Paleoecology of the Lower Devonian Esopus and Carlisle Center Formations (Tristates Group) of New York State

Total Page:16

File Type:pdf, Size:1020Kb

Paleoecology of the Lower Devonian Esopus and Carlisle Center Formations (Tristates Group) of New York State PALEOECOLOGY OF THE LOWER DEVONIAN ESOPUS AND CARLISLE CENTER FORMATIONS (TRISTATES GROUP) OF NEW YORK STATE Michael D. Senglaub A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker © 2004 Michael D. Senglaub All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The Lower Devonian Esopus and Carlisle Center Formations of New York State are famous for their abundant Zoophycos and lack of other fossils. The goals of this study were to determine the paleoenvironment during the deposition of the Esopus and Carlisle Center Formations, to document any fossils present, and describe any interactions between the trace-makers and other animals. Numerous fossils are actually present in the Esopus and Carlisle Center Formations, including sponges, conulariids, articulate and inarticulate brachiopods, dacryoconarids, ostracodes, conodonts, and fish bones. Associated with some Zoophycos are Chondrites-like burrows. Chondrites trace-makers may have used Zoophycos traces as a food source. Assuming a larger, better-fed, trace-making animal will make larger feeding structures, Zoophycos size may be used as a paleoenvironmental indicator. Measurements were made of 312 Zoophycos web radii and 231 meniscus heights from several localities, and compared to data from the Green Pond Outlier collected by Marintsch and Finks in 1978. Zoophycos from the Carlisle Center Formation are consistently larger than those from the Green Pond Outlier, likely because the Green Pond Outlier represents shallower water than the Carlisle Center Formation. Small (~10cm wide) unbioturbated lenses are described from the Carlisle Center Formation. These lenses have Zoophycos around them but not within them, and contain a concentration of carbonate fossils. The lenses appear to be gutter casts, filled with iv material transported by storm currents. Calcium phosphate skeletal elements otherwise predominate within the Carlisle Center Formation. It is likely that there is a preservational bias for calcium phosphate and against calcium carbonate, possibly due to the extensive bioturbation in this interval. Since the bioturbators did not enter the gutter casts, the shelly fossils within them were preserved. From the presence of glauconite, Zoophycos, and gutter casts (but no tempestite deposits), a water depth of 60 to 100m can be inferred for the Carlisle Center Formation. The Esopus Formation represents somewhat deeper water. The presence of glauconite and Zoophycos also indicate that the Carlisle Center Formation had a low sedimentation rate, and was slightly dysoxic. The Carlisle Center Formation does contain fossils, although many are likely transported or pelagic in origin. v ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Yacobucci, for her guidance in the field, laboratory, and as an editor. Without her insight and counsel this project would not be completed. I also thank Dr. Steinker for his guidance and editorial contributions to this thesis. I would also like to thank Dr. Evans for his counsel during the development of this thesis. My appreciation goes out to my family for their constant support and even a small field trip for me. I thank Dr. Carl Brett, of the University of Cincinnati, and Dr. Charles Ver Straeten, of the New York State Museum, for their help in the initial stages of this study. I am extremely grateful for the support from the Geology Foundation. I am grateful for the help of Bill Butcher in the photo and computer lab. I appreciate the help that Pat Wilhelm, the BGSU Geology Department secretary, gave me on almost a daily basis. I would be lost without her. Finally, I would also like to thank Dr. James Ebert of the State University of New York, College at Oneonta for spurring the interest in studying this interval within me. vi TABLE OF CONTENTS Page INTRODUCTION ..................................................................................................... 1 Regional Setting............................................................................................. 1 Lower Devonian Stratigraphy........................................................................ 3 OBJECTIVES……………........................................................................................ 9 METHODS…………. ............................................................................................... 9 Field Work….. ............................................................................................... 9 Laboratory Work............................................................................................ 11 Thin Sections..................................................................................... 11 Polished Sections............................................................................... 12 Conodont Extraction.......................................................................... 13 Fossil Preparation and Identification ................................................. 14 STRATIGRAPHY AND GENERAL PALEONTOLOGY....................................... 14 Esopus Formation .......................................................................................... 14 Stratigraphy........................................................................................ 14 Polished Section Descriptions............................................... 16 Fauna….............................................................................................. 21 Faunal Descriptions............................................................... 21 Carlisle Center Formation.............................................................................. 26 Stratigraphy........................................................................................ 26 Thin Section Descriptions...................................................... 29 Polished Section Descriptions............................................... 49 Fauna….............................................................................................. 54 vii Sponges.................................................................................. 54 Description................................................................. 54 Interpretation.............................................................. 54 Conulariids............................................................................. 56 Descriptions ............................................................... 56 Interpretations ............................................................ 59 Brachiopods ........................................................................... 61 Descriptions ............................................................... 61 Interpretations ............................................................ 64 Dacryoconarids ...................................................................... 66 Description................................................................. 66 Interpretations ............................................................ 66 Ostracodes.............................................................................. 67 Descriptions ............................................................... 67 Interpretations ............................................................ 69 Holothurians........................................................................... 70 Description................................................................. 70 Interpretations ............................................................ 70 Chordates ............................................................................... 73 Descriptions ............................................................... 73 Interpretations ............................................................ 73 Trace Fossils.......................................................................... 76 Descriptions ............................................................... 76 Interpretations ............................................................ 80 viii THE PALEOENVIRONMENTAL AND PALEOECOLOGICAL SIGNIFICANCE OF ZOOPHYCOS ……………….................................................................................... 82 Ichnology Background................................................................................... 82 Ichnology Basics................................................................................ 82 Ichnofacies Concept........................................................................... 84 The Zoophycos Trace Fossil .......................................................................... 84 Zoophycos: Two Views...................................................................... 86 Size as an Indicator of Environmental Quality.............................................. 88 Supporting Evidence.......................................................................... 91 Web Radii.............................................................................. 91 Meniscus Heights................................................................... 104 THE PALEOENVIRONMENTAL SIGNIFICANCE OF GLAUCONITE.............. 111 Glauconite: the Mineral ................................................................................. 111 Glauconite: Habits .................................................................................... 112 Environment of Glauconitization..................................................................
Recommended publications
  • Early Paleozoic Life & Extinctions (Part 1)
    NJU Course Extinctions: Past, Present & Future Prof. Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Extinctions: Past, Present & Future Extinctions: Past, Present & Future Course Syllabus (Revised) Section Week Title Introduction 1 Course Introduction, Intro. To Extinction Introduction 2 History of Extinction Studies Introduction 3 Evolution, Fossils, Time & Extinction Precambrian Extinctions 4 Origin of Life & Precambrian Extionctions Paleozoic Extinctions 5 Early Paleozoic World & Extinctions Paleozoic Extinctions 6 Middle Paleozoic World & Extinctions Paleozoic Extinctions 7 Late Paleozoic World & Extinctions Assessment 8 Mid-Term Examination Mesozoic Extinctions 9 Triassic-Jurassic World & Extinctions Mesozoic Extinctions 10 Labor Day Holiday Cenozoic Extinctions 11 Cretaceous World & Extinctions Cenozoic Extinctions 12 Paleogene World & Extinctions Cenozoic Extinctions 13 Neogene World & Extinctions Modern Extinctions 14 Quaternary World & Extinctions Modern Extinctions 15 Modern World: Floras, Faunas & Environment Modern Extinctions 16 Modern World: Habitats & Organisms Assessment 17 Final Examination Early Paleozoic World, Life & Extinctions Norman MacLeod School of Earth Sciences & Engineering, Nanjing University Early Paleozoic World, Life & Extinctions Objectives Understand the structure of the early Paleozoic world in terms of timescales, geography, environ- ments, and organisms. Understand the structure of early Paleozoic extinction events. Understand the major Paleozoic extinction drivers. Understand
    [Show full text]
  • The Effect of Cement Stabilization on the Strength of the Bawen's Siltstone
    MATEC Web of Conferences 195, 03012 (2018) https://doi.org/10.1051/matecconf/201819503012 ICRMCE 2018 The effect of cement stabilization on the strength of the Bawen’s siltstone Edi Hartono1,3, Sri Prabandiyani Retno Wardani2, and Agus Setyo Muntohar3,* 1 Ph.D Student, Department of Civil Engineering, Diponegoro University, Semarang, Indonesia 2 Department of Civil Engineering, Diponegoro University, Semarang, Indonesia 3 Department of Civil Engineering, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia Abstract. Siltstones are predominantly found along the Bawen toll-road. Siltstone is degradable soil due to weather session. The soil is susceptible to the drying and wetting and the changes in moisture content. Thus, Siltstone is problematic soils in its bearing capacity when served as a subgrade or subbase. The main objective of this study was to investigate the effect of cement stabilization on the strength of Siltstone. The primary laboratory test to evaluate the strength was Unconfined Compression Strength (UCS) and California Bearing Ratio (CBR). The cement content was varied from 2 to 12 per cent by weight of the dry soil. The soils were collected from the Ungaran – Bawen toll road. The specimens were tested after seven days of moist-curing in controlled temperature room of 25oC. The CBR test was performed after soaking under water for four days to observe the swelling. The results show that the mudstones were less swelling after soaking. Cement-stabilized siltstone increased the CBR value and the UCS significantly. The addition of optimum cement content for siltstone stabilization was about 7 to 10 per cent. 1 Introduction Rock lithology that includes claystone, siltstone, mudstone and shale is also known as mudrocks.
    [Show full text]
  • Planispiral Burrows from a Recent Lacustrine Beach, Gander Lake, Newfoundland
    Planispiral Burrows from a Recent Lacustrine Beach, Gander Lake, Newfoundland ROBERT B. M AC NAUGHTON Geological Survey of Canada, 3303 – 33 Street NW, Calgary, Alberta T2L 2A7 Canada; e-mail: [email protected] MacNaughton, Robert B. 2003. Planispiral burrows from a Recent lacustrine beach, Gander Lake Newfoundland. Canadian Field-Naturalist 117(4): 577-581. Simple horizontal, planispiral burrows occur in Recent beach sediments on the south shore of Gander Lake, Newfoundland. The burrows apparently represent deposit feeding, possibly by an arthropod. This occurrence extends the known environ- mental range of such traces into lacustrine settings and illustrates that such behaviour is not exclusive to marine settings. Key Words: ichnology, lacustrine, Recent, palaeoecology, Newfoundland. Ichnology is the study of the physical records of The beach on which the burrows were observed is behaviour, including, for example, tracks, trails, bur- approximately 90 m east of the mouth of Fifteen Mile rows, and borings (Bromley 1990). Studies are under- Brook (Figure 1). At the time of study, the beach was taken both in fossil and Recent contexts (palichnol- approximately 3 m wide by 24 m long. It passed on ogy and neoichnology, respectively). Fossilised traces the landward side into forest-covered glacio-fluvial are referred to as “trace fossils” or “ichnofossils” and sand and gravel (Figure 1), from which it was prob- are classified using Linnean binominal nomenclature. ably, in part, derived (cf., Batterson and Vatcher 1991). Although much ichnological research is focused on the Small driftwood logs were scattered over the beach. fossil record, neoichnology can provide crucial data The beach surface consisted of damp to wet (but not when interpreting ancient behaviours (e.g., Schäfer water-saturated), muddy to silty, fine- to medium- 1972; Chamberlain 1975; Ratcliffe and Fagerstrom grained sand containing local concentrations of finely 1980; Metz 1987).
    [Show full text]
  • PIR/PER) for the State Route 86 / Avenue 50 New Interchange Project, City of Coachella, Riverside County, California E-FIS 0801-000144 (EA 08-0C970
    Combined Paleontological Identification Report / Paleontological Evaluation Report (PIR/PER) for the State Route 86 / Avenue 50 New Interchange Project, City of Coachella, Riverside County, California E-FIS 0801-000144 (EA 08-0C970) Submitted to: Kurt Heidelberg, Branch Chief Environmental Studies D California Department of Transportation, District 8 464 West 4th Street, 6th Floor, MS 825 San Bernardino, California 92401-1400 March 2018 EXECUTIVE SUMMARY The City of Coachella (City), in cooperation with the California Department of Transportation (Caltrans) District 8 and Coachella Valley Association of Governments (CVAG), proposes the construction of a new interchange at State Route 86 (SR-86) and Avenue 50 in the City of Coachella, Riverside County, California. The SR-86 /Avenue 50 New Interchange Project (Project) consists of converting a portion of SR-86 from an existing expressway to a freeway with a new overcrossing structure and access ramps. In addition, the proposed Project includes the realignment and widening of Avenue 50 and the realignment of portions of Tyler Street on both the east and west sides of SR-86. Finally, the Project would construct a new bridge over the Coachella Valley Stormwater Channel (CVSC) to replace the existing low water crossing. At the request of TranSystems, Applied EarthWorks, Inc. (Æ) performed a paleontological resource assessment in support of the proposed Project. The study consisted of a search of museum collections records maintained by the Natural History Museum of Los Angeles County, a comprehensive literature and geologic map review, a field reconnaissance survey, and preparation of this combined Paleontological Identification Report (PIR) / Paleontological Evaluation Report (PER).
    [Show full text]
  • Micropaleontological Association from the Middle Miocene Badenian Gypsum Deposits of Paratethys
    geosciences Article A New Preparation Method of Microfauna from Gypsum: Micropaleontological Association from the Middle Miocene Badenian Gypsum Deposits of Paratethys Hans-Peter Bojar 1, Claudia Antoniade 2, Victor Barbu 3 and Ana-Voica Bojar 1,4,5,* 1 Studienzentrum Naturkunde—Mineralogie, Universalmuseum Joanneum, Weinzöttlstraße 16, 8045 Graz, Austria; [email protected] 2 OMV Petrom, Research and Design Institute of Technology Petrom Câmpina, Culturii Bldv 29, Câmpina, 15600 Prahova, Romania; [email protected] 3 OMV Petrom, Coralilor str. 22, 013329 Bucharest, Romania; [email protected] 4 Department Geographie und Geologie, Geologie, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria 5 Faculty of Physics, Department of Structure of Matter, Earth and Atmospheric Physics and Astrophysics, University of Bucharest, Bulevardul Regina Elisabeta 4-12, 030018 Bucharest, Romania * Correspondence: [email protected] Received: 23 March 2020; Accepted: 26 April 2020; Published: 28 April 2020 Abstract: Evaporitic gypsum deposits represent an important paleoenvironmental record of the Miocene Badenian of the Carpathian Mountains belt. In this study, we developed a nontoxic method to concentrate calcareous microfossils from gypsum (CaSO 2H O), by treating the sulfate with 4· 2 ammonium acetate. We applied the newly developed method to gypsum collected from the Evaporitic Formation outcropping northward of Slănic-Prahova in the Eastern Carpathians. For the first time for this formation, we describe a calcareous microfossil assemblage characterized by the presence of planktonic foraminifera as well as cysts and fragments of calcareous algae. Keywords: chemical preparation method; gypsum deposits; calcareous microfossil assemblage; Miocene; Eastern Carpathians 1. Introduction In the Earth’s history, sulfate rich marine waters are known for late Precambrian (Vendian), Pennsylvanian-Triassic, Miocene to Quaternary [1].
    [Show full text]
  • A) Conglomerate B) Dolostone C) Siltstone D) Shale 1. Which
    1. Which sedimentary rock would be composed of 7. Which process could lead most directly to the particles ranging in size from 0.0004 centimeter to formation of a sedimentary rock? 0.006 centimeter? A) metamorphism of unmelted material A) conglomerate B) dolostone B) slow solidification of molten material C) siltstone D) shale C) sudden upwelling of lava at a mid-ocean ridge 2. Which sedimentary rock could form as a result of D) precipitation of minerals from evaporating evaporation? water A) conglomerate B) sandstone 8. Base your answer to the following question on the C) shale D) limestone diagram below. 3. Limestone is a sedimentary rock which may form as a result of A) melting B) recrystallization C) metamorphism D) biologic processes 4. The dot below is a true scale drawing of the smallest particle found in a sample of cemented sedimentary rock. Which sedimentary rock is shown in the diagram? What is this sedimentary rock? A) conglomerate B) sandstone C) siltstone D) shale A) conglomerate B) sandstone C) siltstone D) shale 9. Which statement about the formation of a rock is best supported by the rock cycle? 5. Which sequence of events occurs in the formation of a sedimentary rock? A) Magma must be weathered before it can change to metamorphic rock. A) B) Sediment must be compacted and cemented before it can change to sedimentary rock. B) C) Sedimentary rock must melt before it can change to metamorphic rock. C) D) Metamorphic rock must melt before it can change to sedimentary rock. D) 6. Which sedimentary rock formed from the compaction and cementation of fragments of the skeletons and shells of sea organisms? A) shale B) gypsum C) limestone D) conglomerate Base your answers to questions 10 and 11 on the diagram below, which is a geologic cross section of an area where a river has exposed a 300-meter cliff of sedimentary rock layers.
    [Show full text]
  • Michael Kenney Paleozoic Stratigraphy of the Grand Canyon
    Michael Kenney Paleozoic Stratigraphy of the Grand Canyon The Paleozoic Era spans about 250 Myrs of Earth History from 541 Ma to 254 Ma (Figure 1). Within Grand Canyon National Park, there is a fragmented record of this time, which has undergone little to no deformation. These still relatively flat-lying, stratified layers, have been the focus of over 100 years of geologic studies. Much of what we know today began with the work of famed naturalist and geologist, Edwin Mckee (Beus and Middleton, 2003). His work, in addition to those before and after, have led to a greater understanding of sedimentation processes, fossil preservation, the evolution of life, and the drastic changes to Earth’s climate during the Paleozoic. This paper seeks to summarize, generally, the Paleozoic strata, the environments in which they were deposited, and the sources from which the sediments were derived. Tapeats Sandstone (~525 Ma – 515 Ma) The Tapeats Sandstone is a buff colored, quartz-rich sandstone and conglomerate, deposited unconformably on the Grand Canyon Supergroup and Vishnu metamorphic basement (Middleton and Elliott, 2003). Thickness varies from ~100 m to ~350 m depending on the paleotopography of the basement rocks upon which the sandstone was deposited. The base of the unit contains the highest abundance of conglomerates. Cobbles and pebbles sourced from the underlying basement rocks are common in the basal unit. Grain size and bed thickness thins upwards (Middleton and Elliott, 2003). Common sedimentary structures include planar and trough cross-bedding, which both decrease in thickness up-sequence. Fossils are rare but within the upper part of the sequence, body fossils date to the early Cambrian (Middleton and Elliott, 2003).
    [Show full text]
  • Hierarchical Random Walks in Trace Fossils and the Origin of Optimal Search Behavior
    Hierarchical random walks in trace fossils and the origin of optimal search behavior David W. Simsa,b,c,1, Andrew M. Reynoldsd, Nicolas E. Humphriesa, Emily J. Southalla, Victoria J. Wearmoutha, Brett Metcalfee, and Richard J. Twitchettf aMarine Biological Association of the United Kingdom, Plymouth PL1 2PB, United Kingdom; bOcean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, United Kingdom; cCentre for Biological Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom; dRothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom; eEarth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands; and fDepartment of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved June 19, 2014 (received for review April 1, 2014) −μ Efficient searching is crucial for timely location of food and other “walk clusters” with no characteristic scale, such that P(l) ∼ l , resources. Recent studies show that diverse living animals use a with 1 < μ ≤ 3, where l is the move step length between turns and theoretically optimal scale-free random search for sparse resources μ the power-law exponent. Over many iterations, a Lévy walk will known as a Lévy walk, but little is known of the origins and evo- be distributed much further from its starting position than a lution of foraging behavior and the search strategies of extinct Brownian walk of the same length [hence is termed super- organisms. Here, using simulations of self-avoiding trace fossil trails, diffusive (8)], because small-step walk clusters are interspersed we show that randomly introduced strophotaxis (U-turns)—initiated by long “steps” to new locations, with this pattern repeating by obstructions such as self-trail avoidance or innate cueing—leads across all scales.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Tentaculites of the Upper Silurian and Lower Devonian of Poland
    ACT A PAL A EON T 0 LOG ICA POLONICA Vol. XIX 1974 No. 4 BARBARA HAJI..ASZ TENTACULITES OF THE UPPER SILURIAN AND LOWER DEVONIAN OF POLAND Abstract. - The tentaculites, described in the present paper, come from the Upper Silurian deposits of the Baltic coastal region and the Lower Devonian deposits of the Radom-Lublin region. The Upper Silurian assemblage of tentaculites allows one to compare and correlate the Upper Silurian deposits of Northern Europe. The Lower Devonian tentaculites are' indicative of the Gedinnian and Siegenian age of the deposits under study and of their close correlations primarily with Podolia. PART I INTRODUCTION In Poland, the tentaculites have not so far been described in detail. Giirich (1895) was the first to take an interest in the tentaculites occurring in this country. He described the following species from the Holy Cross Mountains: Tentaculites sp. d. intermedium Barr., T. multiformis Sandb., T.ornatus? Sow., T. schlotheimi Koken., T. polonicus Gurich., T. sand­ bergeri Gurich, T. tenuicinctus Sandb., Styliolites sp. From the same region, the following species were identified by Paj­ chlowa (1957): Tentaculites schlotheimi Koken., Tentaculites sp., Styliolina laevis Richter and Styliolina sp. The tentaculites of the species Homoc­ tenus tenuicinctus (Roem.), Homoctenus sp., Styliolina laevis Richter and Styliolina sp. were distinguished by Koscielniakowska (1962-1967) in the Frasnian deposits of these region. The present writer described the following Eifelian tentaculites from the Holy Cross Mts and the Cracow-Cz~stochowaUpland (Hajlasz, 1967): Tentaculites schlotheimi Koken., T. subconicus Geinitz, T.sp., and Dicri­ coconus mosolovicus (Ljasch.). Next, a list of species from Lower Devonian of the Lublin area was published (Hajlasz, 1968).
    [Show full text]
  • The Discovery of a Paleodictyon-Like Trace Fossil from the Late Cambrian Machinchang Formation in Pulau Jemuruk, Langkawi, Malaysia
    Geological Society of Malaysia, Bulletin 46 May 2003; pp. 421-424 The discovery of a Paleodictyon-like trace fossil from the Late Cambrian Machinchang Formation in Pulau Jemuruk, Langkawi, Malaysia MOHD SHAFEEA LEMAN School of Environmental Sciences and Natural Resources, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Abstract: Closely spaced polygonal Paleodictyon-like trace fossil was recently discovered in Late Cambrian Machinchang Formation at Pulau Jemuruk, Langkawi. Each polygon is bounded by six segments of ridges forming unique hexagonal framework. The Jemuruk fossil has an epi-relief origin, contrary to the hypo-relief burrow Paleodictyon. The Jemuruk trace fossils formed in relatively shallower marine environment compared with other known Paleodictyon. This study shows that the Kinneyia structure found in the same layer originated from these Paleodictyon-like trace fossils. Abstrak: Surihan berbentuk poligon menyerupai Paleodictyon telah ditemui dalam batuan Kambria Akhir Formasi Machinchang di Pulau Jemuruk, Langkawi. Setiap ruang fosil surih ini disempadani enam segmen permatang membentuk kerangka heksagon yang menarik. Fosil Jemuruk berasalan epi-jasatimbul manakala Paleodictyon adalah sejenis korekan hipo-jasatimbul. Fosil surih Jemuruk terbentuk pada sekitaran laut lebih cetek berbanding dengan Paleodictyon yang diketahui. Kajian juga menunjukkan bahawa struktur Kinneyia yang ditemui dalam lapisan yang sarna adalah berasal daripada fosil surih seakan Paleodictyon ini. INTRODUCTION the Tarutao Formation described (later) by Teroaka et al. (1982) from Ko Tarutao in southern Thailand. The later The Machinchang Formation is perhaps the best has a comparatively similar lithological sequence with the described Cambrian rock formation in Malaysia. Despite Machinchang Formation and is a northern extension of the being one of the oldest rock formation in the country, most Machinchang Formation beyond the Malaysia-Thailand of its rocks are neither strongly deformed nor highly border.
    [Show full text]
  • The Earliest Bioturbators As Ecosystem Engineers
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers LIAM G. HERRINGSHAW1,2*, RICHARD H. T. CALLOW1,3 & DUNCAN MCILROY1 1Department of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, St John’s, NL, A1B 3X5, Canada 2Geology, School of Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK 3Statoil ASA, Stavanger 4035, Norway *Correspondence: [email protected] Abstract: By applying modern biological criteria to trace fossil types and assessing burrow mor- phology, complexity, depth, potential burrow function and the likelihood of bioirrigation, we assign ecosystem engineering impact (EEI) values to the key ichnotaxa in the lowermost Cambrian (Fortunian). Surface traces such as Monomorphichnus have minimal impact on sediment properties and have very low EEI values; quasi-infaunal traces of organisms that were surficial modifiers or biodiffusors, such as Planolites, have moderate EEI values; and deeper infaunal, gallery biodiffu- sive or upward-conveying/downward-conveying traces, such as Teichichnus and Gyrolithes, have the highest EEI values. The key Cambrian ichnotaxon Treptichnus pedum has a moderate to high EEI value, depending on its functional interpretation. Most of the major functional groups of mod- ern bioturbators are found to have evolved during the earliest Cambrian, including burrow types that are highly likely to have been bioirrigated. In fine-grained (or microbially bound) sedimentary environments, trace-makers of bioirrigated burrows would have had a particularly significant impact, generating advective fluid flow within the sediment for the first time, in marked contrast with the otherwise diffusive porewater systems of the Proterozoic.
    [Show full text]