CENTRAL CAMINA PAIRS a Dissertation Submitted to Kent State

Total Page:16

File Type:pdf, Size:1020Kb

CENTRAL CAMINA PAIRS a Dissertation Submitted to Kent State CENTRAL CAMINA PAIRS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by David G. Costanzo May 2020 c Copyright All rights reserved Except for previously published materials Dissertation written by David G. Costanzo B.S., University of Scranton, 2010 M.S., University of Scranton, 2012 M.S., Kent State University, 2018 Ph.D., Kent State University, 2020 Approved by Mark L. Lewis , Chair, Doctoral Dissertation Committee Stephen M. Gagola, Jr. , Members, Doctoral Dissertation Committee Donald L. White Scott A. Courtney Joanne Caniglia Accepted by Andrew M. Tonge , Chair, Department of Mathematical Sciences Mandy Munro-Stasiuk, Ph.D. , Interim Dean, College of Arts and Sciences TABLE OF CONTENTS TABLE OF CONTENTS . iii ACKNOWLEDGMENTS . v 1 INTRODUCTION . 1 2 ELEMENTARY GROUP THEORY . 6 3 CAMINA PAIRS . 12 3.1 Camina Pairs . 12 3.2 Central Camina Pairs . 14 4 MAIN RESULTS ON CENTRAL CAMINA PAIRS . 17 4.1 Central Camina Pairs of Nilpotence Class at Least 4 . 17 4.2 Central Camina Pairs of Nilpotence Class 3 . 20 4.3 Resolving Conjecture (L) in Special Cases . 21 4.4 A Minimal Counterexample to Conjecture (L) . 22 4.5 More Results on Central Camina Pairs . 26 5 A PARTICULAR GRAPH ATTACHED TO A GROUP . 30 5.1 Introduction . 30 5.2 More Elementary Group Theory . 31 5.3 Basic Graph Theory . 32 5.4 Preliminary Observations . 33 5.5 2-Frobenius Groups . 36 BIBLIOGRAPHY . 42 iii DEDICATION This work is dedicated to the memory of my father Gabriel R. Costanzo. iv ACKNOWLEDGMENTS I thank my advisor, Dr. Mark L. Lewis. I thank him for formulating the conjecture that so greatly stimulated my interest. I thank him for his patience as I was presenting trial runs in an attempt to resolve this conjecture. Finally, I thank him for playing such a important role in my mathematical development. Many thanks go to Dr. Donald L. White, whose character theory course in the Spring 2018 semester benefited me greatly. I also thank Dr. White for carefully reading this dissertation and providing me with excellent feedback, which led to many improvements. I thank Dr. Stephen M. Gagola, Jr. for many useful comments on a draft of this dissertation and, most importantly, I thank him for Theorem 6.3 in [3]. I thank Stefano Schmidt, Eyob Tsegaye, and Gabe Udell for an awesome summer of research. I am extremely grateful that our paths crossed. I thank Alexander D. Bongiovanni for many conversations about the graduate student experience. Many thanks go to Edward D. Penetar for years and years of unwavering friendship. I also thank him for his countless attempts to keep me sane. Finally, I thank my mother, Susan A. Costanzo, for her support and patience throughout this process. v CHAPTER 1 INTRODUCTION All groups under consideration are assumed to be of finite order. The primary focus of this dissertation is central Camina pairs. In the last chapter, however, the cyclic graph of a 2-Frobenius group is discussed. Let G be a group. Assume that G has a nontrivial proper subgroup H satisfying H \ Hg = f 1 g for every g 2 G n H. Under this assumption, G is called a Frobenius group and H is called a Frobenius complement. If G is a Frobenius group with Frobenius complement H, then the set ! [ N = G n Hg [ f 1 g g2G turns out to be a normal subgroup of G. The subgroup N is called the Frobenius kernel of G. Let G be a Frobenius group with Frobenius kernel N, and consider the following condition, which is satisfied by the elements in N and the elements in G n N. For every x 2 G n N and for every a 2 N, the element x is conjugate to xa. A.R. Camina [1] studied the structure of a group G with a nontrivial proper normal subgroup N satisfying this condition. One of the main results obtained in [1] is the following classification. Theorem (Camina, [1], Theorem 2). Let G be a group and let N be a nontrivial proper normal subgroup of G. Assume that for every x 2 G n N and for every a 2 N, the element x is conjugate to xa. Then 1 1. G is a Frobenius group with Frobenius kernel N, or 2. G=N or N is a p-group for some prime p. Several authors continued this line of work, and the following definition became standard. If G is a group with a nontrivial proper normal subgroup N such that for every x 2 G n N and for every a 2 N, the element x is conjugate to xa, then (G; N) is called a Camina pair. The notion of a Camina pair has numerous equivalent formulations; see Lemma 3.1 in this dissertation and Lemma 4.1 in [10]. In particular, if N is a nontrivial proper normal subgroup of G, then (G; N) is a Camina pair if and only if for every x 2 G n N and for every a 2 N, there exists an element b 2 G such that a = [b; x]. This condition shall be our official definition of a Camina pair. Let (G; N) be a Camina pair. Then Z(G) ≤ N ≤ G0; see Lemma 3.2. If N = G0, then G is called a Camina group. Camina groups have been the subject of much investigation; see [2], [9], [11], and [12]. The focus in this dissertation is the other extreme: namely, N = Z(G). A Camina pair (G; Z(G)) is called a central Camina pair. Mark L. Lewis pioneered an investigation of central Camina pairs in [8]. Lewis made the following key observation. Theorem (Lewis, [8], Lemma 2.1). If (G; Z(G)) is a Camina pair, then G is a group of prime power order. The proof given in [8] of the previous fact uses Camina's classification result mentioned previously. A proof that does not rely on this classification appears below as Lemma 3.5. The following conjecture was made in [8]. Conjecture (L). If (G; Z(G)) is a Camina pair, then jG : Z(G)j ≥ jZ(G)j2. 2 Lewis was able to obtain the following bound, which appears as Theorem 3 in [8]. Theorem (Lewis, [8], Theorem 3). If (G; Z(G)) is a Camina pair, then jG : Z(G)j > jZ(G)j4=3: Let (G; Z(G)) be a Camina pair, and recall that G must be a p-group for some prime p. Under the additional condition that the factor group G=Z(G) has exponent at least p2, Lewis was indeed able to establish that jG : Z(G)j ≥ jZ(G)j2; in fact, a stronger bound is obtained. The following theorem is Theorem 5 in [8]. Theorem (Lewis, [8], Theorem 5). If (G; Z(G)) is a Camina pair where G is a p-group and the factor group G=Z(G) has exponent pn, n ≥ 2, then jG : Z(G)j ≥ jZ(G)jnpn: Resolving Conjecture (L) is the primary motivation of this dissertation. In contrast to the efforts mentioned above, the approach here is to partition the problem according to the nilpotence class of G. In particular, Conjecture (L) is resolved when the nilpotence class of G is at least 4. Theorem A. If (G; Z(G)) is a Camina pair where the group G has nilpotence class at least 4, then jG : Z(G)j > jZ(G)j2: Caution should be exercised here. If specialized conditions are imposed on a nilpotent group, then there may exist a constant that bounds the nilpotence class. In particular, the condition that (G; Z(G)) forms a Camina pair may force G to have a small nilpotence class, which of course lessen the content of Theorem A. Fortunately, central Camina pairs of nilpotence class at least 4 are abundant. The following theorem recasts Theorem 6.3 in [3] in our present terminology. 3 Theorem (Gagola, [3], Theorem 6.3). If P is a p-group, then there exists a group G such that (G; Z(G)) is a Camina pair and P is isomorphic to a subgroup of G=Z(G). In particular, notice that Gagola's result yields that central Camina pairs can have arbitrarily large nilpotence class. Let (G; Z(G)) be a Camina pair. With Conjecture (L) resolved when G has nilpotence class at least 4, the situation where G has nilpotence class 3 needs to be handled. Unfortunately, Conjecture (L) remains open under this hypothesis. The following inequality, however, is obtained; note that this inequality improves existing bounds. Theorem B. If (G; Z(G)) is a Camina pair where the group G has nilpotence class 3, then jG : Z(G)j > jZ(G)j3=2: Let (G; Z(G)) be a Camina pair and assume that G has nilpotence class 2. Under these hypotheses, G0 = Z(G), and so G is a Camina p-group of nilpotence class 2. I.D. MacDonald [11] proved that jG : Z(G)j ≥ jZ(G)j2 in this situation. Combining this fact with the results above, the following general bound for central Camina pairs is obtained. Corollary C. If (G; Z(G)) is a Camina pair, then jG : Z(G)j > jZ(G)j3=2: 0 Seeking another way to approach Conjecture (L), recall that Z2(G) ≤ CG(G ) for 0 0 any group G. So, if G is a group, then either Z2(G) = CG(G ) or Z2(G) < CG(G ). A strong bound is obtained when (G; Z(G)) is a Camina pair satisfying the condition 0 that Z2(G) < CG(G ).
Recommended publications
  • Frattini Subgroups and -Central Groups
    Pacific Journal of Mathematics FRATTINI SUBGROUPS AND 8-CENTRAL GROUPS HOMER FRANKLIN BECHTELL,JR. Vol. 18, No. 1 March 1966 PACIFIC JOURNAL OF MATHEMATICS Vol. 18, No. 1, 1966 FRATTINI SUBGROUPS AND φ-CENTRAL GROUPS HOMER BECHTELL 0-central groups are introduced as a step In the direction of determining sufficiency conditions for a group to be the Frattini subgroup of some unite p-gronp and the related exten- sion problem. The notion of Φ-centrality arises by uniting the concept of an E-group with the generalized central series of Kaloujnine. An E-group is defined as a finite group G such that Φ(N) ^ Φ(G) for each subgroup N ^ G. If Sίf is a group of automorphisms of a group N, N has an i^-central series ι a N = No > Nt > > Nr = 1 if x~x e N3- for all x e Nj-lf all a a 6 £%f, x the image of x under the automorphism a e 3ίf y i = 0,l, •••, r-1. Denote the automorphism group induced OR Φ(G) by trans- formation of elements of an £rgroup G by 3ίf. Then Φ{£ίf) ~ JP'iΦiG)), J^iβiG)) the inner automorphism group of Φ(G). Furthermore if G is nilpotent9 then each subgroup N ^ Φ(G), N invariant under 3ίf \ possess an J^-central series. A class of niipotent groups N is defined as ^-central provided that N possesses at least one niipotent group of automorphisms ££'' Φ 1 such that Φ{βίf} — ,J^(N) and N possesses an J^-central series. Several theorems develop results about (^-central groups and the associated ^^-central series analogous to those between niipotent groups and their associated central series.
    [Show full text]
  • A Class of Frobenius Groups
    A CLASS OF FROBENIUS GROUPS DANIEL GORKNSTEIN 1. Introduction. If a group contains two subgroups A and B such that every element of the group is either in A or can be represented uniquely in the form aba', a, a' in A, b 5* 1 in B, we shall call the group an independent ABA-group. In this paper we shall investigate the structure of independent ABA -groups of finite order. A simple example of such a group is the group G of one-dimensional affine transformations over a finite field K. In fact, if we denote by a the transforma­ tion x' = cox, where co is a primitive element of K, and by b the transformation x' = —x + 1, it is easy to see that G is an independent ABA -group with respect to the cyclic subgroups A, B generated by a and b respectively. Since G admits a faithful representation on m letters {m = number of elements in K) as a transitive permutation group in which no permutation other than the identity leaves two letters fixed, and in which there is at least one permutation leaving exactly one letter fixed, G is an example of a Frobenius group. In Theorem I we shall show that this property is characteristic of independent ABA-groups. In a Frobenius group on m letters, the set of elements whose order divides m forms a normal subgroup, called the regular subgroup. In our example, the regular subgroup M of G consists of the set of translations, and hence is an Abelian group of order m = pn and of type (p, p, .
    [Show full text]
  • Isomorphic Groups and Group Rings
    Pacific Journal of Mathematics ISOMORPHIC GROUPS AND GROUP RINGS DONALD STEVEN PASSMAN Vol. 15, No. 2 October 1965 PACIFIC JOURNAL OF MATHEMATICS Vol. 15, No. 2, 1965 ISOMORPHIC GROUPS AND GROUP RINGS D. S. PASSMAN Let © be a finite group, £ a commutative ring with one and S[@] the group ring of © over S. If ξ> is a group with © = £ then clearly S[(S] = S[£>] where the latter is an S-iso- morphism. We study here the converse question: For which groups © and rings S does £[©] ^ S[ξ>] imply that © is iso- morphic to £)? We consider first the case where S = K is a field. It is known that if © is abelian then Q[@] = Q[ξ>] implies that © = §> where Q is the field of rational numbers. We show here that this result does not extend to all groups ©. In fact by a simple counting argument we exhibit a large set of noniso- morphic p-groups with isomorphic group algebras over all noncharacteristic p fields. Thus for groups in general the only fields if interest are those whose characteristic divides the order of the group. We now let S = R be the ring of integers in some finite algebraic extension of the rationale. We show here that the group ring R[@>] determines the set of normal subgroups of © along with many of the natural operations defined on this set. For example, under the assumption that © is nilpotent, we show that given normal subgroups 3Dΐ and 9ΐ, the group ring determines the commutator subgroup (3JI, 91). Finally we consider several special cases. In particular we show that if © is nilpotent of class 2 then R[(g\ = β[§] implies © = €>.
    [Show full text]
  • View This Volume's Front and Back Matter
    http://dx.doi.org/10.1090/gsm/100 Algebr a A Graduat e Cours e I. Martin Isaacs Graduate Studies in Mathematics Volume 100 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 00A05; Secondary 12-01, 13-01, 16-01, 20-01. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-100 Library of Congress Cataloging-in-Publication Data Isaacs, I. Martin, 1940- Algebra : a graduate course / I. Martin Isaacs. p. cm. — (Graduate studies in mathematics ; v. 100) Originally published: Pacific Grove, Calif. : Brooks/Cole, cl994. Includes bibliographical references and index. ISBN 978-0-8218-4799-2 (alk. paper) 1. Algebra—Textbooks. I. Title. QA154.2.I83 2009 512—dc22 2008047416 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 1994 held by the American Mathematical Society, All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]
  • A Note on Frobenius Groups
    Journal of Algebra 228, 367᎐376Ž. 2000 doi:10.1006rjabr.2000.8269, available online at http:rrwww.idealibrary.com on A Note on Frobenius Groups Paul Flavell The School of Mathematics and Statistics, The Uni¨ersity of Birmingham, CORE Birmingham B15 2TT, United Kingdom Metadata, citation and similar papers at core.ac.uk E-mail: [email protected] Provided by Elsevier - Publisher Connector Communicated by George Glauberman Received January 25, 1999 1. INTRODUCTION Two celebrated applications of the character theory of finite groups are Burnside's p␣q ␤-Theorem and the theorem of Frobenius on the groups that bear his name. The elegant proofs of these theorems were obtained at the beginning of this century. It was then a challenge to find character-free proofs of these results. This was achieved for the p␣q ␤-Theorem by Benderwx 1 , Goldschmidt wx 3 , and Matsuyama wx 8 in the early 1970s. Their proofs used ideas developed by Feit and Thompson in their proof of the Odd Order Theorem. There is no known character-free proof of Frobe- nius' Theorem. Recently, CorradiÂÂ and Horvathwx 2 have obtained some partial results in this direction. The purpose of this note is to prove some stronger results. We hope that this will stimulate more interest in this problem. Throughout the remainder of this note, we let G be a finite Frobenius group. That is, G contains a subgroup H such that 1 / H / G and H l H g s 1 for all g g G y H. A subgroup with these properties is called a Frobenius complement of G.
    [Show full text]
  • Lecture 14. Frobenius Groups (II)
    Quick Review Proof of Frobenius’ Theorem Heisenberg groups Lecture 14. Frobenius Groups (II) Daniel Bump May 28, 2020 Quick Review Proof of Frobenius’ Theorem Heisenberg groups Review: Frobenius Groups Definition A Frobenius Group is a group G with a faithful transitive action on a set X such that no element fixes more than one point. An action of G on a set X gives a homomorphism from G to the group of bijections X (the symmetric group SjXj). In this definition faithful means this homomorphism is injective. Let H be the stabilizer of a point x0 2 X. The group H is called the Frobenius complement. Today we will prove: Theorem (Frobenius (1901)) A Frobenius group G is a semidirect product. That is, there exists a normal subgroup K such that G = HK and H \ K = f1g. Quick Review Proof of Frobenius’ Theorem Heisenberg groups Review: The mystery of Frobenius’ Theorem Since Frobenius’ theorem doesn’t require group representation theory in its formulation, it is remarkable that no proof has ever been found that doesn’t use representation theory! Web links: Frobenius groups (Wikipedia) Fourier Analytic Proof of Frobenius’ Theorem (Terence Tao) Math Overflow page on Frobenius’ theorem Frobenius Groups (I) (Lecture 14) Quick Review Proof of Frobenius’ Theorem Heisenberg groups The precise statement Last week we introduced the notion of a Frobenius group. This is a group G that acts transitively on a set X in which no element except the identity fixes more than one point. Let H be the isotropy subgroup of an element, and let be K∗ [ f1g where K∗ is the set of elements with no fixed points.
    [Show full text]
  • 12.6 Further Topics on Simple Groups 387 12.6 Further Topics on Simple Groups
    12.6 Further Topics on Simple groups 387 12.6 Further Topics on Simple Groups This Web Section has three parts (a), (b) and (c). Part (a) gives a brief descriptions of the 56 (isomorphism classes of) simple groups of order less than 106, part (b) provides a second proof of the simplicity of the linear groups Ln(q), and part (c) discusses an ingenious method for constructing a version of the Steiner system S(5, 6, 12) from which several versions of S(4, 5, 11), the system for M11, can be computed. 12.6(a) Simple Groups of Order less than 106 The table below and the notes on the following five pages lists the basic facts concerning the non-Abelian simple groups of order less than 106. Further details are given in the Atlas (1985), note that some of the most interesting and important groups, for example the Mathieu group M24, have orders in excess of 108 and in many cases considerably more. Simple Order Prime Schur Outer Min Simple Order Prime Schur Outer Min group factor multi. auto. simple or group factor multi. auto. simple or count group group N-group count group group N-group ? A5 60 4 C2 C2 m-s L2(73) 194472 7 C2 C2 m-s ? 2 A6 360 6 C6 C2 N-g L2(79) 246480 8 C2 C2 N-g A7 2520 7 C6 C2 N-g L2(64) 262080 11 hei C6 N-g ? A8 20160 10 C2 C2 - L2(81) 265680 10 C2 C2 × C4 N-g A9 181440 12 C2 C2 - L2(83) 285852 6 C2 C2 m-s ? L2(4) 60 4 C2 C2 m-s L2(89) 352440 8 C2 C2 N-g ? L2(5) 60 4 C2 C2 m-s L2(97) 456288 9 C2 C2 m-s ? L2(7) 168 5 C2 C2 m-s L2(101) 515100 7 C2 C2 N-g ? 2 L2(9) 360 6 C6 C2 N-g L2(103) 546312 7 C2 C2 m-s L2(8) 504 6 C2 C3 m-s
    [Show full text]
  • Quasi P Or Not Quasi P? That Is the Question
    Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups.
    [Show full text]
  • On Non-Solvable Camina Pairs ∗ Zvi Arad A, Avinoam Mann B, Mikhail Muzychuk A, , Cristian Pech C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Algebra 322 (2009) 2286–2296 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra On non-solvable Camina pairs ∗ Zvi Arad a, Avinoam Mann b, Mikhail Muzychuk a, , Cristian Pech c a Department of Computer Sciences and Mathematics, Netanya Academic College, University St. 1, 42365, Netanya, Israel b Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel c Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel article info abstract Article history: In this paper we study non-solvable and non-Frobenius Camina Received 27 September 2008 pairs (G, N). It is known [D. Chillag, A. Mann, C. Scoppola, Availableonline29July2009 Generalized Frobenius groups II, Israel J. Math. 62 (1988) 269–282] Communicated by Martin Liebeck that in this case N is a p-group. Our first result (Theorem 1.3) shows that the solvable residual of G/O (G) is isomorphic either Keywords: p e = Camina pair to SL(2, p ), p is a prime or to SL(2, 5), SL(2, 13) with p 3, or to SL(2, 5) with p 7. Our second result provides an example of a non-solvable and non- 5 ∼ Frobenius Camina pair (G, N) with |Op (G)|=5 and G/Op (G) = SL(2, 5).NotethatG has a character which is zero everywhere except on two conjugacy classes. Groups of this type were studies by S.M. Gagola [S.M. Gagola, Characters vanishing on all but two conjugacy classes, Pacific J.
    [Show full text]
  • Large Abelian Subgroups of Finite P-Groups
    Large Abelian Subgroups of Finite p-Groups George Glauberman August 19, 1997 1 Introduction Let p be a prime and S be a finite p-group. Define d(S) to be the maximum of A as A ranges over the abelian subgroups of S,and ( )tobetheset of all| | abelian subgroups A for which A = d(S). Let J(SA) beS the subgroup of S generated by ( ). | | A S In 1964, John Thompson introduced [T2] a subgroup similar to J(S) and used it to obtain an improved version of his first normal p-complement theorem [T1]. Since then, several variants of J(S) have been used to ob- tain related results. Most of their proofs have required a further result of Thompson, the Replacement Theorem ([Gor, p.273], [HB, III, p.21]): Suppose A ( ), is an abelian subgroup of S normalized by A,and Bdoes not normalize∈AS AB. Then there exists A ( ) such that ∗ ∈AS A∗ AB, A B<A∗ B, and A∗ normalizes A. ≤ ∩ ∩ It would be interesting to extend this result by allowing B to have nilpo- tence class 2 instead of necessarily being abelian. This cannot be done if p = 2 (Example 4.2), but perhaps it is possible for p odd. (It was done by the author ([Gor, p.274]; [HB, III, p.21]) for the special case in which p is odd and [B,B] A.) However, there is an application of Thompson’s Replacement Theorem≤ that can be extended when p is odd and B has class 2, and this extension is our first main result.
    [Show full text]
  • View This Volume's Front and Back Matter
    http://dx.doi.org/10.1090/gsm/092 Finite Group Theory This page intentionally left blank Finit e Grou p Theor y I. Martin Isaacs Graduate Studies in Mathematics Volume 92 f//s ^ -w* American Mathematical Society ^ Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 20B15, 20B20, 20D06, 20D10, 20D15, 20D20, 20D25, 20D35, 20D45, 20E22, 20E36. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-92 Library of Congress Cataloging-in-Publication Data Isaacs, I. Martin, 1940- Finite group theory / I. Martin Isaacs. p. cm. — (Graduate studies in mathematics ; v. 92) Includes index. ISBN 978-0-8218-4344-4 (alk. paper) 1. Finite groups. 2. Group theory. I. Title. QA177.I835 2008 512'.23—dc22 2008011388 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 2008 by the American Mathematical Society. All rights reserved. Reprinted with corrections by the American Mathematical Society, 2011.
    [Show full text]
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III 7 March, 2004 Abstract An early version of these notes was prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated and expanded many times for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2004 by C. F. Miller III. Contents 1 Preliminaries 3 1.1 About groups . 3 1.2 About fundamental groups and covering spaces . 5 2 Free groups and presentations 11 2.1 Free groups . 12 2.2 Presentations by generators and relations . 16 2.3 Dehn’s fundamental problems . 19 2.4 Homomorphisms . 20 2.5 Presentations and fundamental groups . 22 2.6 Tietze transformations . 24 2.7 Extraction principles . 27 3 Construction of new groups 30 3.1 Direct products . 30 3.2 Free products . 32 3.3 Free products with amalgamation . 36 3.4 HNN extensions . 43 3.5 HNN related to amalgams . 48 3.6 Semi-direct products and wreath products . 50 4 Properties, embeddings and examples 53 4.1 Countable groups embed in 2-generator groups . 53 4.2 Non-finite presentability of subgroups . 56 4.3 Hopfian and residually finite groups . 58 4.4 Local and poly properties . 61 4.5 Finitely presented coherent by cyclic groups . 63 1 5 Subgroup Theory 68 5.1 Subgroups of Free Groups . 68 5.1.1 The general case . 68 5.1.2 Finitely generated subgroups of free groups .
    [Show full text]