Alvin See Also

Total Page:16

File Type:pdf, Size:1020Kb

Alvin See Also Index Abreojos fault, Quaternary vertical movements in, Agua Blanca fault rifting in, marine terraces of, seismicity of, structure of, structural boundary of, tectonics of, 474 structure of, 447-475 Air-sea fluxes, in Gulf of California, structure offshore,217-226, 301-364 Alkalic volcanics 465-468 synrift volcanism,261-279, 269-274 in Baja California,159-166 tectonics of, 474-475 classication of,166-169 tectono-stratigraphic145-174, map198 of, source of, 512-514, 519 triple junction of, 87-122 tectonics of, vertical deformation31 2-338in, 309-310, 312-338 volcanism in,145-1 74, 261-279 Alvinhydrothermal data316-320 from, western coast of, 239 and hydrothermal328-338 petroleum, Ballenas Channel 306-307 push cores from,336-337 drogue tracks in, 472-474 survey in Guaymas Basin, upwelling in, 118 Antithetic faults, 723 Banda submarine fan,461 Aqua Blanca fault 809 seismic profiles of, kinematics of, 763-768 Barium, geochemistry545 of, main trace of, 809 Basin formation 540 recent activity 295of, in Baja California, 193 Aqua Blanca Ranch, alluvial fans in, in Continental Borderland,153 Atmospheric conditions,220 in Gulf of California, of Laguna Salada basin,774-776 Atmospheric forcing,289 in Gulf of California, Basin and Range, gravity anomalies in, Bahia San Nicolas, Pleistocene285-288 shorelines in, Bathymetry 249-259 Bahia Soledadfault, structure of, 290 of Baja California, 127-140 Bahia To rtugas area, Pleistocene terraces of, 534 of Continental Borderland,255-259 Baja California 512-517 of Guaymas Basin, 209 active faulting in, 460 of Gulf of California, andesite belt along, 163 of offshore California,21-22 bathymetry of, 466, 470 of Rivera fracture zone, 22, 129 calcal.kaline volcanics of, Beryllium, geochemistry722 of, coast geomorphology285-298 of, Biomarkers, in Guaymas21 Basin,-22, 513, 529 continental margin of,303-306 Biostratigraphy, of Gulf of92, California, 180 correlation chart21-22 of, Bitumen, alteration of, 22 crustal isochrons of, 303-307 Black slick, 775-777 crustal models for, 455-461 Bouguer gravity anomalies 809-815 crustal structure of, 33, 673-679 maps of, 640 displacement of, 651 in Mexico, 694-695 earthquakes in, 48-68 gravity803 anomalies epicenters in, 207-210 Boxsee cores also faults in, 261-279 from Gulf202-203, of California, 205-207 focal mechanisms403-421 in, Sediment197-214 cores geochronology of72-73, coast263 of, Brinessee also geoidal depression264 of, diapirism of, geophysical75, sections220, 262 of, in Salton Sea, 604-610 geothermal fields in, 277-278 Cabo San Lucas gravity anomalies in, 450-451 DSDP in, 669 gravity prediction in, 29 and geodetic baseline,790 isostatic anomalies in, 25-44 salinity near, 782, 788, 790 kinematic models of, 783 Calafia's Island, early exploration for, lineaments in, 28-30, 197-214 Calcalkaline volcanics lithological map of, 201-205 of Baja Peninsula, 500-504 magnetic anomalies of,205 in Gulf of California,551 mantle petrology, 217-226 in Mexico, 1-17 Neogene of, 75 of Sierra Madre Occidental, paleomagnetism of, 582 Calcium carbonate saturation,303-307 in Gulf, physiographic provinces48-68, of, 92 California, Baja California;311-312 Southern California 3 pleistocene shorelines364 in, Californiasee 43 Continental Borderland, Continental Quaternary structure638-640 evolution of, Borderland 303 see 231-246 560 148 448-475 249-259 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837814/9781629811130_backmatter.pdf by guest on 29 September 2021 827 828 Index Carbonates, in Guaymas Basin, 729 Curie point isotherm depths, 386-389, 390 Carbon dioxide, in Gulf of California, 559-561 Currents Castillo, Domingo del, 7-8 in Gulf of California, 535 Cenozoic tidal, 544-546 of Gulf of California, 637-662 vector time series of, 541 marine mollusks, 637-662 Dam construction, effects of, 621-624 Cerro Prieto fault, 278 Deep Sea Drilling Project Chapala rift, 430-432 in Cabo San Lucas, 669 Chemistry, Geochemistry; Wa ter chemistry geochemistry of cores of, 667-701 Chimneys see in Gulf of California, 669 formation of, 733-734 heat flow data from, 713 in Guaymas Basin, 725, 726 hydrocarbons in samples from, 798-820 Chinero lineament, 293-297 and hydrothermal activity, 755-759, 798-820 Chlorophyll 561-564 lipids in samples from, 798, 817-820 Chronology lithology of sites in Guaymas Basin, 757 from 210Pb dating, 613-615 offof Mexico, 671-672 of varves, 610-615 porosity profiles at sites, 757 Chronostratigraphy,a, of Gulf of California, 603-615 site locations of, 668 Circulation, wind-driven in Gulf of California, 533-544 at Tamayo fracture zone, 670 Cocos plate tholeiites at, 347, 349 spreading history of, 49-53 and water chemistry, 755-759 spreading rates of, 61-62, 67-68, 97-104 Delfin Basin, hydrographic structure of, 538 Colima Descanso Plain, seismic profiles of, 153, 155, 160-161, 167 cross section of, 429 Detachment faulting, in Gulf of California, 371-374 fault map of, 428 Diatomaceous sediments, in Guaymas Basin, 793-820 geology of, 428-430 Discharge petrologyrift of, 430, 432 and laminated sediments, 624-630 structure of, 426-428 of rivers emptying into Gulf, 619-624 Colorado River Dissolved oxygen, in Gulf of California, 557-559 annual discharge of, 600 Drake, Francis, 11 sediment of, 575-577 DSDP, Deep Sea Drilling Project Columbus, Christopher, 4 Dust storms,see 630-633 Comondu Formation, 638-662 Earthquakes Comondu-La Purisima volcanic field, 313, 326, 327 of Baja California, 72-73, 263 Continental Borderland of Continental Borderland, 172-173 basin stratigraphy of, 127-140 epicenters for, 264 bathymetry of, 22, 129, 149 of Gulf of California, 72-73 cross sectionof, 130 of Southern California, 263 earthquakes of, 172-173 East Pacific Rise faults in, 75-76, 150 spreading history of, geologic setting of, 128-129 spreading rates of, 98-99 gravity anomalies of, 28-33 tholeiites in, 349 initiation of, 117-118 El Nino inter basinal correlation in, 133 effects on water mass440 formation, 532 lineaments in, 75-76 and productivity, 564-565 Neogene of, 139-140 El Paraiso, tholeiites348, in, 339 offshore fault trends of, 169 Ensenada Trough, seismic profiles of, 154, 156 paleoceanography of, 137-140 Eolian transport, of dust, 633 physiographic provinces of, 148 Epicenters Sea Beam data for, 179-195 in Baja California, 264 seismicity of, 171 in Southern California, 264 structure of, 81, 145-174, 265-269 Esperanza Basalt, tectonics of, 133-138, 145-174, 179-195 origin of, 358-360 volcanism in, 117 tholeiites in, 338-339, 342 Continental margin Euphotic zone, 564 off Baja California, 673-679 Evaporation rates,345 in Gulf of California, 518-519 off Southern California, 673-679 External reference frame, 484-487 organic matter of, 667-701 Fan valleys, in Continental Borderland, 193-194 Continental rifting, and hydrothermal activity, 781-791 Faults Coronada Bank fault, structure of, 163 in Baja California, 220, 262, 285-298 Coronado submarine fan valley, 194 of Continental Borderland, 147-169 Cortes, Hernan, 4-9 detachment faulting, 371-374 Crustal isochrons of Gulf of California, 73-74, 79-82, 393, 397 of Baja California, 48-68 nontransform offsets, 107-109, 110 of Continental Borderland, 48-68 offshore California, 76, 181-182 of Gulf of California, 48-68 recent activity of, 285-298 Neogene, 95-104 in Rivera plate, 74-75 of offshore California, 95-104 of Sierra Cucapa, 251 Crustal structure, Structure of Southern California, 218, 262, 287 see Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837814/9781629811130_backmatter.pdf by guest on 29 September 2021 Index 829 strikes of, 152 geologic setting of, 794-795 tectonic landforms of, 181-182 heat flow in, 709-718 transform, 106-107 hydrothermal fluidsin, 743-750, 753-777, 787-788, 819 Fieberling hotspotchain, 111-114 hydrothermal mineralization in, 721-739 Fine-grained sediments hydrothermal system of, 715, 766-770 distribution of, 579-580 interstitial water chemistry of, 753-777 in Gulf of California, 589-602 isopyncal fluctuations in, 549 Fluid inclusions, in Guaymas Basin, 733 kerogens in, 801-803 Focal mechanisms, in Baja California, 277-278 mineralogy of, 725-731 Fossils, of Gulf of California, mounds in, 723-725, 726, 730, 803-804 Fracture zones organic geochemistry of, 683-685, 693-694, 795-820 of offshore California, 104-109 organic matter in, 797-798 seamount chains along, 109-115 pH of mineral deposits in, 736 Free air gravity anomalies, of643 Gulf of California, 382 silicates in, 729 Freshwater flux, in Gulf of California, 525 as spreading center, 756 Gas chromatograms, of hydrothermal petroleum, 805-808 sulfates in, 729 Gases, from Guaymas Basin, 795 sulfides in, 728-729 Geochemistry temperature vs. salinity, 548 of alkalic volcanics, 314-315, 320-328 tholeiites in, 349 of barium, 774-776 Guaymas lineament, tectonic map of, 296 of beryllium, 775-777 Guaymas shelf, oceanography of, 542-543 of bulk sediments, 571-574 Guaymas slope of DSDP organic matter, 675-701 bathymetry of,342, 618 345, of geothermal fluids, 782-785 diagenetic alteration on, 696-697 in Guaymas Basin, 753-777, 795-820 organic matter geochemistry of, 685-691 of hydrothermal deposits, 730-733 paleoenvironmental changes in, 691-692 of hydrothermal vents, 745 Gulf of California of interstitial water, 753-777 active fault map of, 296 of manganese, 774-775 atmospheric conditions over, 534 of spires and mounds, 734-738 bathymetry of, 21-22, 50-53, 513, 529 of tholeiitic volcanics, 349-351 carbon dioxideand pH in, 559-561 of volcanics in Mexico, 431-432 comparison of, 405-406 Geochronology correlation chart of, 650
Recommended publications
  • Why Did the Southern Gulf of California Rupture So Rapidly?—Oblique Divergence Across Hot, Weak Lithosphere Along a Tectonically Active Margin
    Why did the Southern Gulf of California rupture so rapidly?—Oblique divergence across hot, weak lithosphere along a tectonically active margin breakup, is mainly dependent on the thermal structure, crust- Paul J. Umhoefer, Geology Program, School of Earth Sciences & Environmental Sustainability, Northern Arizona University, al thickness, and crustal strength of the lithosphere when Flagstaff, Arizona 86011, USA; [email protected] rifting begins (e.g., Buck, 2007), as well as forces at the base of the lithosphere and far-field plate interactions (Ziegler and Cloetingh, 2004). ABSTRACT Continental rupture at its two extremes creates either large Rifts in the interior of continents that evolve to form large ocean basins or small and narrow marginal seas depending oceans typically last for 30 to 80 m.y. and longer before com- largely on the tectonic setting of the rift. Rupture of a conti- plete rupture of the continent and onset of sea-floor spreading. nent that creates large oceans most commonly initiates as A distinct style of rifts form along the active tectonic margins of rifts in old, cold continental lithosphere or within former continents, and these rifts more commonly form marginal seas large collisional belts in the interior of large continents, part and terranes or continental blocks or slivers that are ruptured of the process known as the Wilson Cycle (Wilson, 1966). away from their home continent. The Gulf of California and the Rupture to create narrow marginal seas commonly occurs in Baja California microplate make up one of the best examples active continental margins and results in the formation of of the latter setting and processes.
    [Show full text]
  • Patricia Persaud
    A bottom-driven mechanism for distributed faulting in the Gulf of California Rift Patricia Persaud1, Eh Tan2, Juan Contreras3 and Luc Lavier4 2017 GeoPRISMS Theoretical and Experimental Institute on Rift Initiation and Evolution [email protected], Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803; 2 Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan; 3 Centro de Investigación Científca y de Educación Superior de Ensenada, Ensenada, BC, Mexico; 4 University of Texas Austin, Institute for Geophysics, Austin, TX 78712 Introduction Modeling strain partitioning and distribution of deformation in Application to the Northern Gulf Observations in the continent-ocean transition of the Gulf • Our model with an obliquity of 0.7, and linear basal velocity of California (GOC) show multiple oblique-slip faults oblique rifts boundary conditions reveals a delocalized fault pattern of distributed in a 200x70 km2 area (Fig. 4). In contrast, north contemporaneously active faults, multiple rift basins and and south of this broad pull-apart structure, major transform variable fault dips representative of faulting in the N. Gulf. faults accommodate plate motion. We propose that the FIG. 9 • The r=0.7 model is able to predict the broad geometrical mechanism for distributed faulting results from the boundary arrangement of the two Upper Delfn, Lower Delfn and conditions present in the GOC, where basal shear is Wagner basins as segmented basins with tilted fault blocks, distributed between the southernmost fault of the San and multiple oblique-slip bounding faults characteristic of Andreas system and the Ballenas Transform fault. FIG. 8 incomplete strain-partitioning. We also confrm with our We hypothesize that in oblique-extensional settings numerical results that numerous oblique-slip faults whether deformation is partitioned in a few dip-slip and accommodate slip in the study area instead of throughgoing strike-slip faults, or in numerous oblique-slip faults may large-offset transform faults.
    [Show full text]
  • Field Trip Log Gulf of California Rift System: Laguna Salda-Valles Chico-San Feli- Pe, Baja California, México
    Geos, Vol. 28, No. 1, Septiembre, 2008 FIELD TRIP LOG GULF OF CALIFORNIA RIFT SYSTEM: LAGUNA SALDA-VALLES CHICO-SAN FELI- PE, BAJA CALIFORNIA, MÉXICO Francisco Suárez-Vidal Departamento de Geologia División de Ciencias de la Tierra CICESE Oblique rifts, in which rift margins are oblique to the direction of continental separation, are reasonably common in mo- dern record, e.g. the Red Sea and Gulf of Aden, the Tanganyika-Malawi-Rukwa rifts and the Gulf of California (McKenzie et al., 1970; Rosendhal et al., 1992; Stoke and Hodges, 1989; Manighetti et al., 1998; Nagy and Stock, 2000; Persaud, P., 2003; Persaud, et al., 2003). Although, how the oblique rift evolves is not well known. Oblique rifting remain poorly understand relative to those orthogonal rifts, where the rift margins are approximately perpendicular to the extension direction, and to strike-slip system (Axen and Fletcher, 1998). The Gulf of California is perhaps the best modern example of oblique continental rifting where we can study the pro- cesses of such rifting as they lead to the interplate transfer of a continental fragment. This area presents unique op- portunities for understanding key processes at transtensional plate margins, which is important for energy and mineral exploration, as well as for interpretation of tectonics ancient continental margins (Umhoefer and Dorsey, 1997). One of the main features along the length of the gulf is the fault system which connects active basins (incipient spreading centers) from south to north (Fig 1). Two main structural regions are defined. From the mouth of the gulf to the latitude of the Tiburon and Angel de La Guardia Islands several basins bathymetrically are well expressed, among them; the Pescaderos, Farallon, Carmen, Guaymas, San Pedro Martir and Salsipudes Basins.
    [Show full text]
  • Bathymetry and Active Geological Structures in the Upper Gulf of California Luis G
    BOLETÍN DE LA SOCIEDAD GEOLÓ G ICA MEXICANA VOLU M EN 61, NÚ M . 1, 2009 P. 129-141 Bathymetry and active geological structures in the Upper Gulf of California Luis G. Alvarez1*, Francisco Suárez-Vidal2, Ramón Mendoza-Borunda2, Mario González-Escobar3 1 Departamento de Oceanografía Física, División de Oceanología. 2 Departamento de Geología, División de Ciencias de la Tierra. 3 Departamento de Geofísica Aplicada, División de Ciencias de la Tierra. Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California, México, 22860. * Corresponding author: E-mail: [email protected] Abstract Bathymetric surveys made between 1994 and 1998 in the Upper Gulf of California revealed that the bottom relief is dominated by narrow, up to 50 km long, tidal ridges and intervening troughs. These sedimentary linear features are oriented NW-SE, and run across the shallow shelf to the edge of Wagner Basin. Shallow tidal ridges near the Colorado River mouth are proposed to be active, while segments in deeper water are considered as either moribund or in burial stage. Superposition of seismic swarm epicenters and a seismic reflection section on bathymetric features indicate that two major ridge-troughs structures may be related to tectonic activity in the region. Off the Sonora coast the alignment and gradient of the isobaths matches the extension of the Cerro Prieto Fault into the Gulf. A similar gradient can be seen over the west margin of the Wagner Basin, where in 1970 a seismic swarm took place (Thatcher and Brune, 1971) overlapping with a prominent ridge-trough structure in the middle of the Upper Gulf.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Marine Geophysical Study
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Marine Geophysical Study of Cyclic Sedimentation and Shallow Sill Intrusion in the Floor of the Central Gulf of California A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Jared W. Kluesner Committee in Charge: Professor Peter Lonsdale, Chair Professor Paterno Castillo Professor Graham Kent Professor Falko Kuester Professor Michael Tryon Professor Edward Winterer 2011 Copyright Jared Kluesner, 2011 All rights reserved. The Dissertation of Jared W. Kluesner is approved, and it is acceptable in quality and in form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii To my parents, Tony and Donna Kluesner and my grandfather James Kluesner iv "...Let us go, we said, into the Sea of Cortez, realizing that we become forever a part of it" The Log from the Sea of Cortez John Steinbeck v TABLE OF CONTENTS Signature Page ...................................................................................... iii Dedication.............................................................................................. iv Epigraph ................................................................................................ v Table of Contents .................................................................................. vi List of Figures ........................................................................................ ix Acknowledgments ................................................................................
    [Show full text]
  • Redalyc.Attenuation of Coda Waves in the Central Region of the Gulf Of
    Geofísica Internacional ISSN: 0016-7169 [email protected] Universidad Nacional Autónoma de México México Rodríguez-Lozoya, Héctor E.; Domínguez R., Tonatiuh; Quintanar Robles, Luis; Aguilar Meléndez, Armando; Rodríguez-Leyva, Héctor E.; Plata Rocha, Wenseslao; García Páez, Fernando Attenuation of Coda Waves in the Central Region of the Gulf of California, México Geofísica Internacional, vol. 56, núm. 2, enero-marzo, 2017, pp. 137-145 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=56850598001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative GEOFÍSICA INTERNACIONAL (2017) 56-2: 137-145 ORIGINAL PAPER Attenuation of Coda Waves in the Central Region of the Gulf of California, México Héctor E. Rodríguez-Lozoya, Tonatiuh Domínguez R., Luis Quintanar Robles, Armando Aguilar Meléndez, Héctor E. Rodríguez-Leyva, Wenseslao Plata Rocha and Fernando García Páez Received: January 06, 2016; accepted: October 25, 2016; published on line: April 01, 2017 Resumen frecuencias de 1 a 7 Hz. El valor y la alta QO dependencia de la frecuencia están de acuerdo Se analizan las ondas de coda de eventos con los valores reportados para otras regiones registrados por la red sísmica de NARS que caracterizadas por una alta actividad tectónica. cuenta con instrumentos instalados a lo largo Con base en la distribución de estaciones de ambas márgenes del Golfo de California, respecto a las fuentes, se definieron dos México, para estimar atenuación .
    [Show full text]
  • Nature of the Crust in the Northern Gulf of California and Salton Trough GEOSPHERE, V
    Research Paper THEMED ISSUE: Anatomy of Rifting: Tectonics and Magmatism in Continental Rifts, Oceanic Spreading Centers, and Transforms GEOSPHERE Nature of the crust in the northern Gulf of California and Salton Trough GEOSPHERE, v. 15, no. 5 Jolante W. van Wijk1, Samuel P. Heyman1,2, Gary J. Axen1, and Patricia Persaud3 1Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801, USA https://doi.org/10.1130/GES02082.1 2SM Energy, 1775 Sherman Street, Suite 1200, Denver, Colorado 80203, USA 3Department of Geology and Geophysics, Louisiana State University, E235 Howe-Russell-Kniffen, Baton Rouge, Louisiana 70803, USA 9 figures; 2 tables CORRESPONDENCE: [email protected] ■ ABSTRACT elevation 34°N (m) 1 Salton Sea CITATION: van Wijk, J.W., Heyman, S.P., Axen, G.J., 2400 and Persaud, P., 2019, Nature of the crust in the north- In the southern Gulf of California, the generation of new oceanic crust 1600 2 3 800 ern Gulf of California and Salton Trough: Geosphere, has resulted in linear magnetic anomalies and seafloor bathymetry that are Cerro Prieto v. 15, no. 5, p. 1598–1616, https://doi.org/10.1130 32°N 0 characteristic of active seafloor-spreading systems. In the northern Gulf of ˗800 AZ NM /GES02082.1. Mexico California and the onshore (southeastern California, USA) Salton Trough region, ˗1600 Wagner Basin ˗2400 a thick sedimentary package overlies the crystalline crust, masking its nature, 4 Science Editor: Shanaka de Silva 30°N ˗3200 North American plate Guest Associate Editor: Carolina Pagli and linear magnetic anomalies are absent.
    [Show full text]
  • Space Geodetic Observation of the Deformation Cycle Across the Ballenas Transform, Gulf of California Christina Plattner University of Miami
    University of South Florida Scholar Commons School of Geosciences Faculty and Staff School of Geosciences Publications 8-2015 Space Geodetic Observation of the Deformation Cycle across the Ballenas Transform, Gulf of California Christina Plattner University of Miami Rocco Malservisi University of South Florida, [email protected] Falk Amelung University of Miami Timothy H. Dixon University of South Florida, [email protected] Matthias Hackl Ludwig‐Maximilians Universität München See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation Plattner, Christina; Malservisi, Rocco; Amelung, Falk; Dixon, Timothy H.; Hackl, Matthias; Verdecchia, Alessandro; Lonsdale, Peter; Suarez-Vidal, Francisco; and Gonzalez-Garcia, Javier, "Space Geodetic Observation of the Deformation Cycle across the Ballenas Transform, Gulf of California" (2015). School of Geosciences Faculty and Staff Publications. 1531. https://scholarcommons.usf.edu/geo_facpub/1531 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff ubP lications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors Christina Plattner, Rocco Malservisi, Falk Amelung, Timothy H. Dixon, Matthias Hackl, Alessandro Verdecchia, Peter Lonsdale, Francisco Suarez-Vidal, and Javier Gonzalez-Garcia This article is available at Scholar Commons: https://scholarcommons.usf.edu/geo_facpub/1531 PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Space geodetic observation of the deformation cycle 10.1002/2015JB011959 across the Ballenas Transform, Gulf of California Key Points: Christina Plattner1,2, Rocco Malservisi3, Falk Amelung2, Timothy H.
    [Show full text]
  • The Structural Evolution of Pull-Apart Basins in Response to Changes in Plate Motion
    Louisiana State University LSU Digital Commons Faculty Publications Department of Geology and Geophysics 4-1-2021 The structural evolution of pull-apart basins in response to changes in plate motion Georgios Pavlos Farangitakis Durham University Ken J.W. McCaffrey Durham University Ernst Willingshofer Utrecht University Mark B. Allen Durham University Lara M. Kalnins The University of Edinburgh See next page for additional authors Follow this and additional works at: https://digitalcommons.lsu.edu/geo_pubs Recommended Citation Farangitakis, G., McCaffrey, K., Willingshofer, E., Allen, M., Kalnins, L., van Hunen, J., Persaud, P., & Sokoutis, D. (2021). The structural evolution of pull-apart basins in response to changes in plate motion. Basin Research, 33 (2), 1603-1625. https://doi.org/10.1111/bre.12528 This Article is brought to you for free and open access by the Department of Geology and Geophysics at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Authors Georgios Pavlos Farangitakis, Ken J.W. McCaffrey, Ernst Willingshofer, Mark B. Allen, Lara M. Kalnins, Jeroen van Hunen, Patricia Persaud, and Dimitrios Sokoutis This article is available at LSU Digital Commons: https://digitalcommons.lsu.edu/geo_pubs/1329 Received: 27 July 2020 | Revised: 5 November 2020 | Accepted: 12 November 2020 DOI: 10.1111/bre.12528 EAGE RESEARCH ARTICLE The structural evolution of pull-apart basins in response to changes in plate motion Georgios-Pavlos Farangitakis1 | Ken J. W. McCaffrey1 | Ernst Willingshofer2 | Mark B. Allen1 | Lara M. Kalnins3 | Jeroen van Hunen1 | Patricia Persaud4 | Dimitrios Sokoutis2,5 1Department of Earth Sciences, Durham University, Durham, United Kingdom Abstract 2Department of Earth Sciences, Utrecht Pull-apart basins are structural features linked to the interactions between strike-slip University, Utrecht, the Netherlands and extensional tectonics.
    [Show full text]
  • Source Characteristics of the Mw 6.2 Loreto Earthquake of 12 March 2003 That Occurred in a Transform Fault in the Middle Of
    Bulletin of the Seismological Society of America, Vol. 95, No. 2, pp. 419–430, April 2005, doi: 10.1785/0120030227 Source Characteristics of the Mw 6.2 Loreto Earthquake of 12 March 2003 that Occurred in a Transform Fault in the Middle of the Gulf of California, Mexico by Leobardo Lo´pez-Pineda and Cecilio J. Rebollar Abstract We analyzed the Loreto earthquake of 12 March 2003 Mw 6.2, which occurred in the transform fault that joins the Guaymas and Carmen Basins in the middle of the Gulf of California. This event was recorded by a network of autono- mous continuously recording broadband seismographs located over the Baja Cali- fornia Peninsula, Sonora, and Sinaloa states of Mexico. The main event was located km. A foreshock of magnitude 2 ע at 26.615Њ N and 111.09Њ W, at a depth of 5.0 4.2 was recorded and located at 26.580Њ N and 111.011Њ W. We located 35 after- shocks, 20% of them were located in the rupture area of the mainshock consistent with a nearly vertical right-lateral strike-slip fault with a northwest–southeast trend. Rupture propagation derived from waveform analysis indicated that the rupture prop- agated from northwest to southeast. Most of the aftershocks occurred southeaster of the main event. From the statistical analysis of 333 aftershocks we calculated a b- value of 0.68. Focal depth and fault geometry were estimated from body-wave form modeling of P and S waves. Synthetics were calculated using Herrmann’s (1987) reflectivity code with a triangular source time function of 6 sec.
    [Show full text]
  • Systematic Heat Flow Measurements Across the Wagner Basin, Northern
    Earth and Planetary Science Letters 479 (2017) 340–353 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Systematic heat flow measurements across the Wagner Basin, northern Gulf of California ∗ Florian Neumann a, Raquel Negrete-Aranda b, , Robert N. Harris c, Juan Contreras b, John G. Sclater d, Antonio González-Fernández b a Posgrado en Ciencias de la Tierra, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC, 22864, Mexico b Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC, 22864, Mexico c College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA d Geosciences Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92093-0220, USA a r t i c l e i n f o a b s t r a c t Article history: A primary control on the geodynamics of rifting is the thermal regime. To better understand the Received 1 March 2017 geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Received in revised form 13 September Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. 2017 The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated Accepted 14 September 2017 with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Available online 6 October 2017 Although heat flow data were collected in shallow water, where there are significant temporal variations Editor: R.
    [Show full text]
  • Shear Wave Splitting and Mantle Flow in Mexico: What Have We Learned?
    GEOFÍSICA INTERNACIONAL (2017) 56-2: 187-217 ORIGINAL PAPER Shear Wave Splitting and Mantle Flow in Mexico: What Have we Learned? Raúl W. Valenzuela* and Gerardo León Soto Received: November 15, 2016; accepted: December 08, 2016; published on line: April 01, 2017 Resumen con un énfasis en las zonas de subducción. Una justificación importante para el estudio de la El presente artículo es un resumen y análisis anisotropía sísmica es que permite conocer las de los estudios de partición de ondas características del flujo en el manto superior transversales (shear wave splitting) para así como su relación con procesos tectónicos. el manto superior que se han realizado en México tiene muchos y diversos ambientes México durante la última década. Cuando una tectónicos. Algunos de ellos se encuentran onda sísmica entra en un medio anisótropo actualmente activos y otros lo fueron en el se parte (o se separa), esto quiere decir que pasado, pero en cualquier caso han dejado se producen una onda rápida y otra lenta. Se su marca en la forma de anisotropía sísmica. necesitan dos parámetros para cuantificar la Esto ha dado lugar a una gran variedad anisotropía. Dichos parámetros son la dirección de mecanismos para producir el flujo del de polarización rápida y el tiempo de retardo manto. De manera general la presentación entre la onda rápida y la lenta. Se presenta se ha organizado en las siguientes regiones: un ejemplo de la aplicación de la técnica península de Baja California, la región Mexicana empleando la fase SKS ya que la mayoría de Occidental de Cuencas y Sierras, el norte y las observaciones usan datos telesísmicos.
    [Show full text]