Lincoln University Digital Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Lincoln University Digital Thesis Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Niche differentiation within the Wiseana (porina) species complex: pasture pests of New Zealand A thesis submitted in partial fulfilment of the requirements of the Degree of Doctor of Philosophy at Lincoln University by Sylvester Richard Atijegbe Lincoln University 2019 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy. Niche differentiation within the Wiseana (porina) species complex: pasture pests of New Zealand by Sylvester Richard Atijegbe The most important sector of New Zealand’s primary industries is pastoral agriculture, but the production and quality of the pasture itself is threatened by porina moths. Porina is a complex of species belonging to the genus Wiseana (Lepidoptera: Hepialidae) which is endemic to New Zealand. The larvae are major pests of exotic pastures, particularly in the central and southern North Island and most of the South Island of New Zealand. Despite this impact, no such damage of any New Zealand native plants has been ascribed to these insects and, to date, no studies of porina feeding on native plants have been done to understand this discrepancy. However, to develop more stategic approaches to improve management of porina in pastures, it is critical to understand why porina have moved into exotic pastures and become so successful, relative to what the populations must have been in their native habitats. Here, fundemental information is developed to unravel key aspects that may be linked to porina’s success. In particular, to confirm that porina do indeed develop and survive better on exotic compared to native host plants, determine what the identities are of the species that have moved into pastures and if there are differences in their seasonal flight patterns. Behavioural studies are needed to observe larval feeding and survival on exotic and native host plants under controlled conditions, and to determine if any differences may be associated with the relative nutrient content of those hosts. Such information may then enable hypotheses to be developed as to which New Zealand native plants are, or were, likely hosts for these species, as well as to what might have been the evolutionary mechanism to move from those hosts to exotic pasture plants, i.e. host range expansion or host switch. Finally, if egg-larval development data can be developed, can this be used to build preliminary forecasting models that might enable the best timing of application of control measures in the field be determined. ii Results of the experimental work to address these knowledge gaps showed with a pilot study at the outset that larval development and survival of field-collected porina species on native and exotic plants showed mortality from 13% to 75% and larval survival time from 96 to 177 days (Chapter 2). Subsequently light trap catches showed W. cervinata and W. copularis to be the two main species infesting pastures in Canterbury, with W. cervinata flying from late spring to early summer and W. copularis flying from early summer to late summer (Chapter 3). A simple method was developed that improved laboratory rearing and survival of porina larvae from eggs by 90%, and revealed that eggs of W. cervinata at 15 and 22 hatched earlier compared to W. copularis and W. umbraculata (Chapter 4). Larvae of W. cervinata,℃ W. copularis and W. umbraculata reared from eggs further confirmed the differential success of their growth and development, being significantly better on exotic (Trifolium repens and Lolium perenne × Lolium multiflorum) than native (Aciphylla squarrosa, Festuca actae, Chionochloa rubra, Poa cita and Phormium tenax) plants and with implications for species fitness, population dynamics and management (Chapter 5). The relative nutritional status of these plants was measured and over 100 metabolites were detected in each plant species (Chapter 6). Of these metabolites, which were classified into 11 groups (amino acids, cyclitols, fatty acids, organic acids, other N-compounds, sugars, sugar acids, sugar alcohols, phytosterols, miscellaneous and unknowns), N and silica were shown to be higher in the exotic host species, but C, CN ratios and fibre content were higher in the native host plants. Observations on the foraging behaviour of Wiseana larvae over a three day period showed that W. copularis were more active grazers, creating multiple burrows as they forage with 63% of larvae emerging to feed, compared to W. cervinata creating a single burrow and 50% of larvae emerging to feed (Chapter 7). However the locomotory ability of the pupal stage to move up and down the burrow showed that W. cervinata descended slightly faster than W. copularis in response to stimuli, suggesting it may have a better ability to avoid predators (Chapter 8). Together, the prediction of peak flight times, and the time when early instar larvae are vulnerable at the soil surface can help researchers and farmers to assess porina population dynamics more effectively for the application of management decisions. Lastly, data on porina development, seasonal flight and weather were used to design a simple prototype model for predicting the best timing for the application of pesticides. Overall, the approaches and results obtained in this thesis have provided essential biological evidence to help understand that a mixture of host range expansion and host switching mechanisms may have contributed to the success of Wiseana spp. in New Zealand pasture. It has also helped to identify components of their phenology that can be used in improved management stategies. The conclusions offer new research directions for the investigation of the Wiseana invasion processes in general. Key words: Porina, Wiseana copularis, W. cervinata, W. umbraculata, rearing method, pupal movement, burrow, plant metabolites, foraging behaviour, metabolites, nitrogen, exotic and native iii host plant, host expansion, linear and nonlinear models, degree-day, phenology, lower threshold, weather data, peak flight, prediction. iv Acknowledgements First of all, I would like to thank my main supervisor, Doctor Sarah Mansfield without whom I would have never had the chance to do this PhD. Thanks so much for your confidence and offering me the opportunity to live this wonderful and challenging four-years experience as your pioneer PhD student in New Zealand, I do really owe you much! I would also like to thank my associate supervisors, Doctors Micheal Rostás, Karen Amstrong and Associate Professor Sue Worner, thanks for your valuable specialist knowledge and for your super efficiency, it was so wonderful to always receive prompt feedback on my manuscripts. Michael, thanks for having spent time with me in the lab and teaching me techniques in plant metabolome analyses. I would also like to thank my advisor Colin Ferguson for your considerable knowledge on Wiseana, your valuable advice, guidance and support throughout my studies. Finally, this PhD would have not been the same without Dr Olivia Achonduh-Atijegbe, my best friend and staunch advocate, thank you for putting your career on hold for four years to make this dream a reality, thanks for your support and your guidance, you are amazing! Thanks to the New Zealand Ministry of Foreign Affairs and Trade for awarding me a New Zealand Development Schoalrship to pursue my doctoral degree at Lincoln University and my thanks also goes to the organisations that provided funding for this study. I was privileged to be supported by the Miss E.L. Hellaby Indigenous Grasslands Research Trust, the New Zealand Plant Protection Society Research Scholarships and the MacMillan Brown Agricultural Research Scholarship. Finally, I thank the University of Port Harcourt, Rivers State, Nigeria for granting me study leave for my PhD. In addition to my supervisory team and my founding agencies, I would also like to thank Richard Townsend for providing me with a light trap. Thanks to the late Rob Phiskie for selecting an appropriate site for the trap and hosting it on the AgResearch farm. Many thanks to Nicky Richards for teaching me the finer points of molecular techniques on Wiseana. Thanks to John Marris for showng me how to take great pictures with the stereomicroscope. Thanks to AgResearch, Lincoln for granting me access to my light trap sites. In addition, a number of people have also contributed to make this journey even more enjoyable, by providing me great advice, sharing their knowledge and experience, they all helped me one way or another at some stage of my PhD and I would like to thank them all for that: thanks to Myles Mackintosh, Brent Richards, Andrew Holyoake, Sue Paterson, Robert Cruickshank; as well as my office mates, Ali, Nghia, and Sunita, Sue Bowie and Jayne Borrill of the MFAT office, the members of the Bug Lovers Club, and staff of the Bio-Protection Research Centre. My greatest thanks goes to my wonderful parents and family that I miss so much and to my dear friends and colleagues in Nigeria and New Zealand, who have supported me, through this incredible journey. To Prof N.E.S. Lale, Arthur & Margaret Spiers, John and Beth Keoghan, Don and Chris Wethey, Omega v and Grace Amaofo, Amir, Laila, Reza, Tonya, Olileanya, Gideon, Josiah, Sunday, Duna, Zakka, Musa Buba, Musa Dan ‘Azumi, Collins, fellow PhD students at the Bio-Protection Research Centre, Brethren of St Patrick Catholic Church and St Stephen Anglican Church, Lincoln, and the Nigerian Canterbury Association New Zealand (NCANZ).
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • Departament De Biologia Funcional I Antropologia Física
    DEPARTAMENT DE BIOLOGIA FUNCIONAL I ANTROPOLOGIA FÍSICA EVALUACIÓN DE MECANISMOS DE RESISTENCIA A INSECTICIDAS EN FRANKLINIELLA OCCIDENTALIS (PERGANDE): IMPLICACIÓN DE CARBOXILESTERASAS Y ACETILCOLINESTERASAS NEUS LÓPEZ SOLER UNIVERSITAT DE VALÈNCIA Servei de Publicacions 2008 Aquesta Tesi Doctoral va ser presentada a València el dia 26 de juny de 2008 davant un tribunal format per: - D. Rafael Martínez Pardo - D. Félix Ortego Alonso - D. Juan Ferré Manzanero - D. Francisco José Beitia Crespo - D. Juan Javier Díaz Mayans Va ser dirigida per: Dª. Mª Dolores Garcerá Zamorano Dª. Amelia Cervera Olagüe ©Copyright: Servei de Publicacions Neus López Soler Depòsit legal: I.S.B.N.: 978-84-370-7227-2 Edita: Universitat de València Servei de Publicacions C/ Artes Gráficas, 13 bajo 46010 València Spain Telèfon: 963864115 Facultat de Ciències Biològiques Departament de Biologia Funcional i Antropologia Física Evaluación de mecanismos de resistencia a insecticidas en Frankliniella occidentalis (Pergande): implicación de carboxilesterasas y acetilcolinesterasas Neus López Soler Burjassot, València 2008 i Tesis presentada por Neus López Soler para optar al grado de Doctor en Ciencias Biológicas por la Universitat de València. Fdo. Neus López Soler Tesis dirigida por: Mª Dolores Garcerá Zamorano, Doctora en Ciencias Biológicas y Catedrática de Fisiología de la Universitat de València. Amelia Cervera Olagüe, Doctora en Ciencias Biológicas. Fdo. Mª Dolores Garcerá Zamorano Fdo. Amelia Cervera Olagüe La investigación presentada en esta Tesis se realizó en la Unidad de Fisiología Animal del Departament de Biologia Funcional i Antropologia Física de la Facultat de Ciències Biològiques de la Universitat de València, gracias al disfrute de una Beca del Programa Nacional de Formación de Profesorado Universitario (FPU) del Ministerio de Educación y Ciencia.
    [Show full text]
  • Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
    EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal.
    [Show full text]
  • An Improved Synthesis of Carbamates
    DECEMBER,1963 AN IMPROVEDSYNTHESIS OF CARBAMATES 342 1 tion, extraction with methylene chloride, and removal of the sol- (V), m.p. 223-224". The reaction mixture had a strong odor of vent a small amount of white solid. This solid was recrystallized mesitol, but no attempt was made to isolate it. twive from hexane to yield white needles of a-t-butoxy-a-mesityl- 2-Mesity1-lj3-indandionewith Diphenyliodonium Chloride .- acetophenone-0-carboxylic acid, m.p. llE~116~. To a solution of 84.8 mg. (0.76 mmole) of potassium t-butoxide in Anal. Calcd. for CZZHZ~~O~:C, 74.55; H, 7.39; mol. wt., 20 ml. of t-butyl alcohol there was added with stirring 200 mg. 354.43. Found: C, 74.50; H, 7.36; mol. wt., 392 and 311. (0.76 mmole) of l' and 243 mg. (0.76 mmole) of diphenyliodo- Removal of the &Butyl Group in Compound VI.-A solution of nium chloride. The orange solution was refluxed overnight, dur- 250 mg. of VI in 15 ml. of dioxane and 5 ml. of 6 N hydrochloric ing which time it turned a light yellow, and all the iodonium cation acid was heated on a steam bath for 2 hr. During this time the was consumed. The solvent was removed, and the residue was solution was reduced to half the volume, with formation of light chromatographed on a 100-g. Florid column. The ether eluate ivory colored needles. The mixture was diluted with 25 ml. of yielded a yellow oil which after two distillations at 180-200' water, the solid was collected and chromatographed on silica gel.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]
  • Resource Shifts in Malagasy Dung Beetles: Contrasting Processes Revealed by Dissimilar Spatial Genetic Patterns
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Ecology Letters, (2008) 11: 1208–1215 doi: 10.1111/j.1461-0248.2008.01239.x LETTER Resource shifts in Malagasy dung beetles: contrasting processes revealed by dissimilar spatial genetic patterns OnlineOpen: This article is available free online at www.blackwell-synergy.com Abstract Ilkka Hanski,1* Helena Wirta,1 The endemic dung beetle subtribe Helictopleurina has 65 species mostly in wet forests in Toshka Nyman1 and Pierre eastern Madagascar. There are no extant native ungulates in Madagascar, but three Rahagalala2 Helictopleurus species have shifted to the introduced cattle dung in open habitats in the 1 Department of Biological and past 1500 years. Helictopleurus neoamplicollis and Helictopleurus marsyas exhibit very limited Environmental Sciences, cytochrome oxidase subunit 1 haplotype diversity and a single haplotype is present University of Helsinki, across Madagascar, suggesting that these species shifted to cattle dung in a small region Viikinkaari 1, PO Box 65, followed by rapid range expansion. In contrast, patterns of molecular diversity in FI-00014, Helsinki, Finland 2 Helictopleurus quadripunctatus indicate a gradual diet shift across most of southern De´ partement dÕEntomologie, Faculte´ des Sciences, Universite´ Madagascar, consistent with somewhat broader diet in this species. The three cattle dÕAntananarivo, Antananarivo, dung-using Helictopleurus species have significantly greater geographical ranges than the B.P. 906, Madagascar forest-dwelling species, apparently because the shift to the currently very abundant new *Correspondence: E-mail: resource relaxed interspecific competition that hinders range expansion in the forest ilkka.hanski@helsinki.fi species.
    [Show full text]
  • Occasional Papers
    NUMBER 136, 37 pages 28 August 2020 BISHOP MUSEUM OCCASIONAL PAPERS TAXONOMIC REVISION AND BIOGEOGRAPHY OF PHASSODES BETHUNE -B AKER , 1905 (L EPIDOPTERA : H EPIALIDAE ), GHOST MOTH DESCENDANTS OF A SUBDUCTION ZONE WEED IN THE SOUTH -WEST PACIFIC JOHN R. G REHAN & C ARLOS G.C. M IELKE BISHOP MUSEUM PRESS HONOLULU Cover illustration: Selection of scales from central forewing of Phassodes spp. (see page 14). Photos by James Boone, Miho Maeda, and Agnes Stubblefield. Bishop Museum Press has been publishing scholarly books on the natu - ESEARCH ral and cultural history of Hawai‘i and the Pacific since 1892. The R Bishop Museum Occasional Papers (eISSN 2376-3191) is a series of UBLICATIONS OF short papers describing original research in the natural and cultural sci - P ences. BISHOP MUSEUM The Bishop Museum Press also published the Bishop Museum Bulletin series. It was begun in 1922 as a series of monographs presenting the results of research in many scientific fields throughout the Pacific. In 1987, the Bulletin series was superceded by the Museum’s five current monographic series, issued irregularly: Bishop Museum Bulletins in Anthropology (eISSN 2376-3132) Bishop Museum Bulletins in Botany (eISSN 2376-3078) Bishop Museum Bulletins in Entomology (eISSN 2376-3124) Bishop Museum Bulletins in Zoology (eISSN 2376-3213) Bishop Museum Bulletins in Cultural and Environmental Studies (eISSN 2376-3159) To subscribe to any of the above series, or to purchase individual publi - cations, please write to: Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA. Phone: (808) 848-4135. Email: [email protected]. BERNICE PAUAHI BISHOP MUSEUM The State Museum of Natural and Cultural History eISSN 2376-3191 1525 Bernice Street Copyright © by Bishop Museum Honolulu, Hawai‘i 96817-2704, USA Published online: 28 August 2020 ISSN (online) 2376-3191 Taxonomic revision and biogeography of Phassodes Bethune-Baker, 1905 (Lepidoptera: Hepialidae), ghost moth descendants of a subduc - tion zone weed in the south-west Pacific.
    [Show full text]
  • Water Feed Methods to Control Mw Distribution and Byproducts of the Carbamylation of Urea
    (19) TZZ _T (11) EP 2 949 687 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.12.2015 Bulletin 2015/49 C08G 71/02 (2006.01) C08G 63/48 (2006.01) (21) Application number: 15167165.8 (22) Date of filing: 11.05.2015 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Anderson, Jeff R. GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Midland, Michigan 48642 (US) PL PT RO RS SE SI SK SM TR • Daryoosh, Beigzadeh Designated Extension States: Midland, Michigan 48640 (US) BA ME • Yiyong, He Designated Validation States: Midland, Michigan 48642 (US) MA • Congcong, Lu Midland, Michigan 48640 (US) (30) Priority: 29.05.2014 US 201462004545 P (74) Representative: Houghton, Mark Phillip (71) Applicant: Dow Global Technologies Llc Patent Outsourcing Limited Midland, MI 48674 (US) 1 King Street Bakewell, Derbyshire DE45 1DZ (GB) (54) WATER FEED METHODS TO CONTROL MW DISTRIBUTION AND BYPRODUCTS OF THE CARBAMYLATION OF UREA (57) The present invention provides methods for carbamylation catalysts. The polycarbamate of the making a polycarbamate by feeding a) a urea in fluid form present invention when combined with a polyaldehyde into areaction medium containing b)an alkyd polyol, such or an acetal or hemiacetal thereof as a second compo- as a short or med oil alkyd polyol to form a reaction mix- nent makes a multicomponent composition that is sub- ture and then carbamylating the alkyd polyol by heating stantially isocyanate-free, and cures at a temperature of the reaction mixture while feeding water in to the reaction from 0 °C to less than 80 °C to form a crosslinked poly- mixture, preferably, in the presence of one or more c) urethane.
    [Show full text]
  • Urban Greening Manual. How to Put Nature Into Our Neighbourhoods
    Urban Greening Manual How to Put Nature into Our Neighbourhoods Application of Low Impact Urban Design and Development (LIUDD) Principles, with a Biodiversity Focus, for New Zealand Developers and Homeowners Maria Ignatieva, Colin Meurk, Marjorie van Roon, Robyn Simcock and Glenn Stewart Landcare Research Science Series No. 35 Coastal plant signature featuring sand coprosma, sea spurge, sedges, ngaio and cabbage trees, New Brighton, Christchurch. Photo: Colin Meurk Scree garden plant signatures on the Wellington Governors Bay native bush and rock gardens, the Waterfront – featuring sedges, knobby clubrush, silver and latter employing korokio, pohuehue, mikimiki, NZ fl ax, other tussock grasses, rengarenga, pohuehue, NZ iris, NZ lancewood, and cotulas in the lawn. Photo: Colin Meurk linen fl ax and reeds in swales beyond. Photo: Colin Meurk Large scale formal native (and adjacent conventional English) garden with totara, matai and miro hedges, kahikatea avenue, copses of different tree types and a diverse New Zealand border of trees and shrubs, Broadfi elds, near Prebbleton, Canterbury. Photo: Colin Meurk Urban Greening Manual How to Put Nature into Our Neighbourhoods Application of Low Impact Urban Design and Development (LIUDD) Principles, with a Biodiversity Focus, for New Zealand Developers and Homeowners Maria Ignatieva, Colin Meurk, Marjorie van Roon, Robyn Simcock and Glenn Stewart © Landcare Research New Zealand Ltd 2008 This information may be copied or reproduced electronically and distributed to others without restriction, provided Landcare Research New Zealand Ltd is acknowledged as the source of information. Under no circumstances may a charge be made for this information without the express permission of Landcare Research New Zealand Ltd.
    [Show full text]
  • Observations on a Root-Borer of Young Plantation Teak in Prome Forest Division
    Leaflet No. 2/79-80 Government of Union of Myanmar Ministry of Forestry Forest Department Observations on A Root-Borer of Young Plantation Teak in Prome Forest Division Aung Zeya Forest Research Institute February, 1980 i Acknowledgements I am indebted to U Tin Maung Kyi, Divisional Forest Officer, for his report and help in all ways possible; U Y.ACC. Doo, My Divisional Head, for his unstinted support; U Ohn, Deputy Director administrating the Director-General’s office for taking time off his many and varied duties to read the draft; Dr. G.R. Armstrong, Chief Technical Advisor, for his critical eye; and last but not least to U Sein Maung Wint, Director, FRI, for allowing me to carry out the present observations. ii Observations on A Root-Borer of Young Plantation Teak in Prome Forest Division By Aung Zeya Forest Research Division Forest Research Institute Yezin Abstracts The species identity of the insect has not yet been established but the general external morphology and life cycle are described and its systematic position discussed. Method of attack and nature of injury caused by the insect have been studied. The probable cause of attack on teak by this insect and development of possible methods of control are also discussed. Studies on transmission and the effect of injuries caused by the insect are still in progress. iii Contents Page Acknowledgement i Abstracts ii 1. Introduction .. .. .. .. 1 2. Meterials and Methods .. .. .. 4 2.1 Development of Plantations .. .. .. 4 2.2 Collection of Meterial .. .. .. 4 A. Larvae .. .. .. .. 4 B. Affected Host-Tree Specimens .. .. 4 C.
    [Show full text]