<<

for Paddlers Understanding Lake and Waves with Pictures

Greg Anderson Northeastern Illinois University

2017

The Gales 2017 G. Anderson Waves for Paddlers – slide 1 / 64

By Florian K - Own work, CC BY-SA 3.0 Local Motion In A Water

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 4 / 64 The Great Wave The Wave Local Motion In A Water Wave & Period, & Height Wavelength (λ) Wave Period (T ) Idealized Wave Spectrum Wavelength & Period, Lake Superior Buoy 45004 (2016) & Height Wave Speed & Reflection, Refraction & Diffraction Combining Waves Shoaling and Breaking

Group Velocity

Stokes Drift

The Gales 2017 G. Anderson Waves for Paddlers – slide 5 / 64 Wavelength (λ)

Wavelength: the distance over which a periodic wave repeats.

λ Distance 1λ 2λ 3λ λ

The Gales 2017 G. Anderson Waves for Paddlers – slide 6 / 64 Wave Period (T )

Period: the time interval in which a periodic wave repeats.

T Time 1T 2T 3T T

Wave = f =1/T .

The Gales 2017 G. Anderson Waves for Paddlers – slide 7 / 64 Idealized Wave Spectrum

Wave Period Wavelength Cause Capillary < 0.1 s < 0.02 m local wind Chop 1–10 s 1–10 m local wind 10–30 s 102 m distant storms ∼ 10 m–10 hr 102 km pressure, storm surge ∼ 10 60 min submarine disturbance − 12.4, 24.8 hr 103 km Sun, moon ∼

The Gales 2017 G. Anderson Waves for Paddlers – slide 8 / 64 Wave Height

Wave height: The vertical distance from peak to trough.

MWL Height

H . λ/7 (deep water) H . d/1.8 (shallow water)

Amplitude: One half of the Wave Height. The vertical distance from Mean Water Level (MWL) to the peak or trough.

The Gales 2017 G. Anderson Waves for Paddlers – slide 9 / 64 bbbbbbbbbbbbbbbbbb

Lake Superior Buoy 45004 (2016)

water depth = 237 m b 5 b

b b NOAA NDBC b

b

b b (m)

b

s 4

b b H

b b b b b b bb b bb b b b b b bb bb b b b bbb b b b bb b bb b b bbb bb 3 b bb b b b b b b b b bbb b bb b b bbb bb bb b b b b bbb bbb b b b bb bb b bbb b bb b b bb bb b b bb b bb b b bbbbb bbbb bb bb b bb bb bbb b b b b b bb b b b bbbbbbbbb bb bbb b bb b bb bbb b b bbbb bbbbbbb b bb b bbb bbb bb b b bbb bbb b b b bbb bb b bb bb b bbbbbb bbbb bbb b bb bbbbb bbbbb bb bb bb bbbb b bb bb bbbb bbbbbbb b b 2 b bbbb b bbb b bbb bbbbb b b b bb b bbb bbb bb bb bbbb bbbb b bbbbb bb b bbb bbbbbbbb bbbbbbb bbb b bb bbb bbbb b bb bbbbbbb bbbbbb bbbb b bbbbbbbbbb bb bbb bb b bb bbbbbb bbb bb b bbb bbbb bbbbbbb bbbb bbb bb b b bb bb bbbb bbbbbbbb bbb b b bbb bbbb bbbbbbbbbb bbbbb bb bb bbbbb bbbbbbbbb bbb bbb b b bbb bb bbbbbbb bbbbbbbbb bbbbbbb bbb b bbbbb bb bbbbb bbbbbbbb bbbbbbbbb bbbb bbbb bbbbb bb bbbbbbbbb bbbbbbbb bb bb b b bbbb bbbbb bbbbbbbbbbbb bbbbbbbbbbbb bbbbb b b bbbb bbbbbb bbbbbbb bbbbbbbbb bbb b b b b bbb bbbbb bbbbbbbbbb bbbb bbb b b b bb bb bbbbbbb bbbbbbbbbbbb bbbbbbbbbb b bb bb bb bbbbbbbbbbbb b bbbbbbbbbbb bbbbbbbb bbbbbbb bb b bbbbbbbb bbbbbbbb bbbbbbbbbb bbbbbbb bbbbb bb b b b b bbb bbbbbbb bbbbbb bbbbbbb bbbb bbb b b b bbbbb bbbbbbbb bbbbbb bbbbbbb bbbbbb b bb bb bbbbbb bbbbbbbbbb bbbbbbb bbbbbbbbb bbbbb bb bbbb bbbb bbbbbbbb bbbbbbb bbbbbbb bbbbbbbbbbb bbbb bb b b b bbb bbbbbbbbb bbbbbb bbbbbbbbbbbbb bbbbbbb bbbbb bbb b b bbbb bbbbb bbbbbbb bbbb bbbbbbbbbbbb bbbbbbbbbbb bbbbbbbbb bb bbb b b b bbbb bbbbb bbbbbbbbb bbbbbbbbbbbb bbbbbbbbbbb bbbb bbb bbb b b b b bb bbbbbbb bbbbbbbb bbbbbbb bbbbb b bbbbbb bbbbbbbbbbb bbb bb b b b bbb bbb bbbbbb bbbbbbbbbb bbbbbbbbbbbb bbbbbbbbbb bbbbbbbb bbb bbbb b b b bbb bbbbbbbbbb bbbbbbbbb bbbbbbbbbbbbbb bbbbbbbbbbbbbb bbb bbbbbb bb bbb b bbb 1 b bb bb bbbbbbbbb bbbbbbb bbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbb bbbbbbb b bbbb bbb b b b b bbb bbbb bbbbbb bbbbbbbbbbb bbbbbb bbbb bb bbbb bbbbbbbbbbbb bbbbbbb bb bb bbb bbbb bbb bbbbbb bbbbbbbbbb bbbbbbbbbbbbb bbbbbbbbbbbbbbb bbbbbbbbbb bbb bb b bbbbbbb bbbbbb bbbbbb bbbbbbb bbbbbbbbbbbbb bbb bbbbbb bbbb bbbbbbbb bbbbbbb bbbbbbbb bbb b b bbbb bbbbbb bbbb bbbbbbbbb bbbbbbbbbbb bbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbb bbbbbbbbbbbbb bbbbbbbbbb b bb b b b b bbbb bbbbbb bbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbb bbbbbbbbbb bbbb bbbbbbbbbbbbbbbbb bb bbbbb b b b b bbbb bbbb bbbbbb bbbbbbbbbbbbbbb bbb bbbbbbb bbbbbb bbbbbbbbbbbb bbb bbbbbbbbbbbbbb bbbbbbbbbb bbbbb b bbbb b b bbbb bbbbbbbbbb bbbbbbbb bbbbbbbbbbb bbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbb bbbbbbbbbbbb bbbbbb bbbbbb b b b b bb b bb bb bbbbb bbbb bbbbbbbbbb bbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbb bbbbbbbb bbb bb bbb b b b bb bbbbb bbb bbbbbbbbbbbbbbbb bbbb bbbbbbb bbb bbbbb bbbbbbbbbb bbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbb bbb bbbbbbbbbbbbbbb bbbbbb bbb bbbbbb b bbb b bbbb bbbbbb bbbbb bbbbb bbbbbbbbbbb bbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbb bbbbbbbbbbbb bbbb bbbbbbbbbbbbbbb bbbb bb bb bb b bbbb bbbbbbb bbbbbb bbbbbbbbb bbbbbbbbbbbbbbbbbb bbbbbbbbbbb bb bbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbb bbbbb bbbbb bbbbbbbbbbbbbbb b bbb b b b b b bbbb bbb bb bbbbb bbbbbb bbbbbbbbbbbb bbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbb bbbbbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbb bbbb bb b bbb b b b bb bbbb bbbbb bbbbbbbbb bbbbbbbbbb bbbb bbbbb bbbbbbbb bbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbb bbbbbbbbbb bbbbbbbbbbbbbbbb bbbb bb bb b b b bb bb bbbb bb bbbbbbbbbbb bbbbbbbbbbbbb bbbb bbbbbbb bbbbb bbbbbbbbbbbbbb bbbb bbbbbbbb bbbbbbb bbbbbbbbbbbbbb bbbbbbbb bb b bbb b b b bb bbb bbbbbbbb bbbbbbbbbbbb bbb bbbbbb bbbbb bbbbbbbbbbbbbbbbb b bbbbbbbbbbbbbb bbbbbbbbbbbb bbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbb bbbbbbb bbbbb bbbbb b bbb b bbb bbbbbb bbb bbbbbbbbbbbbbbbbbbbb b bbbb bbbb bbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbb bbbbbbb bbb bbbbbb bbbbbbbbbbbbbbbbbb bb b bbbbbbbbbbbbb bbbbbbbbb b bbbbbbbb b b b bbb b bbbb bb bbbbbb bbbbbbbbbb bb bbbbb bbbbbbb bbbbbbbbbbb bbbbbbbbbbbb bbbbbbbbbbbbbb bbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbb bbbb b bbbbbbbbbbb bbbb bb bbbbbbbbbb bb bbbbbbbbbbb bb bbbbb bb bb b bbb bbbbbbb bbb bbbbbbb bbbbbbbb bbbbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbb bbbbbbbb bbbbbbb bbbbbbbbbbb b bbbb b bbbb bbbbb bbbbbbbbbbbbbbb bbbbbb b bbbbbbbbb bb bb bbbbbb bbbbb bb bbb bb bb b bb bbb bbbbbbbb bbbbbbbbbbb bbbb bbbbb b bbbbbbbb bbbbbbbbbbb bbbbbbbbbbbbb bbbbbb bbbb bbbbbbbbbbbbb bbbb bbbbbbbbbbbb bbbbbbbbbbbbb bbbb b b bb b bbb bbbbbbbbb bbbb bbbb bbbbb bbb bbbbbb bbbbbbbbb bbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbb bbbbbb bbbbb bb bb bbbbbbbbbbbbbbbb bbbbbbbbbbb bbbbb bb b b b bbbbbb bbbbb bbbbb bbbb bbbb bbbbbbbbbb bbbbbbbb bbbb bbbbbbb bbbbbbbbbbb bbbbbbbbb bbbb bbbbbbbbbbbbbbbbb bbbbbbbbb bbbbb bbbbbbbbbbbbbbbb bbbbbbb b bbb bbbbbb bbb bbbb bb bb bbbbbbb bbbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbb bbbbbb bbbb bbb bbbbbbbbbbbb bbb bb bbbbb bbbbbbbbbbbbb bbbbbbb bbbbb bbbbb bbbbbbbbbbbbbbbb bbb b bbbbbbbbbbbbbb b bbbbbbbbbbbb bbbbbbb bbb b b b Significant Wave Height b b bbb bbbbbbb bbbbbbb bbb bbbbbbbbbbbb bbbbbb bbbbbbbbbbb bbbbbb bbbb bbbbbbbbb bbbbbbbbbbbbbb bbbbbbb bbbbbbbbbb bbbbbbbb bbb bbb bb bb bb bb b b b bbb bb bbb bbb bbbbbb bbb bbb bbbb b bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 0 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 0 1 2 3 4 5 6 7 8 9 101112 Dominant Wave Period (seconds)

The Gales 2017 G. Anderson Waves for Paddlers – slide 10 / 64 The Great Wave The Wave Local Motion In A Water Wave Wavelength & Period, & Height Wave Speed & Dispersion Wave Speed Dispersion Wave Speed & Estimating Wave Speeds Wave Speeds in Deep Water Dispersion (d > λ/2) Deep vs Shallow Regimes Reflection, Refraction & Diffraction Combining Waves Shoaling and Breaking

Group Velocity

Stokes Drift

The Gales 2017 G. Anderson Waves for Paddlers – slide 11 / 64 Wave Speed

The velocity of the wave satisfies: λ = cT

t =0 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The of the wave satisfies: λ = cT

t = 1T 8 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The phase velocity of the wave satisfies: λ = cT

t = 2T 8 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The phase velocity of the wave satisfies: λ = cT

t = 3T 8 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The phase velocity of the wave satisfies: λ = cT

t = 4T 8 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The phase velocity of the wave satisfies: λ = cT

t = 5T 8 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The phase velocity of the wave satisfies: λ = cT

t = 6T 8 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The phase velocity of the wave satisfies: λ = cT

t = 7T 8 x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Wave Speed

The phase velocity of the wave satisfies: λ = cT

t = T x

The Gales 2017 G. Anderson Waves for Paddlers – slide 12 / 64 Dispersion

Deep water is dispersive. Wave speed depends on wavelength. In deep water, longer waves move faster than shorter • waves.

slower faster In shallow water, waves travel slower as the depth • decreases.

faster slower

The Gales 2017 G. Anderson Waves for Paddlers – slide 13 / 64 Estimating Wave Speeds

Deep water: 1 • c (6 knots) λ/6(meters) ≈ × (6 knots) √p#boat lengths ≈ × Shallow water: • c (6 knots) d (meters)

1 ≈ × 1m/s 2 knots p The Gales 2017≈ G. Anderson Waves for Paddlers – slide 14 / 64 Wave Speeds in Deep Water (d>λ/2)

Wave speed is proportional to the period T : • c = g T (1.6m/s) T 2π ≈ × 1 seconds  (3.0 knots) T ≈ × 1 second  To speed you up on a downwind run: • c> 6 knots, T> 2 seconds

“Good” swell for surfing: • T = 10 seconds, c = 30 knots

The Gales 2017 G. Anderson Waves for Paddlers – slide 15 / 64 Deep vs Shallow Regimes

c c c

Vertical scale 2× Wave height 5×

Deep Transition Shallow λ λ λ d>λ/2 20

gλ c = 2 c = √gd q π In the transition zone, c, λ ↓ 1/3.27 ∼ 1/3, v/c ↑ 2 H ↑ 1.28 ∼ 2, and Hλ ↑ 4.18 ∼ 4

The Gales 2017 G. Anderson Waves for Paddlers – slide 16 / 64 The Great Wave The Wave Local Motion In A Water Wave Wavelength & Period, & Height Wave Speed & Dispersion Reflection, Refraction & Reflection, Refraction & Diffraction Reflection A Typical Beach Refraction Diffraction A Beach (seen from above) Huygens’ Principle Diffraction OAS Shoreline Combining Waves Shoaling and Breaking

Group Velocity

Stokes Drift

The Gales 2017 G. Anderson Waves for Paddlers – slide 17 / 64 Wave Reflection

Cliff Wave Reflection

θ θ

Cliff Wave Reflection

θ θ

Cliff deep Refraction

shallow deep Refraction

shallow

Huygens’ Principle

Huygens’ Principle: Every point on a wave front can be considered as a source of tiny wavelets that spread out in the forward direction at the speed of the wave. The new wave front at a later time is the envelope of the individual wavelets.

The Gales 2017 G. Anderson Waves for Paddlers – slide 22 / 64 Huygens’ Principle

Huygens’ Principle: Every point on a wave front can be considered as a source of tiny wavelets that spread out in the forward direction at the speed of the wave. The new wave front at a later time is the envelope of the individual wavelets.

The Gales 2017 G. Anderson Waves for Paddlers – slide 22 / 64 Huygens’ Principle

Huygens’ Principle: Every point on a wave front can be considered as a source of tiny wavelets that spread out in the forward direction at the speed of the wave. The new wave front at a later time is the envelope of the individual wavelets.

The Gales 2017 G. Anderson Waves for Paddlers – slide 22 / 64 Huygens’ Principle

Huygens’ Principle: Every point on a wave front can be considered as a source of tiny wavelets that spread out in the forward direction at the speed of the wave. The new wave front at a later time is the envelope of the individual wavelets.

The Gales 2017 G. Anderson Waves for Paddlers – slide 22 / 64 Diffraction

Diffraction: The bending of waves around obstacles into the shadow region.

The Gales 2017 G. Anderson Waves for Paddlers – slide 23 / 64 Diffraction

Diffraction: The bending of waves around obstacles into the shadow region.

The Gales 2017 G. Anderson Waves for Paddlers – slide 23 / 64 Diffraction

Diffraction: The bending of waves around obstacles into the shadow region.

The Gales 2017 G. Anderson Waves for Paddlers – slide 23 / 64 Diffraction

Diffraction: The bending of waves around obstacles into the shadow region.

The Gales 2017 G. Anderson Waves for Paddlers – slide 23 / 64 Diffraction

Diffraction: The bending of waves around obstacles into the shadow region.

The Gales 2017 G. Anderson Waves for Paddlers – slide 23 / 64

The Great Wave The Wave Local Motion In A Water Wave Wavelength & Period, & Height Wave Speed & Dispersion Reflection, Refraction & Diffraction Combining Waves Combining Waves Lake Erie Principle of Superposition Constructive Interference Destructive Interference Clapotis Harmonic Building Blocks Building Waves with Harmonics Kayak Cresting Wave Tall Waves in Deep Water Tallest Waves in The Gales 2017 G. Anderson Waves for Paddlers – slide 25 / 64 Deep Water Waves on Lake Erie, photo credit: Dave Sandford Waves on Lake Erie, photo credit: Dave Sandford Principle of Superposition

Interference: When two waves travel through the same region of space at the same time they interfere. Principle of superposition: The of the resulting wave is the sum of the of the two individual waves.

x Amplitude

The Gales 2017 G. Anderson Waves for Paddlers – slide 27 / 64 Principle of Superposition

Interference: When two waves travel through the same region of space at the same time they interfere. Principle of superposition: The amplitude of the resulting wave is the sum of the amplitudes of the two individual waves.

x Amplitude

The Gales 2017 G. Anderson Waves for Paddlers – slide 27 / 64 Constructive Interference

When peaks and troughs align, waves interfere construtively.

A(x,t) = A1(x,t) + A2(x,t) Amplitude

The Gales 2017 G. Anderson Waves for Paddlers – slide 28 / 64 Constructive Interference

When peaks and troughs align, waves interfere construtively.

A(x,t) = A1(x,t) + A2(x,t) Amplitude

The Gales 2017 G. Anderson Waves for Paddlers – slide 28 / 64 Destructive Interference

When peaks align with troughs, waves interfere destructively.

A(x,t) = A1(x,t) + A2(x,t) Amplitude

The Gales 2017 G. Anderson Waves for Paddlers – slide 29 / 64 Destructive Interference

When peaks align with troughs, waves interfere destructively.

A(x,t) = A1(x,t) + A2(x,t) Amplitude

The Gales 2017 G. Anderson Waves for Paddlers – slide 29 / 64 Clapotis

A caused by interference between an incident wave and the reflected wave from a nearly vertical shoreline. Full clapotis produces a standing wave which is twice the height of the incident wave.

Image Credit: Rob Casey Image Credit: Alec Bloyd-Peshkin

The Gales 2017 G. Anderson Waves for Paddlers – slide 30 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Clapotis

The Gales 2017 G. Anderson Waves for Paddlers – slide 31 / 64 Harmonic Building Blocks

First Harmonic λ1 = Fundamental

Second Harmonic 1 λ2 = 2 λ1

Third Harmonic 1 λ3 = 3 λ1

Complicated wave shapes are built by superimposing , cosines and their harmonics.

The Gales 2017 G. Anderson Waves for Paddlers – slide 32 / 64 Building Waves with Harmonics

MWL

As waves grow in height, harmonics are produced. Adding these harmonic waves results in waves with sharper crests and flatter troughs.

The Gales 2017 G. Anderson Waves for Paddlers – slide 33 / 64

Tall Waves in Deep Water

Tall waves in deep water are known as Stokes waves.

MWL

Figure 1: Linear (Airy) vs. Nonlinear (Stokes) solution for a sur- face wave. Note the steepening of the waves near the peak, and the flattening of the troughs. Vertical scale exagerated 2.5 . × In deep water, the maximum wave height is:

H λ/7 max ≈ Whitecaps form when H = Hmax.

The Gales 2017 G. Anderson Waves for Paddlers – slide 35 / 64 Tallest Waves in Deep Water

x ct 1 η = Aλ cosh − 1 ,A = 1.108   λ  −  √3 sinh(1/2) ≈

◦ ◦ 120 H ≈ λ/7 120

λ

Maximum steepness: 30◦ • Maximum height: Hmax λ/7 • ≈ Whitecaps form when H = Hmax. •

The Gales 2017 G. Anderson Waves for Paddlers – slide 36 / 64 Stokes &

Airy (linear) vs Stokes (nonlinear, deep water) H . λ/7

U = 10 Vertical Relief 2×

Cnoidal (nonlinear, shallow water) H . d/2

U = 100 Vertical Relief 4×

The Gales 2017 G. Anderson Waves for Paddlers – slide 37 / 64 By Michel Griffon - Own work, CC BY 3.0 The Great Wave The Wave Local Motion In A Water Wave Wavelength & Period, & Height Wave Speed & Dispersion Reflection, Refraction & Diffraction Shoaling and Breaking Combining Waves Shoaling and Breaking Pic Shoaling Breaking Waves Breaking Waves: Two Limits Surfing Three Types of Surf Breaks Point Break Point Break Point Break Reef Break Reef Break The Gales 2017 G. Anderson Waves for Paddlers – slide 39 / 64 Group Velocity Image Credit: Andrew Schmidt Shoaling

Waves slow down, decrease in wave- length, and increase in height when entering shallow water.

Vertical Scale 3X Wave height 5X

λ = cT

The Gales 2017 G. Anderson Waves for Paddlers – slide 41 / 64 Breaking Waves

As waves enter shallow water they slow down, bunch together, build in height, and break.

Breaking conditions: H 1λ (deep water) • ≈ 7 d 1.8H (shallow water) • ≈

Image Credit: Scott Fairty How a wave breaks depends on the wavelength and the steepness of the ocean or lake floor.

The Gales 2017 G. Anderson Waves for Paddlers – slide 42 / 64 Breaking Waves: Two Limits

Spilling breakers: ocean/lake floor with a gradual . •

Plunging breakers: ocean/lake floor with a sudden depth • change. Reef, sandbar, ...

The Gales 2017 G. Anderson Waves for Paddlers – slide 43 / 64

Three Types of Surf Breaks

Beach Break Waves breaking in shallow water on a sandy bottom. Big storms can move sand and change these breaks. e.g., Trestles in California. Point Break A surf break where diffraction amplifies waves at headlands. Wave refraction can give you long runs. e.g., Rincon in California. Reef Break Shallow reefs, typically farther offshore than other breaks and the surrounding water is deeper. e.g., The Pipelien in Hawaii.

The Gales 2017 G. Anderson Waves for Paddlers – slide 45 / 64 Rincon Point, California Kuda Huraa, Maldives The Trestles, Orange County Waves breaking on the Great Mesoamerican Reef, c Mike Beck, the Nature Conservancy Reef Break, Brazil The Great Wave The Wave Local Motion In A Water Wave Wavelength & Period, & Height Wave Speed & Dispersion Reflection, Refraction & Diffraction Group Velocity Combining Waves Shoaling and Breaking

Group Velocity Wave Sets and Group Velocity Surfing Sorted Waves Phase and Group Velocity Waikiki Beach Regimes

Stokes Drift

The Gales 2017 G. Anderson Waves for Paddlers – slide 51 / 64 Wave Sets and Group Velocity

Why do waves come in sets? • How can understanding group velocity make me • a better paddler in the ?

The Gales 2017 G. Anderson Waves for Paddlers – slide 52 / 64

Sorted Waves

When waves arrive from distant storms, dispersion sorts them into groups of waves with similiar .

shorter, longer, ← storm slower faster waves waves

Long sorted waves, free of chop, are known as swell.

The Gales 2017 G. Anderson Waves for Paddlers – slide 54 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64 Phase and Group Velocity

The Gales 2017 G. Anderson Waves for Paddlers – slide 55 / 64

Regimes

1.0 = Hλ <–dispersive non-dispersive–> U d3 ) 0.8 Waves Break! Williams/Fenton H/d

0.6 Nelson H/d = 0.55

b b

7 U U / = 25 = 40 0.4 = 1 H/λ StokesTheory CnoidalTheory 0.2 Wave height/depth (

0 vg 3 0 Deep = 1 Very Shallow 2 10 vp 4 10 10 Wavelength/depth (λ/d)

The Gales 2017 G. Anderson Waves for Paddlers – slide 57 / 64 The Great Wave The Wave Local Motion In A Water Wave Wavelength & Period, & Height Wave Speed & Dispersion Reflection, Refraction & Diffraction Stokes Drift Combining Waves Shoaling and Breaking

Group Velocity

Stokes Drift Driftwood Local Motion In A Water Wave Stokes Drift Stokes Drift Ratio of Stokes Drift to Wave Speed Video Clips

The Gales 2017 G. Anderson Waves for Paddlers – slide 58 / 64

Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Local Motion In A Water Wave

In deep water, waves oscillate in circles. The radius decreases with depth.

The Gales 2017 G. Anderson Waves for Paddlers – slide 60 / 64 Stokes Drift

Larger circles above • Smaller circles below • Net motion to the right The• Gales 2017 G. Anderson Waves for Paddlers – slide 61 / 64 Stokes Drift

The Gales 2017 G. Anderson Waves for Paddlers – slide 62 / 64 Deep Water Animation: Deep Water Ratio of Stokes Drift to Wave Speed

0.20 2

πH 4πz/λ Stokes 7 uL/v e ≈ λ λ/ 0.15  ∼

2 H πH cosh 2kd uL/v 2 sinh2 2 λ kd = d/ ≈ H 1 0.10  ≫ dk

shallow breaking wave 0.05 Cnoidal Deep water Steep breaking surf

Stokes drift/wave speed 0 0 0.05 0.10 0.15 wave height/wavelength

Example: Ten second swell in deep water (λ 156 m, Hmax 22 m), ≈ ≤ T v (3 knots) 30 knots ≈ seconds ≈

The Gales 2017 G. Anderson Waves for Paddlers – slide 63 / 64 Video Clips

Breaking wave video: Side view. • Breaking wave video: From below. • FloWave Exhibition • Standing Waves •

The Gales 2017 G. Anderson Waves for Paddlers – slide 64 / 64