10.1016/0304-405X(87)90002-X Guofu, C., & Harvey, R.
    [Show full text]
  • Getting Started in Openbugs / Winbugs
    Practical 1: Getting started in OpenBUGS Slide 1 An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Dr. Christian Asseburg Centre for Health Economics University of York, UK [email protected] Practical 1 Getting started in OpenBUGS / WinB UGS 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 2 ● Brief comparison WinBUGS / OpenBUGS ● Practical – Opening OpenBUGS – Entering a model and data – Some error messages – Starting the sampler – Checking sampling performance – Retrieving the posterior summaries 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 3 WinBUGS / OpenBUGS ● WinBUGS was developed at the MRC Biostatistics unit in Cambridge. Free download, but registration required for a licence. No fee and no warranty. ● OpenBUGS is the current development of WinBUGS after its source code was released to the public. Download is free, no registration, GNU GPL licence. 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 4 WinBUGS / OpenBUGS ● There are no major differences between the latest WinBUGS (1.4.1) and OpenBUGS (2.2.0) releases. ● Minor differences include: – OpenBUGS is occasionally a bit slower – WinBUGS requires Microsoft Windows OS – OpenBUGS error messages are sometimes more informative ● The examples in these slides use OpenBUGS. 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 5 Practical 1: Target ● Start OpenBUGS ● Code the example from health economics from the earlier presentation ● Run the sampler and obtain posterior summaries 2007-03-12, Linköping Dr Christian Asseburg University of York, UK [email protected] Practical 1: Getting started in OpenBUGS Slide 6 Starting OpenBUGS ● You can download OpenBUGS from http://mathstat.helsinki.fi/openbugs/ ● Start the program.
    [Show full text]
  • BUGS Code for Item Response Theory
    JSS Journal of Statistical Software August 2010, Volume 36, Code Snippet 1. http://www.jstatsoft.org/ BUGS Code for Item Response Theory S. McKay Curtis University of Washington Abstract I present BUGS code to fit common models from item response theory (IRT), such as the two parameter logistic model, three parameter logisitic model, graded response model, generalized partial credit model, testlet model, and generalized testlet models. I demonstrate how the code in this article can easily be extended to fit more complicated IRT models, when the data at hand require a more sophisticated approach. Specifically, I describe modifications to the BUGS code that accommodate longitudinal item response data. Keywords: education, psychometrics, latent variable model, measurement model, Bayesian inference, Markov chain Monte Carlo, longitudinal data. 1. Introduction In this paper, I present BUGS (Gilks, Thomas, and Spiegelhalter 1994) code to fit several models from item response theory (IRT). Several different software packages are available for fitting IRT models. These programs include packages from Scientific Software International (du Toit 2003), such as PARSCALE (Muraki and Bock 2005), BILOG-MG (Zimowski, Mu- raki, Mislevy, and Bock 2005), MULTILOG (Thissen, Chen, and Bock 2003), and TESTFACT (Wood, Wilson, Gibbons, Schilling, Muraki, and Bock 2003). The Comprehensive R Archive Network (CRAN) task view \Psychometric Models and Methods" (Mair and Hatzinger 2010) contains a description of many different R packages that can be used to fit IRT models in the R computing environment (R Development Core Team 2010). Among these R packages are ltm (Rizopoulos 2006) and gpcm (Johnson 2007), which contain several functions to fit IRT models using marginal maximum likelihood methods, and eRm (Mair and Hatzinger 2007), which contains functions to fit several variations of the Rasch model (Fischer and Molenaar 1995).
    [Show full text]
  • Stan: a Probabilistic Programming Language
    JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/ Stan: A Probabilistic Programming Language Bob Carpenter Andrew Gelman Matt Hoffman Columbia University Columbia University Adobe Research Daniel Lee Ben Goodrich Michael Betancourt Columbia University Columbia University University of Warwick Marcus A. Brubaker Jiqiang Guo Peter Li University of Toronto, NPD Group Columbia University Scarborough Allen Riddell Dartmouth College Abstract Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.2.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propa- gation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line, through R using the RStan package, or through Python using the PyStan package. All three interfaces support sampling and optimization-based inference. RStan and PyStan also provide access to log probabilities, gradients, Hessians, and data I/O. Keywords: probabilistic program, Bayesian inference, algorithmic differentiation, Stan.
    [Show full text]
  • Installing BUGS and the R to BUGS Interface 1. Brief Overview
    File = E:\bugs\installing.bugs.jags.docm 1 John Miyamoto (email: [email protected]) Installing BUGS and the R to BUGS Interface Caveat: I am a Windows user so these notes are focused on Windows 7 installations. I will include what I know about the Mac and Linux versions of these programs but I cannot swear to the accuracy of my comments. Contents (Cntrl-left click on a link to jump to the corresponding section) Section Topic 1 Brief Overview 2 Installing OpenBUGS 3 Installing WinBUGs (Windows only) 4 OpenBUGS versus WinBUGS 5 Installing JAGS 6 Installing R packages that are used with OpenBUGS, WinBUGS, and JAGS 7 Running BRugs on a 32-bit or 64-bit Windows computer 8 Hints for Mac and Linux Users 9 References # End of Contents Table 1. Brief Overview TOC BUGS stands for Bayesian Inference Under Gibbs Sampling1. The BUGS program serves two critical functions in Bayesian statistics. First, given appropriate inputs, it computes the posterior distribution over model parameters - this is critical in any Bayesian statistical analysis. Second, it allows the user to compute a Bayesian analysis without requiring extensive knowledge of the mathematical analysis and computer programming required for the analysis. The user does need to understand the statistical model or models that are being analyzed, the assumptions that are made about model parameters including their prior distributions, and the structure of the data, but the BUGS program relieves the user of the necessity of creating an algorithm to sample from the posterior distribution and the necessity of writing the computer program that computes this algorithm.
    [Show full text]
  • Winbugs Lectures X4.Pdf
    Introduction to Bayesian Analysis and WinBUGS Summary 1. Probability as a means of representing uncertainty 2. Bayesian direct probability statements about parameters Lecture 1. 3. Probability distributions Introduction to Bayesian Monte Carlo 4. Monte Carlo simulation methods in WINBUGS 5. Implementation in WinBUGS (and DoodleBUGS) - Demo 6. Directed graphs for representing probability models 7. Examples 1-1 1-2 Introduction to Bayesian Analysis and WinBUGS Introduction to Bayesian Analysis and WinBUGS How did it all start? Basic idea: Direct expression of uncertainty about In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote unknown parameters eg ”There is an 89% probability that the absolute increase in major bleeds is less than 10 percent with low-dose PLT transfusions” (Tinmouth et al, Transfusion, 2004) !50 !40 !30 !20 !10 0 10 20 30 % absolute increase in major bleeds In modern language, given r Binomial(θ,n), what is Pr(θ1 < θ < θ2 r, n)? ∼ | 1-3 1-4 Introduction to Bayesian Analysis and WinBUGS Introduction to Bayesian Analysis and WinBUGS Why a direct probability distribution? Inference on proportions 1. Tells us what we want: what are plausible values for the parameter of interest? What is a reasonable form for a prior distribution for a proportion? θ Beta[a, b] represents a beta distribution with properties: 2. No P-values: just calculate relevant tail areas ∼ Γ(a + b) a 1 b 1 p(θ a, b)= θ − (1 θ) − ; θ (0, 1) 3. No (difficult to interpret) confidence intervals: just report, say, central area | Γ(a)Γ(b) − ∈ a that contains 95% of distribution E(θ a, b)= | a + b ab 4.
    [Show full text]
  • Flexible Programming of Hierarchical Modeling Algorithms and Compilation of R Using NIMBLE Christopher Paciorek UC Berkeley Statistics
    Flexible Programming of Hierarchical Modeling Algorithms and Compilation of R Using NIMBLE Christopher Paciorek UC Berkeley Statistics Joint work with: Perry de Valpine (PI) UC Berkeley Environmental Science, Policy and Managem’t Daniel Turek Williams College Math and Statistics Nick Michaud UC Berkeley ESPM and Statistics Duncan Temple Lang UC Davis Statistics Bayesian nonparametrics development with: Claudia Wehrhahn Cortes UC Santa Cruz Applied Math and Statistics Abel Rodriguez UC Santa Cruz Applied Math and Statistics http://r-nimble.org October 2017 Funded by NSF DBI-1147230, ACI-1550488, DMS-1622444; Google Summer of Code 2015, 2017 Hierarchical statistical models A basic random effects / Bayesian hierarchical model Probabilistic model Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 2 nimble.org) Hierarchical statistical models A basic random effects / Bayesian hierarchical model BUGS DSL code Probabilistic model # priors on hyperparameters alpha ~ dexp(1.0) beta ~ dgamma(0.1,1.0) for (i in 1:N){ # latent process (random effects) # random effects distribution theta[i] ~ dgamma(alpha,beta) # linear predictor lambda[i] <- theta[i]*t[i] # likelihood (data model) x[i] ~ dpois(lambda[i]) } Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 3 nimble.org) Divorcing model specification from algorithm MCMC Flavor 1 Your new method Y(1) Y(2) Y(3) MCMC Flavor 2 Variational Bayes X(1) X(2) X(3) Particle Filter MCEM Quadrature Importance Sampler Maximum likelihood Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 4 nimble.org) What can a practitioner do with hierarchical models? Two basic software designs: 1. Typical R/Python package = Model family + 1 or more algorithms • GLMMs: lme4, MCMCglmm • GAMMs: mgcv • spatial models: spBayes, INLA Flexible programming of hierarchical modeling algorithms using NIMBLE (r- 5 nimble.org) What can a practitioner do with hierarchical models? Two basic software designs: 1.
    [Show full text]
  • An Introduction to Data Analysis Using the Pymc3 Probabilistic Programming Framework: a Case Study with Gaussian Mixture Modeling
    An introduction to data analysis using the PyMC3 probabilistic programming framework: A case study with Gaussian Mixture Modeling Shi Xian Liewa, Mohsen Afrasiabia, and Joseph L. Austerweila aDepartment of Psychology, University of Wisconsin-Madison, Madison, WI, USA August 28, 2019 Author Note Correspondence concerning this article should be addressed to: Shi Xian Liew, 1202 West Johnson Street, Madison, WI 53706. E-mail: [email protected]. This work was funded by a Vilas Life Cycle Professorship and the VCRGE at University of Wisconsin-Madison with funding from the WARF 1 RUNNING HEAD: Introduction to PyMC3 with Gaussian Mixture Models 2 Abstract Recent developments in modern probabilistic programming have offered users many practical tools of Bayesian data analysis. However, the adoption of such techniques by the general psychology community is still fairly limited. This tutorial aims to provide non-technicians with an accessible guide to PyMC3, a robust probabilistic programming language that allows for straightforward Bayesian data analysis. We focus on a series of increasingly complex Gaussian mixture models – building up from fitting basic univariate models to more complex multivariate models fit to real-world data. We also explore how PyMC3 can be configured to obtain significant increases in computational speed by taking advantage of a machine’s GPU, in addition to the conditions under which such acceleration can be expected. All example analyses are detailed with step-by-step instructions and corresponding Python code. Keywords: probabilistic programming; Bayesian data analysis; Markov chain Monte Carlo; computational modeling; Gaussian mixture modeling RUNNING HEAD: Introduction to PyMC3 with Gaussian Mixture Models 3 1 Introduction Over the last decade, there has been a shift in the norms of what counts as rigorous research in psychological science.
    [Show full text]
  • Spaio-‐Temporal Dependence: a Blessing and a Curse For
    Spao-temporal dependence: a blessing and a curse for computaon and inference (illustrated by composi$onal data modeling) (and with an introduc$on to NIMBLE) Christopher Paciorek UC Berkeley Stas$cs Joint work with: The PalEON project team (hp://paleonproject.org) The NIMBLE development team (hp://r-nimble.org) NSF-CBMS Workshop on Bayesian Spaal Stas$cs August 2017 Funded by various NSF grants to the PalEON and NIMBLE projects PalEON Project Goal: Improve the predic$ve capacity of terrestrial ecosystem models Friedlingstein et al. 2006 J. Climate “This large varia-on among carbon-cycle models … has been called ‘uncertainty’. I prefer to call it ‘ignorance’.” - Pren-ce (2013) Grantham Ins-tute Cri-cal issue: model parameterizaon and representaon of decadal- to centennial-scale processes are poorly constrained by data Approach: use historical and fossil data to es$mate past vegetaon and climate and use this informaon for model ini$alizaon, assessment, and improvement Spao-temporal dependence: a blessing 2 and a curse for computaon and inference Fossil Pollen Data Berry Pond West Berry Pond 2000 Year AD , Pine W Massachusetts 1900 Hemlock 1800 Birch 1700 1600 Oak 1500 Hickory 1400 Beech 1300 Chestnut 1200 Grass & weeds 1100 Charcoal:Pollen 1000 % organic matter Spao-temporal dependence: a blessing European settlement and a curse for computaon and inference 20 20 40 20 20 40 20 1500 60 O n set of Little Ice Age 3 SeQlement-era Land Survey Data Survey grid in Wisconsin Surveyor notes Raw oak tree propor$ons (on a grid in the western por$on
    [Show full text]
  • Winbugs for Beginners
    WinBUGS for Beginners Gabriela Espino-Hernandez Department of Statistics UBC July 2010 “A knowledge of Bayesian statistics is assumed…” The content of this presentation is mainly based on WinBUGS manual Introduction BUGS 1: “Bayesian inference Using Gibbs Sampling” Project for Bayesian analysis using MCMC methods It is not being further developed WinBUGS 1,2 Stable version Run directly from R and other programs OpenBUGS 3 Currently experimental Run directly from R and other programs Running under Linux as LinBUGS 1 MRC Biostatistics Unit Cambridge, 2 Imperial College School of Medicine at St Mary's, London 3 University of Helsinki, Finland WinBUGS Freely distributed http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml Key for unrestricted use http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/WinBUGS14_immortality_key.txt WinBUGS installation also contains: Extensive user manual Examples Control analysis using: Standard windows interface DoodleBUGS: Graphical representation of model A closed form for the posterior distribution is not needed Conditional independence is assumed Improper priors are not allowed Inputs Model code Specify data distributions Specify parameter distributions (priors) Data List / rectangular format Initial values for parameters Load / generate Model specification model { statements to describe model in BUGS language } Multiple statements in a single line or one statement over several lines Comment line is followed by # Types of nodes 1. Stochastic Variables that are given a distribution 2. Deterministic
    [Show full text]
  • Package Name Software Description Project
    A S T 1 Package Name Software Description Project URL 2 Autoconf An extensible package of M4 macros that produce shell scripts to automatically configure software source code packages https://www.gnu.org/software/autoconf/ 3 Automake www.gnu.org/software/automake 4 Libtool www.gnu.org/software/libtool 5 bamtools BamTools: a C++ API for reading/writing BAM files. https://github.com/pezmaster31/bamtools 6 Biopython (Python module) Biopython is a set of freely available tools for biological computation written in Python by an international team of developers www.biopython.org/ 7 blas The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. http://www.netlib.org/blas/ 8 boost Boost provides free peer-reviewed portable C++ source libraries. http://www.boost.org 9 CMake Cross-platform, open-source build system. CMake is a family of tools designed to build, test and package software http://www.cmake.org/ 10 Cython (Python module) The Cython compiler for writing C extensions for the Python language https://www.python.org/ 11 Doxygen http://www.doxygen.org/ FFmpeg is the leading multimedia framework, able to decode, encode, transcode, mux, demux, stream, filter and play pretty much anything that humans and machines have created. It supports the most obscure ancient formats up to the cutting edge. No matter if they were designed by some standards 12 ffmpeg committee, the community or a corporation. https://www.ffmpeg.org FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and 13 fftw complex data (as well as of even/odd data, i.e.
    [Show full text]