Geology of the Hokusai Quadrangle (H05), Mercury

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Hokusai Quadrangle (H05), Mercury Journal of Maps ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjom20 Geology of the Hokusai quadrangle (H05), Mercury Jack Wright , David A. Rothery , Matthew R. Balme & Susan J. Conway To cite this article: Jack Wright , David A. Rothery , Matthew R. Balme & Susan J. Conway (2019) Geology of the Hokusai quadrangle (H05), Mercury, Journal of Maps, 15:2, 509-520, DOI: 10.1080/17445647.2019.1625821 To link to this article: https://doi.org/10.1080/17445647.2019.1625821 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps Published online: 17 Jun 2019. Submit your article to this journal Article views: 1190 View related articles View Crossmark data Citing articles: 8 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjom20 JOURNAL OF MAPS 2019, VOL. 15, NO. 2, 509–520 https://doi.org/10.1080/17445647.2019.1625821 Science Geology of the Hokusai quadrangle (H05), Mercury Jack Wright a, David A. Rothery a, Matthew R. Balme a and Susan J. Conway b aSchool of Physical Sciences, The Open University, Milton Keynes, UK; bCNRS UMR 6112, Laboratoire de Planétologie et Géodynamique, Université de Nantes, Nantes, France ABSTRACT ARTICLE HISTORY The Hokusai (H05) quadrangle is in Mercury’s northern mid-latitudes (0–90°E, 22.5–65°N) and Received 22 February 2019 covers almost 5 million km2, or 6.5%, of the planet’s surface. We have used data from the Revised 23 May 2019 MESSENGER spacecraft to make the first geological map of H05. Linework was digitized at Accepted 24 May 2019 fi ∼ 1:400,000-scale for nal presentation at 1:3,000,000-scale, mainly using a 166 m/pixel KEYWORDS monochrome basemap. Three major photogeologic units of regional extent were mapped: ≥ Mercury; planetary geology; intercrater, intermediate, and smooth plains. Materials of craters 20 km in diameter were Hokusai; quadrangle; impact classified according to their degradation state. Two classification schemes were employed in craters; planetary volcanism parallel, one with three classes and the other with five classes, for compatibility with existing MESSENGER-era quadrangle maps and the first global geologic map. This map will provide science context and targets for the ESA-JAXA BepiColombo mission to Mercury. 1. Introduction 2. Data To date, Mercury has been the focus of two spacecraft 2.1. Basemaps missions: Mariner 10 (1974–1975; Dunne & Burgess, 1978) and MErcury, Surface, Space ENvironment, 2.1.1. Monochrome GEochemistry, and Ranging (MESSENGER; 2008– The primary data for planetary photogeological map- 2015; Solomon, Nittler, & Anderson, 2018). Mercury ping are monochrome image mosaic basemaps. MES- has 15 latitudinally- and longitudinally-defined map- SENGER’s Mercury Dual Imaging System (MDIS; ping quadrangles (Figure 1(b)). Following Mariner Hawkins et al., 2007) collected image data with its 10’s flybys, 1:5,000,000 (1:5M) scale geological maps monochrome narrow-angle camera and multispectral were made of the Borealis (H01; Grolier & Boyce, wide-angle camera. With these, Chabot et al. (2016) 1984), Victoria (H02; McGill & King, 1983), Shakes- created basemap mosaics with different illumination peare (H03; Guest & Greeley, 1983), Kuiper (H06; conditions covering the whole planet. The main base- DeHon, Scott, & Underwood, 1981), Beethoven maps we used to map H05 were its four version 0 (H07; King & Scott, 1990), Tolstoj (H08; Schaber & ∼166 m/pixel map-projected Basemap Reduced Data McCauley, 1980), Discovery (H11; Trask & Dzurisin, Record (BDR) tiles (Figure 1(a)), which are consist- 1984), Michaelangelo (H12; Spudis & Prosser, 1984), ent with the basemaps of the other published MES- and Bach (H15; Strom, Malin, & Leake, 1990) quad- SENGER-era quadrangle maps (Galluzzi et al., 2016; rangles. Hokusai (H05; 0–90°E, 22.5–65°N) was not Guzzetta et al., 2017; Mancinelli et al., 2016). These mapped, as it was unimaged (Davies, Dornik, Gault, tiles have moderate solar incidence angles (∼68°; & Strom, 1978). Chabot et al., 2016). Auxiliary basemaps for H05 MESSENGER was the first spacecraft to image Mer- with low incidence angles, for investigating surface cury entirely (Solomon et al., 2018). This allowed the reflectance variations (Figure 1(c)), and high inci- first global geological map of Mercury to be produced dence angles, with both western and eastern illumi- (1:15M-scale; Kinczyk et al., 2018). MESSENGER nation, for enhancing subtle topographic features data resolution is sufficient for larger-scale (1:3M) (Figure 1(d) and (e)), became available early during quadrangle maps to be made. So far, H02 (Galluzzi mapping (Chabot et al., 2016). Final, version 2, con- et al., 2016), H03 (Guzzetta, Galluzzi, Ferranti, & trolled basemaps for H05 were released after map- Palumbo, 2017), and H04 (Mancinelli, Minelli, ping was substantially underway (Denevi et al., Pauselli, & Federico, 2016) have been published. 2018). Subsequent Mercury quadrangle maps are Here, we present the first geological map of H05 being constructed using these basemaps (Galluzzi (Main Map), which we began in October 2015. et al., 2019). CONTACT Jack Wright [email protected] School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK This article has been republished with minor changes. These changes do not impact the academic content of the article © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 510 J. WRIGHT ET AL. Figure 1. H05 basemaps. (a) Mosaic of the ∼166 m/pixel MDIS BDR basemap tiles. (b) ∼665 m/pixel global MDIS enhanced color mosaic (cylindrical projection; Denevi et al., 2016). Quadrangles are labeled and outlined. (c) Mosaic of the ∼166 m/pixel low-inci- dence angle basemap tiles. (d) Mosaic of the ∼166 m/pixel high-incidence angle (western) basemap tiles. (e) Mosaic of the high- incidence angle (eastern) basemap tiles. Panels (a) and (c–e) show H05’s native Lambert Conformal Conic projection (central mer- idian, 45°E; standard parallels, 30°N and 58°N). Monochrome products are by Chabot et al. (2016). 2.1.1.1. Color. Geomorphic units can sometimes be 2.1.2. Topography distinguished by color. We used the MESSENGER We used topographic data to aid mapping. Mercury ∼665 m/pixel global enhanced color mosaic to Laser Altimeter (MLA; Cavanaugh et al., 2007)data inform our photogeological interpretations (Figure created a digital elevation model (DEM) of Mercury’s 1(b); Denevi et al., 2016). This was constructed northern hemisphere, encompassing H05 (Figure 2(a); using MDIS frames captured in the 430, 750, and ∼665 m/pixel; Zuber et al., 2012). MLA tracks diverge 1000 nm bands. Principal component analyses were from the north, which means that this DEM suffers conducted by the MESSENGER team in this spectral from interpolation uncertainties in southern H05. Shortly space and they created the enhanced color mosaic after mapping began, the first global stereo-DEM of by placing the second principal component, first Mercury was released (Figure 2(b); ∼665 m/pixel; principal component, and the 430/1000 ratio in Becker et al., 2016), which mitigated MLA DEM uncer- the red, green, and blue channels, respectively tainties. Later, an improved stereo-DEM of H05 was (Denevi et al., 2009, 2016). released with higher spatial resolution (Figure 2(c); JOURNAL OF MAPS 511 Figure 2. Topographic data for H05. Each panel (a–c) shows a quadrangle view (left) with a box indicating the location of the enlarged example (right). All panels show H05’s native Lambert Conformal Conic projection. (a) ∼665 m/pixel gridded MLA DEM (Zuber et al., 2012). (b) ∼665 m/pixel stereo-DEM (Becker et al., 2016). (c) ∼222 m/pixel stereo-DEM (Stark et al., 2017). ∼222 m/pixel; Stark et al., 2017). This became the primary geological maps (Galluzzi et al., 2016; Guzzetta et al., source of topographic information for H05. 2017; Mancinelli et al., 2016). USGS guidance for pla- netary mappers recommends that digitization should ∼ 3. Methods be conducted at a scale 4× the publication scale (Skin- ner et al., 2018). Thus, a map to be published at 1:3M- 3.1. Projection scale should be digitized at ∼1:750k-scale. An alterna- H05, centered on 45°E, lies in Mercury’s northern mid- tive recommendation is that the digitization scale latitudes (Figure 1(b)). MESSENGER-era geological should be 2,000× the basemap raster resolution maps of the other quadrangles in this band were cre- (Tobler, 1987). Thus, the recommended digitization ∼ ated in Lambert Conformal Conic (LCC) projections scale would be 1:300k, because the basemap resol- ∼ (standard parallels 30°N and 58°N; Galluzzi et al., ution is 166 m/pixel. Cognizant of these constraints, 2016; Guzzetta et al., 2017; Mancinelli et al., 2016). we digitized H05 at a scale of 1:400k. We mapped H05 in a LCC projection with identical standard parallels to facilitate future fusion of these 3.3. Digitization strategy maps (Figure 1(a); Galluzzi et al., 2019). The reference datum for this projected coordinate system is a sphere We digitized vector layers on the basemap raster layers of radius 2,440 km; the published shape of Mercury in Esri ArcMap 10.1 Geographic Information System when mapping began (Mazarico et al., 2014). We software. Primary digitizations belong to one of three used the United States Geological Survey (USGS) Inte- feature classes: (1) geological contacts (polylines); (2) grated Software for Imagers and Spectrometers version linear features (polylines), and; (3) surface features 3 (ISIS3) to reproject the raw basemaps.
Recommended publications
  • Shallow Crustal Composition of Mercury As Revealed by Spectral Properties and Geological Units of Two Impact Craters
    Planetary and Space Science 119 (2015) 250–263 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters Piero D’Incecco a,n, Jörn Helbert a, Mario D’Amore a, Alessandro Maturilli a, James W. Head b, Rachel L. Klima c, Noam R. Izenberg c, William E. McClintock d, Harald Hiesinger e, Sabrina Ferrari a a Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, D-12489 Berlin, Germany b Department of Geological Sciences, Brown University, Providence, RI 02912, USA c The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA d Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA e Westfälische Wilhelms-Universität Münster, Institut für Planetologie, Wilhelm-Klemm Str. 10, D-48149 Münster, Germany article info abstract Article history: We have performed a combined geological and spectral analysis of two impact craters on Mercury: the Received 5 March 2015 15 km diameter Waters crater (106°W; 9°S) and the 62.3 km diameter Kuiper crater (30°W; 11°S). Using Received in revised form the Mercury Dual Imaging System (MDIS) Narrow Angle Camera (NAC) dataset we defined and mapped 9 October 2015 several units for each crater and for an external reference area far from any impact related deposits. For Accepted 12 October 2015 each of these units we extracted all spectra from the MESSENGER Atmosphere and Surface Composition Available online 24 October 2015 Spectrometer (MASCS) Visible-InfraRed Spectrograph (VIRS) applying a first order photometric correc- Keywords: tion.
    [Show full text]
  • Case Fil Copy
    NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program.
    [Show full text]
  • From Morpho-Stratigraphic to Geo(Spectro)-Stratigraphic Units: the PLANMAP Contribution
    Planetary Geologic Mappers 2021 (LPI Contrib. No. 2610) 7045.pdf From morpho-stratigraphic to geo(spectro)-stratigraphic units: the PLANMAP contribution. Matteo Massironi1, Angelo Pio Rossi2, Jack Wright3, Francesca Zambon4, Claudia Poehler5, Lorenza Giacomini4, Cristian Carli4, Sabrina Ferrari6, Andrea Semenzato7, Erica Luzzi2, Riccardo Pozzobon6, Gloria Tognon6, David A. Rothery3, Carolyn Van der Bogert5, V. Galluzzi4, Francesca Altieri4 1Department of Geosciences, University of Padova, [email protected], 2Jacobs University Bremen, 3Open University, 4INAF-IAPS, 5Westfälische-Wilhelms Universität Münster 6CISAS, University of Padova 7Engineering Ingegneria Informatica S.p.A., Venezia Introduction: From the Apollo era onward, planetary ‘geologic’ mapping has been carried out using a photo-interpretative approach mainly on panchromatic and monochromatic images. This limits the definition of geological units to morpho-stratigraphic considerations so that units have been mainly defined by their stratigraphic position, surface textures and morphology, and attribution to general emplacement processes (a few related to magmatism, some broad sedimentary environments, some diverse impact domains, and all with uncertainties of interpretation). On the other hand, geological units on Earth are defined by several Figure 1: in-series interpretation from Giacomini et al. parameters besides the stratigraphic ones, such as rock EGU 2021-15052 textures, lithology, composition, and numerous environmental conditions of their origin (diverse Contextual interpretation: Geo(spectro)- magmatic, volcanic, metamorphic and sedimentary stratigraphic maps can be also produced directly from a environments). Hence, traditional morpho-stratigraphic contextual work on black and white images and RGB maps of planets and geological maps on the Earth are color compositions either using Principal Component still separated by an important conceptual and effective (PC) analysis (see Mercury examples in Semenzato et gap.
    [Show full text]
  • Updates on Geologic Mapping of Kuiper (H06) Quadrangle
    EPSC Abstracts Vol. 12, EPSC2018-721-1, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Updates on geologic mapping of Kuiper (H06) quadrangle Lorenza Giacomini (1), Valentina Galluzzi (1), Cristian Carli (1), Matteo Massironi (2), Luigi Ferranti (3) and Pasquale Palumbo (4,1). (1) INAF, Istituto di Astrofisica e Planetologia Spaziali (IAPS), Rome, Italy ([email protected]); (2) Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy; (3) DISTAR, Università degli Studi di Napoli Federico II, Naples, Italy; (4) Dipartimento di Scienze & Tecnologie, Università degli Studi di Napoli ‘Parthenope’, Naples, Italy. 1. Introduction -C3 craters. They represent fresh craters with sharp rim and extended bright and rayed ejecta; Kuiper quadrangle is located at the equatorial zone of -C2 craters. Moderate degraded craters whose rim is Mercury and encompasses the area between eroded but clearly detectable. Extensive ejecta longitudes 288°E – 360°E and latitudes 22.5°N – blankets are still present; 22.5°S. The quadrangle was previously mapped for -C1 craters. Very degraded craters with an almost its most part by [2] that, using Mariner10 data, completely obliterated rim. Ejecta are very limited or produced a final 1:5M scale map of the area. In this absent. work we present the preliminary results of a more Different plain units were also identified and classified as: detailed geological map (1:3M scale) of the Kuiper - Intercrater plains. Densely cratered terrains, quadrangle that we compiled using the higher characterized by a rough surface texture. They resolution MESSENGER data. represent the more extended plains on the quadrangle; - Intermediate plains.
    [Show full text]
  • High-Resolution Topography of Mercury from Messenger Orbital Stereo Imaging – the Southern Hemisphere Quadrangles
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China HIGH-RESOLUTION TOPOGRAPHY OF MERCURY FROM MESSENGER ORBITAL STEREO IMAGING – THE SOUTHERN HEMISPHERE QUADRANGLES F. Preusker 1 *, J. Oberst 1,2, A. Stark 1, S. Burmeister 2 1 German Aerospace Center (DLR), Institute of Planet. Research, Berlin, Germany – (stephan.elgner, frank.preusker, alexander.stark, juergen.oberst)@dlr.de 2 Technical University Berlin, Institute for Geodesy and Geoinformation Sciences, Berlin, Germany – (steffi.burmeister, juergen.oberst)@tu-berlin.de Commission VI, WG VI/4 KEY WORDS: Mercury, MESSENGER, Digital Terrain Models ABSTRACT: We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14. 1. INTRODUCTION Mercury requires sophisticated models for calibrations of focal length and distortion of the camera. In particular, the WAC The MErcury Surface, Space ENviorment, GEochemistry, and camera and NAC camera were demonstrated to show a linear Ranging (MESSENGER) spacecraft entered orbit about increase in focal length by up to 0.10% over the typical range of Mercury in March 2011 to carry out a comprehensive temperatures (-20 to +20 °C) during operation, which causes a topographic mapping of the planet.
    [Show full text]
  • 2019 Publication Year 2020-12-22T16:29:45Z Acceptance
    Publication Year 2019 Acceptance in OA@INAF 2020-12-22T16:29:45Z Title Global Spectral Properties and Lithology of Mercury: The Example of the Shakespeare (H-03) Quadrangle Authors BOTT, NICOLAS; Doressoundiram, Alain; ZAMBON, Francesca; CARLI, CRISTIAN; GUZZETTA, Laura Giovanna; et al. DOI 10.1029/2019JE005932 Handle http://hdl.handle.net/20.500.12386/29116 Journal JOURNAL OF GEOPHYSICAL RESEARCH (PLANETS) Number 124 RESEARCH ARTICLE Global Spectral Properties and Lithology of Mercury: The 10.1029/2019JE005932 Example of the Shakespeare (H-03) Quadrangle Key Points: • We used the MDIS-WAC data to N. Bott1 , A. Doressoundiram1, F. Zambon2 , C. Carli2 , L. Guzzetta2 , D. Perna3 , produce an eight-color mosaic of the and F. Capaccioni2 Shakespeare quadrangle • We identified spectral units from the 1LESIA-Observatoire de Paris-CNRS-Sorbonne Université-Université Paris-Diderot, Meudon, France, 2Istituto di maps of Shakespeare 3 • We selected two regions of high Astrofisica e Planetologia Spaziali-INAF, Rome, Italy, Osservatorio Astronomico di Roma-INAF, Monte Porzio interest as potential targets for the Catone, Italy BepiColombo mission Abstract The MErcury Surface, Space ENvironment, GEochemistry and Ranging mission showed the Correspondence to: N. Bott, surface of Mercury with an accuracy never reached before. The morphological and spectral analyses [email protected] performed thanks to the data collected between 2008 and 2015 revealed that the Mercurian surface differs from the surface of the Moon, although they look visually very similar. The surface of Mercury is Citation: characterized by a high morphological and spectral variability, suggesting that its stratigraphy is also Bott, N., Doressoundiram, A., heterogeneous. Here, we focused on the Shakespeare (H-03) quadrangle, which is located in the northern Zambon, F., Carli, C., Guzzetta, L., hemisphere of Mercury.
    [Show full text]
  • Mercury: Radar Images of the Equatorial and Midlatitude Zones
    Mercury: Radar images of the equatorial and midlatitude zones John K. Harmon a,∗,MartinA.Sladeb, Bryan J. Butler c, James W. Head III d, Melissa S. Rice a, Donald B. Campbell e a National Astronomy and Ionosphere Center, Arecibo Observatory, Arecibo, PR 00612, USA Fax: 787-878-1861; Tel: 787-878-2612 x284; Email: [email protected] b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA Fax: 818-354-6825; Tel: 818-354-2765; Email: [email protected] c National Radio Astronomy Observatory, Socorro, NM 87801, USA Fax: 505-835-7027; Tel: 505-835-7261; Email: [email protected] d Department of Geological Sciences, Brown University, Providence, RI 02912, USA Fax: 401-863-3978; Tel: 401-863-2526; Email: James Head [email protected] e Department of Astronomy, Cornell University, Ithaca, NY 14853, USA Fax: 607-255-8803; Tel: 607-255-9580; Email: [email protected] Submitted to Icarus: June 15, 2006 Revised: September 20, 2006 - 50 manuscript pages 2tables 39 figures 2 Proposed running head: Mercury radar images Send correspondence and proofs to: John K. Harmon Arecibo Observatory HC3 Box 53995 Arecibo, PR 00612 Email: [email protected], Tel.: 787-878-2612 x284, Fax: 787-878-1861 3 Abstract. Radar imaging results for Mercury’s non-polar regions are presented. The dual- polarization, delay-Doppler images were obtained from several years of observations with the upgraded Arecibo S-band (λ12.6-cm) radar telescope. The images are dominated by radar- bright features associated with fresh impact craters. As was found from earlier Goldstone-VLA and pre-upgrade Arecibo imaging, three of the most prominent crater features are located in the Mariner-unimaged hemisphere.
    [Show full text]
  • Tidal Deformation of Planets and Satellites: Models and Methods for Laser- and Radar Altimetry
    Tidal Deformation of Planets and Satellites: Models and Methods for Laser- and Radar Altimetry vorgelegt von Diplom Physiker Gregor Steinbr¨ugge geb. in Berlin von der Fakult¨atVI { Planen Bauen Umwelt der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Vorsitzender: Prof. Dr. Dr. h.c. Harald Schuh Gutachter: Prof. Dr. J¨urgenOberst Gutachter: Prof. Dr. Nicolas Thomas Gutachter: Prof. Dr. Tilman Spohn Tag der wissenschaftlichen Aussprache: 27.03.2018 Berlin 2018 2 Contents Title Page 1 Contents 3 List of Figures 7 List of Tables 9 1 Introduction 15 1.1 Structure of the Dissertation . 16 1.1.1 Icy Satellites . 17 1.1.2 Mercury . 20 1.2 Theory of Tides . 21 1.2.1 Tidal Potentials . 21 1.2.2 Response of Planetary Bodies to Tidal Forces . 23 1.3 Measuring Tidal Deformations . 25 1.3.1 Measurement Concepts . 25 1.3.2 Laser Altimetry . 25 1.3.3 Radar Altimetry . 26 1.4 Missions and Instruments . 27 1.4.1 REASON and the Europa Clipper Mission . 27 1.4.2 GALA and the JUICE Mission . 28 1.4.3 BELA and the BepiColombo Mission . 29 2 Research Paper I 31 2.1 Introduction . 32 2.2 Instrument Performance Modeling . 32 2.2.1 Link Budget . 32 2.2.2 Signal-to-Noise Ratio . 33 2.3 Expected Science Performance . 37 2.3.1 Topographic Coverage . 37 2.3.2 Slope and Roughness . 37 2.4 Tidal Deformation . 40 2.4.1 Covariance Analysis . 40 2.4.2 Numerical Simulation .
    [Show full text]
  • Geology of the Victoria Quadrangle (H02), Mercury
    Publication Year 2016 Acceptance in OA@INAF 2021-02-26T16:24:19Z Title Geology of the Victoria quadrangle (H02), Mercury Authors GALLUZZI, VALENTINA; GUZZETTA, Laura Giovanna; Ferranti, Luigi; DI ACHILLE, Gaetano; Rothery, David Alan; et al. DOI 10.1080/17445647.2016.1193777 Handle http://hdl.handle.net/20.500.12386/30653 Journal JOURNAL OF MAPS Number 12 Journal of Maps ISSN: (Print) 1744-5647 (Online) Journal homepage: https://www.tandfonline.com/loi/tjom20 Geology of the Victoria quadrangle (H02), Mercury V. Galluzzi, L. Guzzetta, L. Ferranti, G. Di Achille, D. A. Rothery & P. Palumbo To cite this article: V. Galluzzi, L. Guzzetta, L. Ferranti, G. Di Achille, D. A. Rothery & P. Palumbo (2016) Geology of the Victoria quadrangle (H02), Mercury, Journal of Maps, 12:sup1, 227-238, DOI: 10.1080/17445647.2016.1193777 To link to this article: https://doi.org/10.1080/17445647.2016.1193777 © 2016 V. Galluzzi View supplementary material Published online: 16 Jun 2016. Submit your article to this journal Article views: 1825 View related articles View Crossmark data Citing articles: 11 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjom20 JOURNAL OF MAPS, 2016 VOL. 12, NO. S1, 227–238 http://dx.doi.org/10.1080/17445647.2016.1193777 SCIENCE Geology of the Victoria quadrangle (H02), Mercury V. Galluzzia , L. Guzzettaa, L. Ferrantib, G. Di Achillec , D. A. Rotheryd and P. Palumboa,e aINAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy; bDiSTAR, Università degli Studi di Napoli ‘Federico II’, Naples, Italy; cINAF, Osservatorio Astronomico di Teramo, Teramo, Italy; dDepartment of Physical Sciences, The Open University, Milton Keynes, UK; eDipartimento di Scienze e Tecnologie, Università degli Studi di Napoli ‘Parthenope’, Naples, Italy ABSTRACT ARTICLE HISTORY Mercury’s quadrangle H02 ‘Victoria’ is located in the planet’s northern hemisphere and lies Received 26 November 2015 between latitudes 22.5° N and 65° N, and between longitudes 270° E and 360° E.
    [Show full text]
  • The Southern Hemisphere
    High-resolution topography from MESSENGER orbital stereo imaging – The Southern hemisphere Frank Preusker, Jürgen Oberst, Alexander Stark, K.-D. Matz, K. Gwinner, and T. Roatsch Institute of Planetary Science – Department of Planetary Geodesy MESSENGER Mission • MErcury Surface, Space ENvironment, GEochemistry, and Ranging − Launch: 08/2004 − Flybys: 01/2008, 10/2008 and 09/2009 (Oberst et al., 2010; Preusker et al., 2011) − Orbit insertion: 03/2011 − Almost 4 years of orbit operations • One measurement goal of the mission: global/topographic mapping • Main techniques: laser ranging and stereo imaging • Due to MESSENGER’s eccentric (polar) orbit, laser altimeter tracks are widely spaced near the equator and do not cover most of the southern hemisphere EPSC 2017 – Riga/Latvia – TP2 Mercury Science and Observation MESSENGER Camera • Mercury Dual Imaging System (MDIS) acquired more than 200,000 images • Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) • Imaging by WAC or NAC is to optimize coverage vs. resolution from MESSENGER’s elliptic orbit • Global (stereo) coverage at resolution better than 250 m/pixel EPSC 2017 – Riga/Latvia – TP2 Mercury Science and Observation Motivation • Global high-res topographic base map for Mercury • Complementary to MLA in the northern hemisphere • Quantitative geomorphologic analysis (impact basin morphology, tectonic etc.) • for precise ortho-image registration, mosaicking, and map generation of monochrome/color MDIS images (or other instruments, e.g. MASCS) • Preparation for ESA mission BepiColombo EPSC 2017 – Riga/Latvia – TP2 Mercury Science and Observation Processing strategy • For practical reasons the stereo-photogrammetric processing is separated into 15 tiles • Each quadrangle is covered by ~ 10,000 images, ~ 20,000 stereo image combinations • Northern hemisphere quads are used for MLA co-registration and analyses both topographic products (e.g.
    [Show full text]
  • An Integrated Geologic Map of the Rembrandt Basin, on Mercury, As a Starting Point for Stratigraphic Analysis
    remote sensing Article An Integrated Geologic Map of the Rembrandt Basin, on Mercury, as a Starting Point for Stratigraphic Analysis Andrea Semenzato 1,* , Matteo Massironi 2,3 , Sabrina Ferrari 3, Valentina Galluzzi 4, David A. Rothery 5, David L. Pegg 5 , Riccardo Pozzobon 2 and Simone Marchi 6 1 Engineering Ingegneria Informatica S.p.A., 30174 Venezia, Italy 2 Dipartimento di Geoscienze, Università degli Studi di Padova, 35131 Padova, Italy; [email protected] (M.M.); [email protected] (R.P.) 3 CISAS, Università degli Studi di Padova, 35131 Padova, Italy; [email protected] 4 INAF, Istituto di Astrofisica e Planetologia Spaziali, 00133 Roma, Italy; [email protected] 5 School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK; [email protected] (D.A.R.); [email protected] (D.L.P.) 6 Department of Space Studies, Southwest Research Institute, Boulder, CO 80302, USA; [email protected] * Correspondence: [email protected] Received: 25 August 2020; Accepted: 29 September 2020; Published: 1 October 2020 Abstract: Planetary geologic maps are usually carried out following a morpho-stratigraphic approach where morphology is the dominant character guiding the remote sensing image interpretation. On the other hand, on Earth a more comprehensive stratigraphic approach is preferred, using lithology, overlapping relationship, genetic source, and ages as the main discriminants among the different geologic units. In this work we produced two different geologic maps of the Rembrandt basin of Mercury, following the morpho-stratigraphic methods and symbology adopted by many authors while mapping quadrangles on Mercury, and an integrated geo-stratigraphic approach, where geologic units were distinguished also on the basis of their false colors (derived by multispectral image data of the NASA MESSENGER mission), subsurface stratigraphic position (inferred by crater excavation) and model ages.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) f^ , u NASA Technical Memorandum 80317 (NASA-TM-80317) LARGE IMPACT BASINS ON N79-31127 MERCURY AND RELATIVE CRATER PRODUCTION RATES (NASA) 22 p HC A02 /MF A01 CSCL 03B Unclas G3/91 36078 Large Impact Basins On Mercury and Relative Crater Production Dates Herbert Frey and Barbara L. Lowry JULY 1979 National Aeronautics and Space Administration Goddard '.,pace Flight Center Greenbelt, Maryland 20771 c°%tiQ19 F,O c. ex .,.s LARGE IMPACT BASINS ON MERCURY AND RELATIVE CRATER PRODUCTION RATES ar Herbert Frey Geophysics Branch NASA Goddard Space Flight Center Greenbelt, Maryland 20771 Astronomy Program University of Maryland College Park, Maryland 20742 and Barbara L. Lowry Geophysics Branch NASA Goddard Space Flight Center Greenbelt, Maryland 20771 Morehead State University Morehead, Kentucky 40351 In p ress Proceedings Tenth Lunar Planet.
    [Show full text]