General Disclaimer

One or more of the Following Statements may affect this Document

This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

This document is paginated as submitted by the original source.

Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI) 1

MISSION ANALYSIS PROGRAM FOR SOLAR ELECTRIC PROPULSION (MAPSEP)

CONTRACT NAS8-29666_

i (Revised) October, 1974

(NASA-C??- 143435) MISSION ANALYSIS PROGRAM N75-31212 FOP SOLAR ELECTRIC rVOPULSION (MAPSEP) . VO'LTIME 2: USED I S MANUAL (Martin Marietta Corp.)° 1 85 p HC $7.0C CSCL 21C Unclas G3/20 35800 VOLUME II - USER'S MANUAL q

- Prepared by:

G.L. Shults R.J. Boain ^. ^ 1 3 4 S K.R. Huling 2232412 i' T. Wilson CP P .E. He ng -' 197 RECEIVED

r^4 VFACil--L :. NN

Planetary Systems Mission Analysis and Operations Section Denver Division ,. Martin Marietta Corporation

, For

National Aeronautics and Space Administration Marshall Space Flight Center Huntsville, Alabama x

FOREWORD

MAPSEP (Mission Anslysis Program for Solar Electric Propulsion)

is a computer program developed by Martin Marietta Aerospace,

Denver Division, for the NASA Marshall Spai--e Flight Center under w

j Contract NAS8-29666. MAPSEP contains the basic modes: TOPSEP

(trajectory generation), GODSEP (linear error analysis) and SIMSEP E.

(simulation). These modes and their various options give the user r sufficient flexibility to analyze any low thrust mission with respect

to trajectory performance, guidance and navigation, and to provide

meaningful system related requirements for the purpose of vehicle # I

design. M'

This volume is the second of three and contains the input/

output description of MAPSEP and other user related information.

Other volumes relate to analytical program descriptions and to

i program logical flow.

F

f i.l

TABLE OF CONTENTS

Page

Foreword i

x Table of Contents

1. Introduction 1

2. Input 2

2.1 Trajectory - $TRAJ Input Description 4

2.2 TOPSEP Input Description 13

2.,3 GODSEP Input Description 21

2.3.1 Namelist $GODSEP 22

2.3.2 Measurement and Propagation Schedule Input 34

2.3..3 Namelist $GEVENT 36

2.4 SIMSEP Input Description 37

2.5 REFSEP Input Description 52-B

3. Output andSample Cases 53

3.1 Card and Tape Output 53;i; 3.2 Printout and Oample Cases 53

3.2.1 TOPSP 55

3.2.2 GODSEP 80 t;

3.2.3 SIMSEP 117

3.2.4 REFSEP 132-B k 4. Operating Guidelines 133

F 4.1 Trajectory Generation - TOPSEP 135

4.1.1 Trajectory Propagation 138 t -. 4.1.2 Trajectory Grid 138

4.1.3 Trajectory Targeting 139

r. " 4.2 Linear Error Analysis - GODSEP 151 r: 4.2.1 STM File Generation 155 ^ a

I

Page 3

4.2.2 Standard Covariance Analysis 157

4.2.3 Combined STM File Generation and ' i Error Analysis 164

4.2.4 Generalized Covariance 165

4.2.5 PDOT 166 =;

4.3 Trajectory Simulation - SIMSEP 168 &

4.3.1 Single Cycle - No Error 169 Y

4.3.2 Single Cycle - Forced Monte Carlo 171 k'

4.3.3 Monte Carlo 174

4.3.4 Monte Carlo Continuation 176

4.4 Case Stacking and Mixed Mode Operation 178

5. References 180

X,

x

i _ 1. INTROD.UCTIO,N

This manual provides the user of MAPSEP (Mission Analysis

Program for Solar Electric Propulsion) with all the information

necessary to input the program and to obtain meaningful output.

In addition to listing all the input variables, their definitions,

units, etc., there are chapters discussing recommended usage and

limitations, and sample runs.

r1APSEP is composed of three primary modes, each of which

performs a given function in a trajectory analysis. TOPSEP

(Targeting and Optimization for SEP) evaluates performance by

generating realistic integrated trajectories which meet whatever t mission and system constraints are imposed by the user. GODSEP

(Guidance and Orbit Determination for SEP) evaluates trajectory

dispersions, using linear error analysis techniques, in the presence

;. of dynamic and navigation uncertainties. SIMSEP (Simulation

for SEP) deterministically simulates single or multiple trajectories

fn: the presence of discrete system errors.

For the user who is unfamiliar with MAPSEP, it is recommended

that he first study, briefly, Chapters 2 and 3 on Input and Output,

rtspectively, to familiarize himself with some of the nomenclature

and options. Next, a careful study of Chapter 4 on Operating Guidelines

€ *ill yield considerable insight on MAPSEP Usage. The user can then

return to Chapters 2 and 3 for specific information on his particular

application. Finally, as additional background information, it is

} f^ recommended that the Analytic Manual (Reference 1) and Program Manual

ft (Reference 2`) be referred to extensively..'

I

F

I; 1 2 s 5

3

I +

2.0 INPUT

The basic input to MAPSEP is in the form of namelist data, fixed-

? " field cards and magnetic tape. This chapter describes all available

input. Chapter 4 will discuss the organization of this input for

specific analysis functions.

` All MAPSEP modes require the namelist %TRAJ which contains refer-

ence trajectory and spacecraft characteristics. If desired, this

namelist can be written on a disc fide (STM) and eventually stored on

magnetic tape to facilitate later runs or stacked cases in the same

run. Following $TRAJ is mode peculiar input.=

The reference trajectory generation mode (TOPSEP) requires the

namelist %T¢PSEP to follow %TRAJ. MPSEP contains parameters that

determine the strategy for generating a trajectory which meets

desired target conditions and mission constraints. The reference

trajectory defined in %TRAJ is used as the initial guess. t

` The linear error analysis mode (GODSEP) requires the namelist

SGODSEP immediately after MAJ. $GODSEP contains system uncertain-

ties and navigation and guidance related data to perform a covariance

i analysis about the reference trajectory. Following $GODSEP, fixed

field cards are input to describe measurement and propagation sched-

ales. Two disc files or tapes are often used: STM and GAIN. Thee

files contain trajectory and transition matrix data (STM) and a-priori

cdvariances and orbit determination filter gains (GAIN) to improve

' computational speed and to provide additional flexibility. Another It 4

namelist $GEVENT is optional and contains guidance event information.

3

The trajectory simulation mode (SIMSEP) requires the namelist

$SIMSEP to follow MAJ. $SIMSEP contains parameters which describe

the sc^z;pe of the simulation, expected dynamic errors, and cumulative

statistics from previous SIMSEP runs. Following $SIMSEP are a set -i

of $GUID namelists, one for each guidance correction maneuver. $GUID

^ describes the strategy, knowledge or estimation uncertainties and p f cumulative statistics for that particular maneuver.

The trajectory display node (REFSEP) requires only the namelist

STRAJ followed by scheduling cards, similar to those used in GODSEP.

The fixed field schedule cards define: types of data displayed, span

of interest, and frequency of printout:

For those users who can vary the amount of blank common storage in

their runs, a guideline to estimate the total MAPSEP core requirements

is given below. Blank common length is related directly to the dimen-

sion of the ,dynamic state (NDIM) used in transition matrix (STM) com-

putation, and, the total augmented (knowledge) state (NAUG). The value

of "program" and "blank common" must be added to compute the total decimal

core for a CDC 6500. Other operating systems must scale these requirements ,

appropriately.

TOPSEP program_ 23400 2 (N = number of F blank common' = 800 + 68 (N)+(N) control Para- meters 4

program 23900 j GODSEP: 2 blank common 100 + 9 (NDIM) 2 (if STM created) 100 + 9 ^NDIM) + (if STM used) 5 (NAUG)^ Y = l00' + 13 (NAUG) 2 (if PDOT used)

program = 39100 (N = number of 1 tu4 SIMSEP: blank common 900 + N(NAUG) 2 guidance w events)

REFSEP: program + blank common 21000 x K low W.

4

2.1 Trajectory - $TRAJ Input Description

The namelist $TRAJ, which is read in by DATAM, contains reference

trajectory and spacecraft related information for ballistic or low thrust

missions. Many of the variables have adequate default values such that

the user only has to input those which are different. The variables are K. grouped as either trajectory, spacecraft or miscellaneous parameters-.

Namelist ?. TRAJ;

a) Trajctory_ Parameters: u

Variable Dim Default Units Definition

STEP 1 •0.05 - Scaling factor. of the inte- gration step size.

BODYIN 16x1 This array allows the user to input ephemeris data for a body that is not already tncluded in MAPSEP (Planet Code is 10). The default values are those of the Encke. Orbital ele- ments are of the form X(t) = Xo + d t where Xo is a constant, a is the y rate of change and t is the a time in Julian Centuries, 9 BODYIN(l) 2444580.0 days Julian date of ephemeris .

BODYIN(2) 500.0 km Mean equational radius.

BODYIN(3) 1000.0 1= -Radius of the sphere of influence. a

±' BODYIN(4) 10 9 km3 /see 2 Gravitational constant. 5

e DitTi Default UT its 1 BODYIN(5) 33180812,67 km Semi-major axis (a).

BODYIN ( 6) 0.0 Km/J.C.* Time derivative of the semi- major axis.

BODYIN ( 7) 0.847 Eccentricity (e).

BODYIN(8) 0.0 1 /J.C. Time derivative of. the eccentricity. r BODYIN(9) 11.95 deg Inclination of the orbit plane W.

{ BODYIN(10) 0.0 -deg/J.C. Time derivative of the • inclination. a, B,ODYIN(11) 334.2 deg Longitude of the ascending node (n )• BODYIN(12) 0.0 deg/J.C. Time derivative of n .

9ODYIN ( 13) 160 . 2 deg Longitude of periapsis (10). U,: BODYIN ( 14) 0.0 deg/J.C. Time derivative of W

BODYIN ( 15) 0.0 deg (M) at ephem- eris epoch. z

BODYIN ( 16) 0.0 deg /J.C. (n); computed internally if input as zero.

DRMAX 1 10, km Maximum deviation from the reference conic before rectification.

FRCA 1 0.4 - Scale factor of the target planet semi -major axis used as the maximum S/C-target distance below which the closest approach test begins; - this avoids local minima, or "false" closest approaches, especially for inner planet missions.

* J.C. is a_Julian_ Century (36525 days exactly).

^t

,1 t

k; 6

Variable Dim Default Units Definition

IAUGDC 10 10*0 - Flags used to identify the augmented dynamic state for GODSEP in the STM file gen- eration submorIe. Non-zero entries will activate a para- meter.

G IAUGDC(1) S/C position and velocity vectors

IAUGDC(2) Thrust bias: proportionality, cone and chock.

IAUGDC(3) Heliocentric state of ephemeris body.'

_ IAUGDC(4) Gravitational constant of ephemeris body. i IAUGDC(5) Gravitational constant of sun.

IAUGDC(6) Not used.

IAUGDC(7) Not used.

IAUGDC(8) Not used.

IAUGDC(9) Not used. is IAUGDC(10) Not used.'

Yf ICOORD' 1 0 Planet code (see next page) of reference body of input state (STATE); positive values indicate 1950.0 eclip- tic inertial coordinates, a value of -3 indicates geo- centric equatorial coordinates. }

i k C: i.

CODE PIANET

0 Sun

I: 1 Mercury

2 Venus 3 i f 4 Mars

S , 6 Saturn i j Ur-anus.

8 Neptune

9 Pluto

10 User Specified 11 Moon

G •

F Ii 8 , ,c r

Variable Dim Default Units DP.ficiition

ISTOP 1 1 - The trajectory termination flag. There are four pos- sible criteria for terminat- ing the trajectory.

a 1, final time (TEND) 2, closest approach ^.3, sphere of influence 4, stopping radius (RSTOP).

NB 11 11*0 - This array is used to input the bodies to be considered in the trajectory propaga- tion. The entries in NB, correspond to the non-zero values of the planet codes.' The sun is automatically included.

NEP 1 0 - Planet code of ephemeris body in IAUGDC(3); internally -set to NTP if entered as zero.

NTP 1 0 - The planet code of the tar- . get body.

RSTOP 1 31096.5 km The stopping radius must be specified when ISTOP is set to 4. The default value is i set for a synchronous Earth orbit.

STATE 6 6*0.0 k-14 The initial position and '^pc ^locity vector of the a -spacecraft. (See IC00RD).

TEND 1 0.0 days The tra jectory termination time, tfinal, relative to t ' launch. The input mybe fill Julian Date or -days from launch.

TLNCH 1 010 days The Julian Date of the tra- ' Jectory epoch (launch). 9

Variable Dim Default Units Definition

TSTART 1 0.0 days The trajectory time associ- ated with the input state. This can be a Julian Date or days from launch.

XBODY 1 6HENCKE - Hollerith label for the input body (BODYIN).

b) Spacecraft Parameters:

Variable Dim Default Units Definition

ENGINE 20 This array defines the space- craft thrust subsystem (Section 4.1, Reference 1).

ENGINE(1) 21.65 KW Useful power from the solar array at 1 AU (Po ) .

ENGINE(2) .65 KW Housekeeping power (PHK)' i Maximum power when ENGINE(3) 21.65 KW rd- rmin . See ENGINE(9). (max' ENGINE(4) 1.4382 - Power Constant (Cl).

ENGINE(5) 0.0 - Power Constant (C2).'

ENGINE (6) -0.2235 - Power Constant (C3).

ENGINE (7) 0.0 - Power Constant (C4 ). {

ENGINE(8) -0.2147 - Power Constant (C

ENGINE(9) 1.0 AU Heliocentric distance for j k " which the sower is a maximum (rmin). b ENGINE(10) 29.418 km/sec Ion exhaust velocity (c).

ENGINE(11) 1.0 - Thruster efficiency ('1 ).-_

' ENGINE (12) 0.0 1/sec Power loss (PL)

ENGINE(13) 0.0 days Time decay of power loss prior to start of the mission.. Y. 10

Variable Dim Default Units Definition

ENGINE(14) - - Not used.

ENGINE(15) -1.0 (meters)2 Radiation pressure coeffi- cient times the effective cross-sectional area of the solar arrays (CRA). If negative, no radiation pressure. ENGINE(16) 1.0 - Scale factor on ENGINE(15) when r < r . E min

IENRGY l 1 - This flag determines the type of power subsy-stem. 0 - Ballistic ` l - Solar Electric Power 2 - Nuclear Electric Power _SCMASS 1 2000.0 kg Spacecraft at TSTART.

THRUST 10x20 This arraydefines the thrust control policy for. the trajectory. Each column contains the controls for each segment of the tra- jectory for i = 1 to 20 segments. (Section 4.1, Reference 1).`

THRUST(l,i) 9.0, - =,0..0, last thrust phase; 19*0. = 1.0, the thrust coordinate systeta is Cone and Clock angle; = 2,0, the thrust coordinate system is In _Plane and Out of Plane angles; = 9.0, coasting. a TIRUST(2,i) 20*1020 days Days thorn launch for which the it phase ends.

THRUST(3,i) 20*1.0 Throttling level (TL).

THRUST(4,i) 20*0.0 deg Cone angle when THRUST(l,i) 1.0. In plane angle when THRUST(l,i) 2.0.

THRUST(5,i) 20*0.0 deg Clock angle when THRUST(l,i) 1.0. Out of plane angle when THRUST(l,i) = 2.0.

E

r:4

• 11

Variable DiM Default Units Definition t THRUST(6 i) 20*0.0 deg/sec Cone angle rate when THRUST (l, i ) = 1.0. In plane angle r; rate when THRUST(l,i) = 2.0.

THRUST(7,i; 20*0.0 deg/sec Clock angle rate when THRUST s (l,i) = 1.0. Out of plane k ,, angle rate when THRUST (1,i) 21.0.

I'FIRUST(8, i) 20*1.0 - he number of thrusters. This is required, only for G,ODSEP and SIMSEP

THRUST(9 i) Not used.

THRUST(10,i) - Not used.

ZK 0,'0, 1 Direction cosines of the star used as a reference for the Cone and Clock system, Default value is the south .

G c) Miscellaneous Parameters

Variable Dim Default Units Definition

EDIT 50 50*0.0 This array is used for stor- age related to temporary ' program modifications.

IPRINT; 1 0 This flag controls trajectory print.

0, Print every IPRINT integration steps. _ 09 No print. • 1, Print every`XPRINT days. • -2; Print every event.

IPRINT 1 should rarely be '. used, especially in the GODSEP mode. At is suggested r to set IPRINT — 20000. The ' result will be punts at

i a '

ow

12-A

Variable Dim Default Units Definition

J initialization at every primary body and thrust control phase change,and at termination.

ISTMF This flag is used in con- junction : with the STR file and the n' amelist MAJ.

0 Ignore. 1, Write the namelist $TRAJ onto dis,c;_,create the STM file if the mode is GODSEP. 2, Read MAJ from disc; read the STM file if the mode is GODSEP. 3, The same as 2, but also read the a-priori covar- iances from, the GAIN file if the mode.is GODSEP,. 4, Read MAJ from disc and update with a second in- put %TRAJ namelist.

MODE 1 2 This flag indicates the operat-, ing mode of MAPSEP. Positive values will recycle back to - MAPSEP main, while negative numbers w'il 1 return to the main of the mode.the This fea- ture allows user to run stacked cases.

±1, Targeting:and Optimization (TOPSEP). ±2, Error Analysis (GODSEP). ±3, Simulation (SIMSEP). 41 PIRINML F Do (T), do not (F) print in- put nAmelist $TRAJ 20 XPRINT 10 days, Trajectory print frequency.. Must be specified when IPRINT (MPRNT -1 in $TOPSEP) ^ ^-- 1_ I I 1 ^ eJ

12-B

d) REFSEP Parameters

Variable Dim Default Units Definition

ELVMIN 1 0. deg Minimum elevation angle for tracking S/C or target body

IOBS 1 9 - Column in STALOC array con- taining the station loca- tion of the astronomical ob- servatory (see STAI$C below)

KARDS l 0 - Number of formatted print schedule cards to be read in after the $TRAJ namelist

STALOC 3x9 Mixed Array of station locations in 1 either of the following sets of units (if STALOC (1,I),>90., then cylindrical coordinates j are assumed, otherwise, i spherical) I STALdC (1,I) _ spin radius (km) STAI#C (2, I) = longitude (deg) STALOC (3,I) = Z-height (km) or STAWC (1,I) = latitude (deg) STALOC (2,I) =longitude (deg) STALOC (3 , I) = altitude (km) default stations are: 1 - Goldstone (5200.234, - 116.833, 3693.429) 2 -Madrid (4855.414, -3.667, 4134.766) 3 - Canberra ( 5204.135, 149.136, -3686.233) 9 - Kitt Peak {4185.171, 250.000, E 4814.489

' Note; STALOC is also an -input parameter to $GODSEP with the same meaning.

i

I,

------Aj _ .,. . >..... , _.. Ir

x 13

r .1 2.2 TOPSEP Input Description

The input for the TOPSEP mode is transmitted via the namelists

$TRAJ and $TOPSEP. $TRAJ contains the basic trajectory and space- t;

craft information for a nominal low thrust mission. $TOPSEP contains r

the necessary parameters to alter the nominal trajectory in order to

obtain a more desirable trajectory. All namelist vairables assume

the program default values if they are not specified by input. In

addition, once a variable has been set by namelist input or by

default, it will resume that value at the beginning of all succeed-

ing stacked cases even though the value may have been changed by

1 ^ 11 the program during any one stacked case.

Namelist $TOPSEP:

Variable Dim Default Units Definition

BTOL 1 -.OS - Tolerance on control bounds within which a modified con- trol`correction may be imple- mented (See Page 143). The tolerance region within the minimum and maximum bounds (ULIMIT(I,l)ULIMIT (I,2)) is defined by BT¢L x (ULIMIT (I, 2) -ULIMIT (I,1))

DFMAX 1 1000. - Maximum increase allowed in the cost index per iteration (decimal percent of nominal 4 cost index- value) (See Page 146)

DP2 1 0.04 - Estimated region of linearity J I 0 (See Page 150).

t, 1 14

Variable Dim Default Units Def-'nition

EPSON 1 0.0 Scalar multiple for control perturbation; if no accept- able control step, then a new sensitivity matrix will be calculated based upon the revised perturbations H(I,J) H(I,J) X EPSON.

G 20xl 20*0.0 Performance gradient (may be input if available from a previous computer run) (See Page 146).

GTRIAL 5xl One-dimensional search constants (See Page 144). Let P = P (r) be the func- tion to be minimized (the cost index and/or the error index) and T be the step size scale factor to be optimized, then GTRIAL(l) M 1+1 may not be less than x GTRIAL(l). T i

GTRIAL(2) 5.0 T_ may not be greater than GTRIAL(2).

GTRIAL(3) 0.01 If the A % of 1+1 to is less than GTRIAL(3) then P(T) is considered minimized.

GTRIALM 1.E-15 If the AX, of the estimated Pi to the actual-P i is less than GTRIAL(4) then P(C) is considered minimized.

GTRIAL(5) 4.0 Real flag designating the extent of the curve fitting in the new control direction.

two-point-one-slope fit; 2. $ three-point-one-slope fit; 3., three-point fit; 4. s four-point fit. (e.g., GTRIAL(5) = 4. indi- cates that all four curve fitting tech- niques may be applied in the preceding order).. ` K r

r 15

Variable Dim Default Units Definition

H 10x22 220*0. Mixed Array of control designations. } A non-zero value indicates the associated parameter is a con- trol. It IASTM '^^ 0, values of H are i perturbations used in finite different- { ing. IASTM - 1, values of H are used only as activating . flags, The first 20 columns of H cor- respond to elements of the THRUST array (See Page 10) _(e.g., H (4 , 1) = ,.1 identifies the cone angle of the first phase as a control. Note: , THRUST (I,J), I = 2,7 and k J = 1,20 are the only valid thrust controls). The last two columns of H correspond f to the parameters listed be- low. When the grid mode is operative the H array ' repre- sents the first step for the selected controls (See HMULT for designating second step). m Parameters Selected as Controls H(1,21) km x STATE(1) H(2,21) km y, STATE(2) H(3; 21) km z, STATE(3) Geocentric or `-' H(4,21) km r, STATE ( 7) Heliocentric H(5,21) km/sec, STATE(4)x, Ecliptic H(6,21) km/sec y, STATE(5) Initial State H ( 7 , 2 1) km/sec z, STATE(6) H(8,21) km/sec v, 'STATE(8) H(9,21) km radius of parking orbit, ro H(10,21) deg inclination of parking orbit, i H(1,22) sec injection time in parking orbit, to See H(2,22) km/sec injection 6v Ref.1 P124.. H(3,22) deg in-plane dv_ direction angle, + H(4,22) deg nut-of-plane dv_ direction angle,vi H(5,22) kw base power at 1 au`, ENGINE (1) :i H(6,22) km/sec exhaust velocity, ENGINE (10) H(7,22) kg initial mass, SCMASS H(I,22) - 1`= 8,10 s not used i 16

Variable Dim Default Units Definition ` IWLT 20 20*0 - Scalar multiple of non-.zero ele- ments of the H array (max of 20) used to define the second step in the grid mode. See p. 138. i' IASTM 1 1 - Flag designating the method of com- puting the targeting sensitivity matrix = 0, finite differencing by means of perturbed trajectories 1, integrated state transition matrices If IASTM = 1 the parameters avail-- able as controls are restricted. See Page 140.

IMOD$ 1 2 - TOPSEP submode designation. 1, reference trajectory propagation. _ 2, target and optimize. = 3, generate trajectory grid.

If flag set to 1, then target sen- w INSG l 0 - sitivities S and the performance gradient G are input; if flag left 0, ignore (See Page 146)

IWATE 1 1 - Type of control. weighting (See Page 141-A). 1, unity weighting. 2, normalized control weighting.. = 3 sensitivity weighting. = 4, combined sensitivity, target error, and control weighting. = 5, target gradient weighting. = 6, averaged gradient and con- trol weighting. P. 142) JWATE 1 0 Target weighting flag (See r` 0, do not weight target variables. = 1 0 use tolerances to weight targets. L/

Variable Dim Default Units Definition

MPRINT 10x1 10*0 - Print option flags.

t =-1, print every XPRINT days and at control }{ phase and primary body changes. 0, no trajectory ,print. = T, print every I inte- gration steps. MPRINT(1), reference trajec- tory and grid print. MPRINT(2), perturbation tra- jectory print. MPRINT(3), trial trajectory print. 3 ^r MPRINT(4), supplementary print fog- targeting mode. MPRINT(5) - (10), not used. NMAX 1 l - Maximum number of iterations allowed.

OPTEND' 1 89.999 deg Optimization termination angle; optimization is considered complete when ;' 9 #i cos 9 = G • A IG^ X Isull } approaches 0 (when 8- approaches 90 deg). If OPTEND < 04 90 optimization is considered complete. If OPTEND is set to 0 deg TOPSEP will generate a tar- geted but not optimized trajectory.

i ` OSCALE 1 1.0 - Scale on performance index for simultaneous targeting and optimization (See P. 149).'

PCT 1 0.2'' - Fraction of target error to be removed in the first iteration (See P. 143).

PRNM.L 1 F Do (T) , do` not (F) print input namelist $T$PSEP

E I

{

f

i i 18 I

Dim Default Units Definition i Variable

- S 6x20 120*0 . 0 Mixed Target sensitivities (may be ` input it available from previous computer run) See Page 146,

STOh 1 0.001 - Minimum difference allowed between the inner prodi cts

I of the columns of the sen- sitivity matrix and the `- inner product of exactly linearly dependent vectors-. If Si and E2 represent the first two columns of the S'" 9 matrix and Sl 1 - -S STOL (Sl{ ^ {S2^ then the two columns are considered linearly dependent and the control associated with one of the columns (U(1) or U(2)) will be dropped from further consideration during the current iteration. (See Page 142)

'BARGET 6x1 6*0.0 Mixed Target values; must be input in the same numerical order as indicated by the index on the TARTOL vector. 0 TARTOL 25x1 25*0.0 Vector of target tolerances; a non-zero value of any com- ponent indicates that the associated target; parameter will be included in the tar- geting process. The desired target value is input in TARGET. The targets are eval- uated at the stopping 'condi- tion. (ISTOP in $TRAJ). The associated target parameters with respect to the target body are as follows. ' TARTOL(1) km (1) x-comp of target body ii relative state.

TARTOL (2) km (2) y-comp of target body_ relative state.. 4

r. 19

i Variable Dim Default Units Definition

TART¢L(3) Ian (3) z =comp of target body relative state.

TARTOL(4) `Ian (4) 11 , radial distance from target body.

TARTOL(5) km/sec (5) x-comp.

TART¢L(6) km/sec (6) y-comp.

TARTOL(7) ^m/see (7) z-comp.

TARTOL(8) tan/sec (8) wI velocity . sw TARTOL(9) km/sec (9) VHP, hyperbolic excess { velocity.

TARTOL ( 10) km (10) RCA, radius of closest approach. a TART$L ( 11) km (11) $-T, B-plane coordinate.

TARTOL(12) km (12) $-R, B-plane coordinate.

TARTOL(13) days (13) TSOI, time at sphere of a influence.

TARTOL(14) days -(14) TRCA, time at closest° approach.

TARTOL(15) km (15) a, semi-major axis. j

TARTOL(16) (16) e, eccentricity.

TART$L ( 17) dege (17) i, inclination. _ a

TARTOL (18) deg (10). longitude of ascend- ing node.

TART$L(1.9) deg (19) W

TARTOL (20) deg (20) MA mean anomaly. '+.. TARTQL(I) I • 21,25 not used.

t 4 . R, « k r x e ' _.__ ^•ri".'rrws..xart .wemw•...m.e..s..+w..w..-. , ..

` r 20-A

IkV Variable Dim Default Units Definition

TLOW 1 1.0 - Limit of quadratic error index (EMAG) below which optimization only is per- formed. (See Page 150).

TUP 1 1.0 - Limit of quadratic error index (EMAG) above which simultaneous targeting and optimization is discontinued and targeting only is initi- ated. (See Page 150).

ULIMIT 20x2 20k(-1020, Mixed Minimum and maximum bounds 10 ) on the controls in the con- trol vector. The units are the same as those of the controls (See Page 141-A)

UWATE 20x1 20*1.0 - User input control weight- ings which are applied for ' all choices of the variable IWATE.

i

i

J

Cl

_j momI.__ I I 1

20-B

Tuts Parameters II Variable Dim Default Units Definition

AZMAX 1 120. deg Maximum launch azimuth con- straint for inner parking orbit I (launch froak Cape Kennedy)

AZMIN 1 35. deg Minimum launch azimuth cn- straint for inner parking orbit I'r (launch from Cape Kennedy)

s RP1 1 6567.26 km Inner parking orbit radius

TGFUEL 1 10673.0 kg Maximum weight of fuel for 5 transfer stage

Specific impulse of transfer I TUGISP 1 309.2 sec stage

TUGWT 1 1714.6 kg Dry weight,of transfer stage I

I

a r

I

I

i

4 ^1 2.3 GODSEP Input Description

Three forms of input are used by the error analysis mode. The

namelist $GODSEP is used to define output, all measurement and event

information (except the scheduling of measurements and propagation

events), and all covariance initialization and propagation informa-

tion. Immediately following $GODSEP are NSCHED cards defining the

scheduling of all measurements and propagation events. The format

for these cards, as well as a definition of data type codes, appears

after namelist $GODSEP is defined.

Following the measurement schedule cards are a series of

optional namelists for guidance, each called $GEVENT. Reading of

j $GEVENT is controlled by the guidance flag array IGREAD, described

In $CODSEP.

Reference is made below in the definitions of IPFOM and

IGFORM to the "packed" and "unpacked" forms of a matrix. If the a

. solve-for covariance matrix,PS is dimensioned 10 x 10, but the

current run has only 2 solve-for parameters, the 2 x 2 PS matrix

Is considered "packed" if the four covariance elements occupy the

first four consecutive words of storage for the PS matrix. This a 1

` can be achieved in namelist input by

{ PS 9., .63, .6.3, 4., If, however, the namelist input contains `F PS(1,1) 9., PS(1,2) _ .63,

a PS(2,1) _ .63, PS(2,2) 4.9

i the four elements of PS will occupy words 1, 2, 11, and 12 of the

x I 1 __. 1 I 1 i. tC^..^

22

PS matrix due to internal storage standards and the matrix is termed

"unpacked."

2.3.1 Namelist $G$DSEP - Covariance Initialization and Propagation:

Variable Dim Default Units Definition

.G IPFORM 1 0 - _ 0, input knowledge standard deviations and correlation co- efficients in packed form (see above for definition of packed F and unpacked) = 1, input knowledge in I unpacked form. P 6x6 1000 km, Standard deviations and 50 m/s correlation coefficients each CLMU- of state at epoch defined g, ponent by TCURR

US 6xll 0 - Correlations between state and solve-for parameters CXU 6x13 0 - Correlations between s` state and dynamic consider parameters. ?' CXV 6x15 0 - Correlations between state and measurement 4 consider parameters CXW 6x10 0 - Correlations between s state and ignore parameters~ ~r pS llxll 0 - Std. dev. and correlation px; .„t coefficients of solver x , for parameters

CSU 11x13 0 - Correlations between E solve-for and dynamic consider parameters CSV 11x15 0 - Correlations between solve-for and measurement consider parameters CSW 11x10 0 -`' Correlations between solve-for and ignore parameters 23

„ G Variable Dim Default Units Definition

PU 13x13 0 - Std, deviations and correlation `i coefficients of dynamic consider parameters CUV 13x15 0 - Correlations between dynamicy consider and measurement consider _parameters CUW 13x10 0 -. Correlations between dynamic consider and ignore parameters PV 15x15 0 - Std. deviations and correlation coefficients of measurement consider parameters CVW 15x10 0 - Correlations between measurement considers and ignore parameters PW 10x10 0 - Std. deviations and M' correlation coefficients of measurement consider parameters IGFORM 1 0 - Ignored if CORD = .FALSE.; t: if CONRD = .TRUE . s =0, input control uncertainties i packed- =1, input control uncertainties unpacked. (see above definitions of packed and unpacked) PG CXSG Standard deviations and corre- CXUG lations ofcontrol covariance CXVG (analgous to P, CXS, ..., PW); CXWG if CONRD = .FALSE., then control PSG covariance is set to a-priori CSUG knowledge; if CONRD = .TRUE., CSVG then control must be input CSWG at epoch defined by TG. PUG CUVG s ; CUWG PVG CVWG PWG

CONRD` 1 F - =F, set apriori control to t a priori knowledge =T, assume a-priori control:, read in namelist (See Page '159) 24

i,

Variable Dim Default Units Definition DYN¢IS 1 T - =T, compute effective process noise matrix for use with state transition matrix propagation =F, don't compute effective process noise

SCMVAR 1 0. kg initial 'S/C mass standard devi- ation

` EPSIG 3x2 mixed Process noise standard deviations, used only for STM (not PDOT),` EPSIG(l,l) .01 - Std. dev. in magnitude proportionality noise EPSIG(2,1) .01 rad Std. dev. in cone angle noise ` EPSIG(3,1) or rad Std. dev.. in clock angle noise r' EPSIG(1,2) 0 - Std,. dev. in secondary process for magnitude proportionality EPSIG(2,2) 0 rad Std. dev. in secondary noise process for cone angle l EPSTG(3,2) 0 rad Std. dev. in secondary noise process for clock angle EPTAU 3x2 days EPTAU (I,J) is correlation time for Jth noise process EPTAU(1,1) 4 days EPTAU(2,l) 1 days corresponding to EPSIG (I,J) EPTAU(3,1) 1 days and PDOT process noise (See Page 159) EPTAU(1,2) 0 days EPTAU(2,2) 0 days EPTAU(3,3) 0 days IAUG 50 50*0 - Parameter augmentation control' IAUG(I) controls augmentation of parameters to state vector as follows =0, not used =1, parameter solved-for = 2, parameter considered =3, parameter ignored (generalized,< covariance only) IAUG(I) parameters available Ci (1) thrust acceleration proportionality E i (2) cone angle bias (3) clock angle bias

s 25

Variable Dim Default Units Definition

IAUG (4) through (9) ephemeris planet r elements, X,y.,z^X,Y,z, if ' IEPHEM=O or 1 a, e, i, 11 ,W ,m, if IEPHEM=2 1 (10) ephemeris body gravitational constant, :' (11) solar gravitation constant (12)- (17) used only if PDOT = TRUE (12) noise process corresponding to EPSIG(1,1) ,. (13) noise process corresponding to EPSIG(2,1) (14) no ise corresponding to process (15) noise process corresponding to EPSIG(1,2)' (16) no ise corresponding to process (17) noise processcorresponding to EPSIG(3,2) - r (18) spin radius, station #1 ;a (19) longitude, station #1 ... (20) z-height, station #1 (21), (22), (23) spin radius, longitude, z-height sta. #2 (24), ( 2 5)(2 6) spin radius, longitude, z-height, s ta. #3 (27),( 2 8) 2-way doppler, range i bias from sta. #1 (29), (30) 2-way doppler, range - bias, from sta. #2 ry (31), (32) 2-way doppler, range bias from sta. #3 (33),(34), 3-way doppler, range .^ bias from sta. # 1,2 a (35), (36) 3-way doppler, range bias from sta. # 1,3 (37),(38) 3-way doppler, range z bias from sta. # 2,3- (39), (40) azimuth, elevation r angle biases from sta. #1 (41), (42) azimuth, elevation angle biases from sta. #2 (43),(44) azimuth, elevation angle biases from sta. #3 i (45) star-planet angle bias star #1 (46) star-planet angle bia s star #2 I (47) star-planet angle bias star #3 i 26

+ Variable Dim Default Units Definition

(48) apparent planet diameter angle bias (49) astronomical observation, right ascension angle (50) astronomical observation, declination angle

IEPHEM 1 0 - indicates format of ephemeris parameters if any flagged = 0, time evolving cartesian = 1, stationary cartesian _ 2, stationary Keplerian

PD¢T 1 F - logical flag controlling covariance integration e T propagate covariance by integration F, propagate covariance by state transition matrix method

PROM l F - not used for input, overridden internally

SCHFTL 1 T - logical flag T, failure to mesh on STM file within tolerances defined by TOLFOR and ,. TOLBAK is total F, mesh failure not fatal

TCURR 1 TSTART days Epoch for input knowledge uncer- fl (MAJ) tainties, referenced to TLNCH (if PDOT = .TRUE. and TCURR # TSTART (See Section 4.2.5). ,r TFINAL 1 TEND days Error analysis final time, ($TRAJ) referenced to TLNCH R ' TG 1 TCURR days Epoch for input control uncertain- k ties if CONRD = T and control epoch different from knowledge epoch

TOLBAK ,' 1 1.0 days Backward tolerance on meshing ' scheduled event times with S724 file times'

TOLFOR 1 .03 days Forward tolerance on meshing scheduled event times with 'STM (, file times

IT 27

i! Measurement Related Variables

Variable Dim Default Units Definition

CORLON 1 .9 - Station-to-station longitude correlation forround-based a ! tracking stations

DOPCNT 1 12 Meas./ Nominal number of dopier measure- s Day ments to be ,taken per day for scal- ing doppler noise (SIGMES(1) and SIGMES_(3))

GAINCR l F - Controls GAIN file creation (See Page 162) T, create GAIN file = F, do not create GAIN file

GENCOV F - _ F, current run r.ot generalized _ covariance = T, generalized covariance run, forces IGAIN = 4

IGAIN 1 1 - Defines OD filtering algorithm 1,_ Kalman-Schmidt 2, sequential weighted least squares = 3, User-supplied filter (See n. Analytic Manual, Section 6.4) r. 4, read filter gain from GAIN file (TAPE 4)

NSCHED 1 _0 - Number of measurement and propa- gation event scheduling cards to follow namelist,$G¢DSEP

NST 1 3 - Number of active DSN station loca- tions defined in,STALOC array

SIGL¢N 1 3,0 meter Standard deviation in longitude for equivalent station location errors

SIGMES 15 mixed Array of measurement white noise' standard deviations

SIGMES (l) 1.0 mm/sec /1 min sample 2-way doppler SIGMES (2) 3.0 meter 2-way range ` SIGMES (3) .1 mm/sec /l min sample 3 -way frequency drift SIGMES (4) 10.0 meter 3-way range ^4_ I I I I I I_ _I

28

Variable Dim Default Units Definition SIGMES (5) 1600. /u -rad azimuth angle SIGMES (6) 1600. M -rad elevation angle } SIGMES(7) 150. P -rad on-board optics -- star planet angle SIGMES(8) 150. /A-rad on-board optics -- apparent r planet diameter SIGMES(9) 10. km on-board optics -- center-finding uncertainty; used in conjunction with star-planet angle r SIGMES(10) 34- arc-sec astronomical observation -- right ascension SIGMES(11) 3. arc-sec astronomical observation -- declination

SIGMES(12)-(15) - - not used s SIGRS 1 1.5 meter standard deviation in spin radius for equivalent station errors STALOC 3x9 mixed array of station locations (cylindrical coordinates only) . I 4 STALOC(1,I) _ spin radius (km) °. STALOC (2, I) longitude (deg) } STAL¢C O M = z-height (km) default values for station ?; coordinates are: 1 - Goldstone (5200.234, -116.833, 3693.429) 2 - Madrid (4855.414, -3.667, 4134.766) 3 - Canberra (5204.135, 149.136, -3686.233) 9 - Astronomical Observatory (Kite Peak = 4185.171, 250.000, 4814.489)

STARDC 3x9` - array of ecliptic star direction cosines (or, equivalently, unit vectors in, star directions) used for star-planet angle measurements; vector locating Jth star loaded in Jth column of STARDC

default values are (fictitious stars) STARDC(ll) 9 .7, .6, .3873 STARDC(1 2) c .6, -.7, .3873 STARDC(1,3) = .65, .65, .3937 F_ t f

I 29

IEvent Variables

Variable Dim Default Unit Definition

NEIGEN 1 0 - Number of eigenvector events to be scheduled (maximum 10).

^ TEIGEN 10 -lwio.r days Array of eigenvector event times (See Page 158).

NPRED 1 0 - Number of prediction events to be € scheduled (maximum 10)

TPRED 10 10*0. days Array of prediction event times

TPRED2 10 10*0. days- Array . of times predicted to

NGUID 1 0 - Number of guidance events to be scheduled (maximum 20)

TGUID 20 20*0. days Array of guidance event execution times

TDEIA-Y- 20 - 20*0. days Array of guidance event delay times. Guidance events are scheduled at execution time minus delay time, and covariances are propagated for- ward to execution time.

TCUTOF 20 20*0. days :array of guidance event cutoff '. times for impulsive maneuvers, set TCUTOF (I) = TGUID (I) F) -:i Vii. IGP¢L 20 20*0. - Array of guidance policy control j flags t = 0, no maneuver, print control j 1 uncertainties a = 1, target to Cartesian state, X,Y,Z at time specified by TINFTA '_ a = 2, B-T, B •R targeting = 3, B-T, B-R, time at sphere target- ing = 4, closest approach targeting (radius of closest approach, - inclination, time of closest approach) = 5, variable time of arrival (XYZ

3 targeting)

tf(t IGREAD 20 20*0. - Array of guidance event read control 't t flags (if non-zero, control weights CQNWT will be read), See Page 163. Plow 4

30

,G. Variable Dim Default Unit Definition

= 0, do not read namelist $GEVENT _ 1, read namelist IGEVENT, and recompute control and target variation matrices (VMAT and SMAT) _ 2, read $GEVENT

NCON 1 4 - Number of controls for low thrust guidance (must be greater than or -equal to number of target variables). Controls are ordered: magnitude L cone 1 clock cutoff time -, start-up time (or arrival time if IGP$L = 5) 1 = 1, magnitude only 2, magnitude and cone = 3, magnitude, cone, clock = 4, magnitude, cone, clock, cutoff time a: = 5, use all five controls -` 1 CONWT 5 5*1. - Relative weighting factors for controls defined by NCON r: Small number weights out effect 1 of control. CONWT may also be re-defined. ;n namelist SGEVENT • a

UMAX 5 5*50. %, Maximum allowable (la") control cor- deg, rection as defined by NCON day

TARWT 3 3*1. Relative weighting factors for target parameters defined by IGPOL

TGSTOP l TEND days Stop time for integration of varia- ($TRAJ) tion matrix if sphere or closest approach not reachedin B-plane or y closest approach targeting

TIMFTA 1 0 days Strap time for XYZ targeting '(overrides TFINAL and TGSTOP). SIGDV 4 mixed Array of standard deviations defin- ing impulsive /►V execution errors

SIGDV (1) .01 - Standard deviation; of proportion-" alty error - SIGDV(2) 2E-4 km/s' Standard deviation of resolution error

. - __ 31

tl ^ A Variable Dim Default Unit Definition

SIGDV(3) .065 rad Standard deviation in ecliptic a pointing angle SIGDV(4) .065 rad Standard deviation in out of ecliptic pointing angle

Output Control

Variable Dim Default Unit Definition

DHEKPR 10 10*F - Array of logical flags controll- ing check point options which may be useful in debugging. The fol- lowing elements of CHEKPR are activated if set equal to .TRUE.; (1) - writes on nominal output file (TAPE 6) all information on STM file (TAPE 3) during file generation and all information reads from the STM file. In addition, the results of each transition matrix chaining operation in 'subroutine STMRDR (See Program Manual) is also printed. (2) - Prints every measurement. (3) - Prints full covariance, not standard deviations and correlation coefficients, before and after each meas- urement (4) - Writes on nominal output file (TAPE 6) all information written on GAIN file (TAPE 4) during creation, and all infor- mation read from GAIN file for IGAIN = 4 option. (5) --Writes on nominal output file „(TAPE.; 6) knowledge and control` uncertainties at end of burn interval andtransition matrix over burn interval for low thrust guidance, or eigenvalues' and eigenvectors of expected QV covariance for impulsive guidance. {

' 7 I I I l I^

32

Variable Dim Default Unit Definition

.,ah {6} -computer time computation and display j (7) - not used (8) - reads from STM file to compute transition matrices needed for 1 guidance rather than calling I TRAJ j(9) - Prints covariance before and ^ after each propagation (10)- dump core when mission time b. EDIT(50) EDIT(50) 1 0 days dump time (See CHEKPR(10)) IPROP 1 0 - -Propagation event print control = 0, io print 1, print standard deviations and correlation coefficients of S/C state only 2, full eigenvector event JOBLAB 10 Blank - Hollerith label to be printed with ' each measurement and event print MPFREQ 12 _12*0 - Measurement print frequency con- 1 trol. If MPFREQ(I) = N, the first time the data type corre- sponding to MPFREQ(I) is scheduled it is printed. Thereafter, that - data type will be printed each time its count is divisible by N. I The following correspondences between MPFREQ and data type are 1 ;' used. (See also Section 2.3.2). i _ (1) -two-way doppler (code 100X) I (2) - three-way doppler (code 11XX) (3) - simultaneous 2-way/3-way doppler (code 12XX) j (4) - differenced 2-way/3-way doppler (code 13XX) (5) - two-way range (code 200X) (6) - three-way range (code-21XX) { (7) - simultaneous 2-way/3-way } range (code 22XX), a (8) - differenced 2-way/3-way range (code 23XX) (9) - azimuth-elevation angles (code 30XX and 300X) . (10)- star-planet angles (code 4XXX 40XX and 400X) . ' (11)- apparent planet diameter (code i' 5000). (12)- astronomical observations (code 600X) PRNC$V 5 - Print control for standard deviations : 3 and correlation coefficients. (T TRUE, F = FALSE) 33

Variable Dim Default Units Definition

PRNC¢V (l) T Do (T) or do not (F) print state standard deviations and correla- tion coefficients and correlations with all augmented parameters

j PRNC¢V (2) T - Do (T), do not (F) print solve-for standard deviations and correlation coefficients and correlations with other parameters

PRNCOV(3) F - Do (T), do not (F) print standard deviations and correlation coeffi- cients for dynamic consider para- meters and correlations with other parameters. r PRNC¢V (4) F Do O,T do not OF Print standard. deviations and correlation coeffi- u cients for measurement consider parameters and correlations with rh ignore parameters

PRNCOV(5) F - Do (T), do not (F) print standard deviations and correlation coeffi- cients for ignore parameters

PRNML 1 F - Do (T), do not (F) print input' r namelist $GODSEP after reading in PRNSTM 5 - Print control for state transition matrix partitions. The flagging of any PRNSTM element causes prints. with each state transition matrix print, of the sensitivity of the rele- vant parameter- set to the entire augmented state vector.

PRNSTM(1) T Prints sensitivities for S/C state

PRNSTM(2) F Prints sensitivities for solve-for parameters

PRNSTM(3) F Prints sensitivities for dynamic consider parameters

PRNSTM(4) F Prints sensitivities for measurement consider parameters } x Variable Dim Default Unit Definition

PRNSTM(5) F Prints sensitivities for ignore parameters

PUNCHE 5 S*F Punch flag for complete knowledge or control standard deviations and correlation coefficientts at events = T. causes punching t _ F, does not Elements of PUNCHE are: (1) - knowledge at propagation event (2) - knowledge at eigenvector event (3) - knowledge at thrust event (4) - knowledge at time TPRED2. for prediction events (5) - control before and after maneuver at each guidance event

SUMARY 1 T T Write SUMMARY file (TAPE 8) F, do not write SUMMARY file (TAPE 8)

2.3.2 Measurement and Propagation Schedule Input

Measurement schedule cards follow directly behind namelist $GODSEP.

Each card contains three time control variables in Columns 1-30 in

format 3F10.4 and one measurement code (MESCOD) right justified in

Column- 40 (format I10) .

Time control variables are START, STOP, DELT

START = start time, referenced to TLNCH, for scheduling i current data type; i STOP _ stop time for current data type;

x` DELT time interval increment for scheduling.

For example, if START 10.5, STOP 20. DELT 1.0, the current data t

•aj 35

type will be scheduled ten times at 10.5, 11.5, 12.5, ..., 19.5 days. e Internal tests modify START if it is less than TCURR, and STOP if it

is greater than TFINAL so that no measurements are scheduled outside

the requested error analysis interval.

One additional option is available on scheduling. Any scheduling

card on which DELT is zero or negative redefines the allowable schedul-

ing interval from (TCURR, TFINAL) to the (START, STOP) interval defined

by that card. All succeeding measurements are scheduled in the interval

defined by that card until another card with a zero or negative DELT is

encountered.

If DELI is greater than zero acid n.o measurement code appears

(NESC¢D _ 0), propagation events will be scheduled. Except for pro-

pagation events, all other allowable measurement codes are 4-digits,

defined as follows (station and star numbers are defined in STALOC

and STARDC, respectively):

100n 2--way doppler (range-rate) from Station n;

llmn 3-way doppler from Stations m and n;

12mn simultaneous 2-wad=/3-way doppler from

Stations m and n,,

13mn differenced 2-way/3-way doppler from

Stations m and n; E i i 200n 2-way range from Station n;

' 21mn 3 -way range from Stations m and n

}A 22mn simultaneous 2-way/3-way range from f Stations m and n; i r 23mn differenced 2-way /3 -wav range from

Stations m and n i =-^ I I i l l I_ 1 1

k 36-A

r

300n azimuth and elevation measured from

Station n;

300m ezimuth and elevation measured simultaneously - from Stations m and n;

4C5n on-board optics, angle measurement between 4 th ephemeris body and star n, defined by n

column in STARDC array; r 40mn two simultaneous star-planet angle measurements

with ephemeris body and Stars m and n

{ 4lartn, three simultaneous star-planet angle measure-

ments with ephemeris body and Stars k, m and n;

5000 apparent planet diameter measurement of

€ ephemeris body.

600n right ascension/declination measurement of

ephemeris body from Station n.

2.3.3 Namelist $GEVENT Y One copy of namelist $GEVENT must appear after the measurement

schedule cards for each guidance event which has its corresponding ff

value of IGREAD greater than zero. Default values are nominal input k or computed values prior to reading $GEVENT.

Variable Dim Default Units Definition

BURNP 4 4%0. km/s, _ Thrust acceleration and mass at Kg beginning and at end of guidance interval (See Page 163).

;x CONWT 5 - - See namelist AGODSEP

.. NCON 1 - - See namelist $GODSEP

: l- _ _I l I ^ I I^

36-B

Variable Dim Default Units Definition

SMAT 3x5 15*0, mixed. Sensitivity matrix of target parameters WRT control parameters t (See Page 163).

TARWT 3 - - See namelist $GODSEP

'f UMAX 5 - - See namelist $GODSEP

VMAT 3x6 18*0. mixed Variation matrix of target para- meters WRT state at guidance epoch (See Page 163).

f,

^ 1

a y`

t?}

rr

c Input to the simulation mode is transmitted to the program

through three namelists; $TRAJ, $SIMSEP, and $GUID. As before, the

} $TRAJ namelist essentially defines the reference trajectory initial

s conditions, spacecraft parameters (thrust, mass, electric power, etc.)

and other baseline quantities necessary to specify a reference mis-

sion. In general, the $TRAJ inputs for SIMSEP are obtained as results

from a precursor TOPSEP analysis where a targeted reference trajectory

has been determined. k The first namelist peculiar to the SIMSEP mode is called ki ISTMSEP. Its primary function is to initialize a r rp iori statistical

descriptions of those error sources which remain nearly constant dur-

ing the course of an individual. simulation in the basic Monte Carlo •a E : cycle. In addition, various parameters which, for example, specify 3 the number of guidance events, the output frequency, the number of u ^yy Monte Carlo cycles, etc., are also read from SIMSEP. E - The second of these namelists unique to SIMSEP is J(GUID. As its

name implies, it is responsible for initializing parameters and data

used at guidance events. Unlike gSIMSEP which is read only once for

each SIMSEP run, XGUID is read for each specified guidance event 3 being: simulated along the mission. Variables initialized by this

samelist include such things as guidance event times, knowledge

tovariances, guidance law and policy specifications, etc.

Finally, it should be noted that both $SIMSEP and $GUID can also .t contain certain statistical arrays computed in previous SIMSEP analyses. ff

t 38

I; These arrays are key to SIMSEP's restart capability and provide the

means to continue an analysis with many more Monte Carlo cycles in

a series of SIMSEP runs. The format for input is, generally, a

(nxn) correlation matrix of standard deviations and correlation

coefficients. An extra column vector augmented to the right hand

I side of the (nxn) matrix, thus _creating a (nx(n+l)) matrix, serves

to mean values to complete the statistical_ description for f store

the parameter of interest. Unfortunately, the multitude of options

available in SIMSEP make the real numerical format used for input a

bit awkward. In particular, the variables, CCOVG, CNTCOV, TARCOV,

etc., are actually read as one long column vector with separate t columns in the correlation matrix being stored consecutively. This

apparent difficulty is somewhat off-set by the fact that these arrays r sx r are ordinarily generated as output from a previous SIMSEP run and

have automatically been punched in the requisite format. i- s Another important capability in SIMSEP which relates to the

namelists SIMSEP and XGUIDris the multiple run or stacked case

feature. In particular, once normal computer processing of a run

is completed, the program automatically recycles to read $SIMSEP

again if the $TRAJ variable,! MODE, has been set to a -3. When this

occurs, only changes to $SIMSEP from the previous run need to be a

input. Likewise, the IGUID namelists are also read in the same

sequence as they were for the first run. Guidance event data need ?;

not be read anew unless there are changes to a particular data set

or if there are more guidance events in the secondrun. The only 39

drawback here is that a zero-data namelist, i.e., a .9GUID card fol-

lowed by a BEND card, must be input for each event even though there

may be no changes. This is also a requirement for the $SIMSEP name-

list upon recycling.

Given below are detailed descriptions of the variables, dimen-

sions and default values (where applicable) for both $SIMSEP and

$GUID. The parameters are divided into appropriate groupings; ?or

$SIMSEP: run definition, a-priori control and ephemeris errors,_

spacecraft parameter errors, and accumulated statistics and para-

meters; for $GUID: event initialization data, optional initialization

data, guidance law and policy, knowledge error, guidance control data,

and accumulated statistical data,

m Namelist: $SIMSEP

Run Definition Parameters:

Variable Dim Default Units Definition i A¢K 1 100. - Backup convergence toler- ance for the weak con- vergence test.

1 CPMAX 1 10000. sec Computer processing time a limit (See Page 175).

DVMXN 1 0.1 km/sec Maximum magnitude allowed for a delta-velocity cor- rection.

! INREF 1 0 - Option flag to indicate whether or not state varia- bles, s/c mass, targets, etc. are to be read as input during the ^GUID name- list. read. 0, No data input (computed internally). = 1,' Input data. i

YhL x f

^

4O

Variable Dim Default Units Definition If INREF = 1, the variables listed under Optional Guidance Event Initialization Data must be input along with MEND and XEND (See Page 172 and 173) If INREF = 0, the optional guidance event data are r automatically computed. x ;

IOUT 1 1 - Print output flag which acti- vates printout for every 1 I¢UT Monte Carlo cycle.

HUNCH 1 0 - Punch output flag.

^^ I = 0, no punched statistical arrays (covariance matrices and vector means) at the end of the run. - = 1, punch. IRAN 1 1 - Monte Carlo random number seed to initiate the gener- ation of randomnumber from RANT.

0, regular Monte Carlo analysis. = 0, forced Monte Carlo sampling of one-sigma for all error sources.

' NCYCLE" 1 1 - Number of Monte Carlo mis- sion cycles to be executed.` s a NGUID 1 1 - Total number of guidance E ` events both low thrust and impulsive velocity changes, to be executed on each simulated mission. A maxi- mum of five guidance events is allowed._

- PRNML, 1 F - Do (T), do not (F) print input namelist $SIMSEP after „' reading. 41

A Priori Control and Ephemeris Errors:

Variables Dim Default Units Definition

EPHERR 6x6x2 0,...,0 lan, Arrays describing the km/sec Cartesian ephemeris errors associated with at most two planets. A 6x6 array is

1 read for each ephemeris planet with standard devi- ations along the principal ((' diagonal and correlation 4 coefficients off-diagonal. Only the principal diagonal ` and the lower triangular I partition of the array are actually necessary. k ` 3 2 f GMERR 3 km /sec One sigma uncertainties in- # the gravitational constants.- j

GMERR(1) 0, Solar mass error.

GMERR(2) 0. First ephemeris planet mass error.

GMERR(3) 0. Second ephemeris planet mass error. { :NEP2 2 0, 0 Array of ephemeris planet number codes to designate the active ephemeris error planets. The code conven- r tion is the same as that i t? used in -$TRAJ for the NB { array. i PG 6x6 0,.. ,0 km Correlation array describing km/sec the arp iori Cartesian con- J trol errors associated with 1 the initial reference state •rec to r m The .npu ut-ma t is the same as EPHERR.

TEPH 2 Epochs at which ephemeris errors are evaluated.

TEPH(l) 0 days Julian data or time from launch for the first ephem- eris planet, t

J E 42

Variables Dim Default Units Description

TEPH(2) 0. days Julian date or time from ' launch for the second ephemeris planet.

S/C Parameter Errors:

Variables Dim Default Units Definition

EXVERR 4 One sigma midcourse velocity correction execution errors. EXVERR(1) 0.; - Proportionality error. s EXVERR(2) 0. degs In- ecliptic-plane pointing error, EXVERR(3) 0. degs Out-ecliptic-plane pointing w error.' R EXVERR(4) 0. km/sec Resolution error. u SCERR_ S One sigma SEP s/c errors. SCERR(1) OT kg Initial s/c mass uncer- tainty.

SCERR(2) 0. km/sec Low thrust exhaust velocity R' uncertainty. SCERR(3) ` 0. kw Uncertainty in electric Y a _power at 1 A.U. SCERR(4) 0. uncertainty in thruster efficiency. ;.` SCERR(5) 0. Uncertainty in the effective radiation pressure coeffi- cient. l TCERR 6x20 0,....,0 One sigma thrust control biases.

' TCERR(1 ) days j th thrust phase end time. r TCERR(2, j) jth thrust phase throttling.

? ( TCERR(3, j ') de gs jkh thrust phase- cone angle. L _ !G; TCERR(4, j} degs jch thrust phase clock angle.

TCERR(S, j) degs/sec jth thrust phase cone angle rate,

a i 43

r 4 I y Variables Dim Default Units Description

TCERR(6, j) degs/sec j th thrust phase clock angle rate.

TVERR 6x3 One sigma time varying thrust control errors (dy- namic process noise speci- fications), corresponding, correlation times, and correlation time uncer- tainties for two simulta- neous, independent processes.

TVERR(1, 1) 0. First process, thrust pro- portionality uncertainty (per thruster).

TVERR(1, 2) 1. days Correlation time for thrust acceleration.

TVERR(1, 3) 0. days Uncertainty in the thrust acceleration correlation time.

TVERR(2, 1) 00 degs First process, cone angle uncertainty.

TVERR(2, 2) 1. days Correlation time for cone angle.

TVERR(2, 3) ,0. days Uncertainty in the cone angle correlation time.

TVERR(3, 1) 0. degs First process, clock angle uncertainty.

TVERR(3, 2) 1. days Correlation time for clock angle.

TVERR(3, 3) 0. days Uncertainty in the clock angle correlation time. E s TVERR(4, 1) 0. Second process, thrust acceleration uncertainty (per thruster).

TVERR(4, 2) 1. days Correlation time for thrust acceleration. 44

Variables Dim Default Units Description

TVERR(4, 3) 0. days Uncertainty in the thrust acceleration correlation { time. TVERR(5, 1) 0. degs Second process, cone angle r, uncertainty.

TcJERR(5, 2) 1. days Correlation time for cone angle.

TVERR(5, 3) 0, days Uncertainty in the cone angle correlation time.

TVERR(6, 1) 0. degs Second process, clock angle uncertainty.

TVERR,(6, 2) 1, days Correlation time for clock angle.

TVERR(6, 3) 0. days Uncertainty in the clock angle correlation time.

Accumulated Statistics and Parameters:

Variable Dim Default Units Definition

ADVT 2 Accumulated delta-velocity magnitude statistics for all impulsive velocity cor- rections along a mission.

ADVT (l) 0. km/sec One-sigma delta-velocity magnitude.

ADVT(2) 0, Imi/sec Mean delta-velocity magni- tude.

ENDCOV 6x7 0.,,,0. km S/C control error correlation km/sec array computed at the trajec- tory time TEND. This array I r is input as a;(6x6) matrix of standard deviations and cor- relationcoefficients. Only -^ the principal diagonal and the lower triangular sub- i matrix are necessary. The 7th column of this array contains the means. 45-A

Variables Dim Default Units Definition

AMASS 2 Accumulated S /C mass sta- } tistics at the final time.

AMASS(l) 0. kg One-"sigma s/c mass. i AMASS ( 2) 0. kg Mean s/c mass, a

' MEND 1 0. kg Final s/c mass on the refer- ence trajectory at time 1 TEND. This variable is required only if INREF = 1 and is used in computing 3 AMASS statistics. 1 MC 1 0. Number of Monte Carlo r cycles executed in a previous: SIMSEP run in which statisti- cal variables ADVT, AMASS, ENDCOV, and ATHCOV are com- puted. MC is used to re- start accumulated statistics F ^ for the .current run. i ATHCOV 420 l;',...,0. Accumulated statistics on the active thrust controls changed at scheduled low s -a thrust guidance events. A maximum of twenty active ?` thrust controls are allowed.` s This array is input as a `. (nxn) matrix of standard deviations and correlation coefficients, where n is the total number of low thrust controls. As before, only the principal diagonal and lower triangular submatrix need to be input. The (n+1)th column vector contains the means.

REND 6 05..* 0. km, Final reference trajectory km/sec state vector at the trajec- tory time TEND. This vector is required input, only if t .r. INREF = 1 and is used in com- puting the ENDCOV covariance, matrix.

kf t k ^w 45-B

Variable Dim Default Units Definition

KATHC 1 0 -- Dimension of the ATHC¢V matrix.

S/C Parameters for Midcourse Velocity Corrections:

Variable Dim Default Units Definition 1 SPFIMP 1 265. sec Specific impulse for chemical propulsion system.

DVMDOT 1 .05 kg/sec Mass flow rate fog chemical propulsion system. i

46

II i Namelist: $GUID

Guidance Event Initialization Data: { Variable Dim Default Units Definition

KTER 1 ' 0. — Option flag to indicate I ;' whether or not target errors { are to be evaluated after the current guidance event. If KTER = 1, a trajectory is integrated from the point of the guidance event to the target.

TGUID 1 0. days Epoch of the current guid- ance event specified as either a Julian date or the interval of days since 4 launch. i j TTARG 1 0. days Designated epoch of arrival i at the target specified ; 1 a: either as a Julian date or i as the interval of days since launch. 1 _ I

i' Optional Guidance Event Initialization Data: These variables are

required input only if INREF = 1 (See $SIMSEP). }

Variable Dim Default Units Definition MGREF 1 0. kg S/C reference mass at the current guidance event.

MTREF 1 0. kg S/C reference mass at the designated target time.

S- 36 0,...,0. Mixed Sensitivity or guidance matrix which has been com- puted in a previous analysis. For linear guidance, S is input as `a guidance matrix. ii F For nonlinear guidance, S

^ r f is input as a targeting sen- sitivity matrix.

c r na 47-A

Variable Dim Default Units Definition

TARGET 6 0,.*03,0. Mixed Array of reference target values evaluated at the designated target time.

XGREF 6 0,.*.,0. km, Reference trajectory state km/sec vector at the current guid- ance event.

XTREF 6 0'...'0. km, Reference trajectory state km/sec vector at the designated target time.

PRNML I F Do (T), do not (F) print namelist $GUID after read- i'T' g .

Guidance Law and Policy Data:

Variable Dim Default Units Definition

IGUID Guidance law flag. -2, nonlinear, impulsive III guidance. -1,;Iinear, impulsive guidance. 0, zero-action guidance event with no maneuver performed but control statistics computed. +1, linear, low thrust guidance event. +2, nonlinear, low thrust guidance event.

ITARGT 25 0 ...... Target policy vector; a non- zero value of any component indicates that the associated target parameter will be in- cluded as a target variable. All targets are evaluated at the designated target time.

ITARGT(I) km X-component of the S/C state relLtive to the target body.

ITARGT(2) km Y-component of the S/C state relative to cb.a target body.

L.-A, I

47-B

F Variable Dim Default Units Definition

ITARGT(3) km Z-component of the S/C state -' relative to the target body.

ITARGT(4) km Irl -'radial distance from the target body.

ITARGT(5) km/sec Vx - component of the S/C state relative to the target 4 body.

` ITARGT (6) km/sec Vy - component of the S/C state relative to the target body.

4 t z ITARGT(7) km/sec VZ - component of the S/C ,4 state relative to the target body. 3 ITARGT(8) km/sec wI - velocity magnitude relative to the target body. r ITARGT(9) km/sec vhP - hyperbolic excess velocity-

ITARGT(10) km rca - radius of closest approach.

ITARGT(11) km B•T coordinate in the impact plane.

ITARGT(12) km B•R coordinate in the impact plane.

ITARGT(13) days TSOI, conically interpolated time of encountering the tar- get sphere of influence rel- ative'to TLNCH.

ITARGT(I4) days TRCA, conically interpolated time of arrival at closest

R approach relative to`TLNCH.

ITARGT(15) km a, semi-major axis of the osculating conic relative to the target body.

ITARGT(16) -- e, eccentricity of the osculat- ing conic relative to the 'tar- get body. IL 1 f

47-C

Variable Dim Default Units Definition

ITARGT(17) deg i, inclination of the osculat- ing conic relative to the tar- get body. xr ITARGT(18) deg , longitude of ascending node of the osculating conic relative to the target body.

ITARGT(19) deg w , argument of periapsis of the osculating conic rel- ative to the target body.

ITARGT(20) deg M, mean anomaly of the osculat- ing :conic relative to the tar- get body.

ITARGT(21) deg , true anomaly of the osca- lating conic relative to the ?; target body.

ITARGT (22)- (25) -- Not used'.

,1 yy 48 i

, Variable Dim Default Units Definition i NTP 1 0 -- Code flag defining the target planet fo* the current guid- ance event. (See Page 7).

TARTOL 6 0,..,.,0. Mixed Target tolerance array. When the miss for each target vari- able is less than or equal to the correspondi)ag TART¢L value, ! the strong convergence criterion is satisfied.

Knowledge Error Data:

Variable Dim Default Units Definition

CXS 6x11 0,...,0. Cross correlation array of solve-for parameters which have been augmented to the state vector.

KDIMEN - 1 6 - Dimension of the augmented state vector.

_ 6, s/c state vector only. = 7, s;/c state vector and one mass (sun or a planet), _ 8, s/c state vector and two (sun and a planet). = 9, s/c state vector and thrust biases (magni- tude, cone and clock). = 10, s/c state vector, Oa rust biases, and une mass. = 11, s/c state vector, thrust biases, and two masses.

, '

49

Variable Dim Default Units Definition ' f ! = 12, o/c state vector and ephemeris planet . ^ errors ' = 18, s/c. state vectpr, ^ | ephemeris ezroro, and --- mass. ' ' ' { = 14 , o /c statea vector,,' | ' epbe^eria errors, oo^ . | ^ two masses. ) 25, e/u state vector, ' \ ephemeris errors , ood' throat biases. 16, / statetor* ephemeris errors, j thrust biases, and one \ ^ . maoo. \ = l7, a/o^' state vector, `io e^z^r^ephemeris ' ^ . `, i thrust 6laaeo and two mo^ae^~ ` Correlation describing ' ^ 0'...'0. ^ ^ ' lonkm/sec the Cartesianknowledge errors associated with i actual- trajectory state the guidance event. The . input format jio the same 'eo ------' ' (^.See Page 41 ' ' ; | '' , | ` PS llu1l D, °D Mixed Correlation array of solve- | for 8^eu augmented-~--- ^o 1ba -'/c i The ! ^ format is the same as EPHERR ^ (See Page` ' ~4l} rNEp ephemeris body , used only if ` ^ - ~ are

' Guidance.Event Control Parameters:

^ Variable Dim Default Unit Definition ^ - ' ' ' ' ` 'lOo2O' ` ^^ '^ B `` . /O ,n~ , ` Array of fl'ags—' to iden- f=6 i ^^ ^ ^/ ' trol variables to be used. ' .^ I 11 11 7^ I

50

Variable Dim Default Units Definition k, during the current low thrust guidance event. The entries tin H have a one to one corre-, spondence' to elements in the THRUST array. (See Page 10). Comment: Only the first six non-zero entries will be used since a maximum of six controls at any given guidance event is allowed (See Page 170). t 1 H(1') Not used.

H(2,j) days Agive thrust control is the j thrust phase end time (THRUST(2, j))•

H(3,j) Agive thrust control is the j; thrust phase throttling (THRUST(3, j)),

H(4,j) deg Agive thrust control is the 1 j thrust phase cone angle (THRUST(4, j)).

H(5,j) deg Acgive thrust control is the

jt thrust phase clock angle { (THRUST(5, j))•

H(6,j) deg/sec Agive thrust control is the j thrust phase cone angle 1 rate (THRUST(6, j)).

H(7,j) deg/sec Agive thrust control is the j thrust phase clock angle rate (THRUST(7,, j)). a #

H(8,j), - (10j) Not used.

NMAX 1 l -'- Maximum number of-non-linear guidance iterations allowed.

UWATE 6 1 ...... 1. -- Array of control variable weights that may be used to arbitrarily increase the sensitivity of a given control relative to other controls. 51

i

Accumulated Guidance Event Statistical Data: j Variable Dim_ Default Units Definition i CC¢VG W. 0,...,0. km, S/C state vector control km/sec error array computed at the current guidance event.- This array is h( read as a (6x6) matrix of standard deviations and correlation coef- ficients. Only the principal diagonal and the lower triangular submatrix are necessary. The 7 th' column of this array -contains the mean ' values.

CCOVT 6x1 0,...,0. km, S/C state vector control km/sec error array computed at the designated target time. This array is read as a (6x6) matrix. of standard deviations, correlation coefficients, and means in the same format as CCOVG. Computed whenever KTER=1.

CNTCOV 6x7 0,...,0. 'Mixed Correlation array for the active thrust control' l variables used at this guidance event. This array is input as an (nxn) matrix of standard deviations and correlation coefficient's where n- is the number of low thrust controls. Only the prin- cipal diagona3 and lower triangular partition need to be input. The (n+l)th column vector contains the control means.

DVMAG 2 Delta-velocity magnitude statistics. n

a . II Variable Dim Default Units Definition r.

DVMAG(1) 0. km /sec One-sigma delta-velocity magnitude.

DVMAG(2) 0. km/sec Mean delta-velocity magni- tude. 6

DVMCV 3x4 0,...,0. km/sec Delta-velocity vector cor- relation array. Input format is the same as CCOVG (See Page 51),

GMSCOV 2 S/C mass statistics eval- uated at the current guid- ance event. i GMSC¢V(1) 0, kg One-sigma S/C mass. li

GMSCOV(2) 0. kg Mean S/C mass.

MSAMP 1 0. -- Number of Monte Carlo - cycles executed in a pre- = vious SIMSEP run in which statistics on CCOVG, CC¢VT, _e CNTCOV, DVMAG, DVMCOV, e GMSC¢V,'TARCOV, and TMSCOV were computed. MSAMP is used to re-initialize the accumulation of statistits for the current run.

TARCOV 42 0,.0.,0. Mixed Correlation array describ- ing target error statistics. The format here is the same as CNTCWV (See Page 51) except P the dimension of the input matrix is determined by the no. of target variables. This array is input whenever KTER = 1, or at the last guidance event.

TMSCOV 2 S/C mass statistics oval- , ulated at the designated target time. Computed whenever'XTER = 1. l ,t TMSCOV(1) kg', One-sigma s/c mass { TMSCOV(2) kg Mean s/c mass 2.5 REFSEP Input Description

Input to the detailed trajectory print mode of MAPSEP is

made through the namelist $TRAJ and formatted cards. In addition to

the baseline trajectory parameters, $TRAJ contains several variables

used only in REFSEP (see page 12-A). Of particular importance is the

variable KARDS which must be set equal to the number of formatted cards

following the namelist. The other REFSEP variables in $TRAJ are used

only when S/C tracking information is desired The print schedule

cards follow directly behind $TRAJ and contain such information as

start and stop times and time intervals between specified blocks of

trajectory output. The format for these cards is exactly the same as

that for measurement schedule cards characteristic of the GODSRP mode

(see page 34). A brief summary of the format and an example follow.

Each schedule card contains three time control variables in

Columns 1-30 (format 3F10.4) and one print code right justified in

Columns 37-40 (format I10). The time control variables are START,

STOP, and DELT where

START start time, referenced to TLNCH, for scheduling current print blocks;

STOP = stop time for current print blocks;

DELT = time interval; increment for scheduling.

- Internal, tests modify START if it is less than TSTART, and STOP if it

is greater than TEND. TSTART and TEND are input variables in $TRAJ which F a E define the initial and final trajectory times respectively. An additional

i 52-C

r

option of specifying DELT=O.aids the user in redefining the range

of times which are allowed on subsequent cards. The START and STOP f times on a DELI=O, card designate the new scheduling interval for

i all succeeding cards until another DELT =O, card is encountered. The Il redefined interval supersedes the nominal (TSTART, TEND) interval. r i The print code (klmn) is a four digit number designating the k Ei print blocks to be output at the appropriate times. Each digit re-

presents a different type of print block and the value of the digit G determines the level of detail to be printed (i.e. the largest value

of the specified digit includes the print suggested by the smaller i non-zero values). The blocks of print are selected as follows

n _ 0 to 3, Nominal Trajectory Print ^i 1111 kho current time and the Julian date

IrMI body relative S/C states and S/C accelerations

k„Qm2 individual perturbing accelerations and planetary ephermerides f kQm3 integration data, Encke formulation rc a _.{ r m _ 0 to 2, Primary Body Data l F klOn no primary body data r kiln osculating conic data h. s k 2 relevant unit vectors

Q = 0 to -1, Target Data

kOmn no target data

"- klmn B-plane, closest approach parameters, and orbital elements relative to the target body. 52-D

j OAmn no tracking data n limn S/C in various topocentric coordinate systems,

S/C rise and set times relative to Earth based tracking stations; target body rise and set times relative to one astronomical observatory. n For the special case when the print code is set to (0000) or when

the code is not input on the schedule card at all, the default print

code of (0001) is assumed.

1 Figure 2-5 is an example of one possible schedule card. If this

,card is encountered by REFSEP the print code 1123 will be scheduled

at 100.5, 110.5, 120.5, ... , 190.5 days or a total of ten times.

Note that the stop time of 200. days is not a scheduled print time.

l 100.5 200. 10. 1123

Columns 1 to 5 11 to 14 21 to 23 37 - 40

Figure 2.5 REFSEP Detailed Print Schedule Card

The code 1123 designates all possible print blocks as previously

described to be printed at the ten time points. The fact that track- y-

ing data isto be computed necessitates the inclusion of the Earth

node in the NB array found in $TRAJ. Control phase change print and

primary body change print are not included in this code. To obtain

this output the MINT flag in $TRAJ must also be set to the appro-

priate value. However, the termination print at the final time is F t always output in a REFSEP run.

F 53

OUTPUT AND SAMPLE CASES f3.0 . f The form, type and amount of MAPSEP output depends upon the operating

mode and whatever options and submodes have been exercised. Output can be f " I very extensive or it can be quite simple and in summary form. Because of

MAPSEP complexity, a general rule of thumb is to output as much as possible

unless the user has a very specific purpose in mind.

3.1 Card and Tape Output

All modes are capable of storing reference trajectory data via the

$TRAJ namelist on disc (the STM file) for subsequent stacked cases. By

transferring the results on tape (or permanent file), a permanent record I can be obtained to be used for future runs. However, because of the rela-

4 `tl Lively small amount of card input for $TRAJ, use of permanent 8TM file is W I ^ 11 not recommended except for GODSEP where a great deal of additional data

is stored.

Available card and tape output is shown in Table 3-1 with the input L 'flag that triggers the output. Certain output in the form of punched

cards are automatically output if specific options are exercised. Obvi-

eus.Ty, more than setting an input flag is required for meaningful output,

&ad the user is referred to Chapter 4 for recommended operating procedures. 3.2 Printout

There are two blocks of printout which are common to all modest

initialization and TRAJ print. Initialization print is displayed on the 9@ first page of every run and contains the reference trajectory data, includ-

ing start and end times, initial state vector, spacecraft characteristics,

_ thrust control parameters, etc. 54

Input Output :I Control Mode Flag Format Data

TOPSEP ISTMF STM File $TRAJ namelist

GODSEP ISTHF STM File $TRAJ namelist; state transition matrices and trajectory data at specified trajectory times.

GAINCR GAIN File $GODSEP namelist; event schedule; filter gains at measurement events.

{ SUMMARY SUMMARY File Navigation summary

PUNCHE Cards Knowledge (P) and control (PG) covariances at selected event types.

IGREAD=O Cards Computed variation (VARMAT) and (and NGUID#O) sensitivity (S) matrices for guidance events.

t ^ SIMSEP ISTMF STM Fi.le $TRAJ namelist

IPUNCH Cards Cumulative statistics for each maneuver (CCOVG, CNTCOV, DVMCOV, GMSCOV, CCOVT, TARCOIV, and TMSCOV) and for the total mission (ATHCOV, ADVT, ENDCOV, and AMASS).

IPUNCH Cards Reference trajectory (XEND and (and INREF=O) MEND) and guidance event data (XGREF, MGREF, S, XTREF, MTREF and TARGET). i

Table 3-1 Card and Tape Output

TRAJ print is output when the trajectory propagation routine is called :, w and the related print flag is triggered) by the mode in operation. TRAd A

print is used either by itself or in associationn with mode peculiar print 4

i and displays instantaneous trajectory information at a specified time.

Trajectory data includes current mission time, spacecraft mass and thruster

power, state and acceleration vectors, etc.

The best illustration of mode related output is by example. Hence,

the following sections contain sample printout from TOPSEP, GODSEP and

SIMSEP, including all necessary input to make the runs. The mission used

for all three sample cases is an SEP slow flyby of the comet Encke in 1981.

3.2 .1 TOPSEP j The TOPSEP sample case illustrates the STM targeting procedure for

f an Encke flyby mission. This run represents one iteration in the later

stages of the targeting process in which targeting error only is to be

minimized. Convergence has not been attained at the conclusion of this =?

iteration; however, extending the maximum iteration restriction to three

(NMAX in $T¢PSEP) does allow convergence to occur.

The first pcge of output is a listing of the $TRAJ namelist input

which contains reference trajectory data and MODE 1 specifying the

TOPSEP mode. All $TRAJ variables which are not listed on this page assume

the default values as specified in Section 2.1 (Page 4). Together with

the default parameters these variables specify the details of the Encke

flyby mission. The initial state is provided in geocentric ecliptic

coordinates (ICPORD = 3, NLP 3) for the launch date of March 24, 1979,

(TLNCH = 2443956.65). The trajectory control policy (THRUST') consists of

nine segments with a 64 day initial coast followed by 523 days of contin-

uous thrust. Thrust shutdown occurs at 587 days after launch and the tra-

jectory termination time, TEND, occurs at 593.4987 days. Note that termi-

nation or final time is mandatory under the STM targeting procedure; thus,

L IL k

r G,

56

the trajectory termination flag, ISTOP, must maintain its default value

(ISTOP = 1). A summary of the above variables and other pertinent $TRAJ

parameters may be found on the second page of the sample case output.

The remaining output pages refer to the TOPSEP mode exclusively.

The $TOPSEP namelist on the third page contains control and target in-

formation. The TOPSEP submode flag, IMADE, designates the t,tgeting and

optimization option; however, the selection of the STM method of target-

ing (IASTM = 1) precludes the optimization process. The TOPSEP initiali-

zation summary follows on the next page and is self-explanatory. Note

that X, Y, Z targeting relative to Encke has been designated with desired

target values equal to zero and acceptable target tolerances equal to

fifty kilometers. Hence, the trajectory is considered targeted and the

iteration process converged when X, Y, and Z each fall below fifty

kilometers at the final time. To accomplish this task, four controls

have been selected -- the cone and clock angle of the sixth thrust phase

and the cone and clock angle of the eighth thrust phase. Corrections to

these controls shape the low thrust trajectory from 525 days to the final

time; the 525 day trajectory arc from launch remains fixed.

The first operation that TOPSEP performs after initialization is A

propagation of the reference initial conditions over the fixed 525 day

arc. Since the initial state reflects the Earth relative injection pro-

cess, the parking orbit transfer data and injection data aredisplayed

(analytic discussion in Reference 1, Page 129). Beginning at 525 days,

the and 0 partitions of the augmented state transition matrix 57-A

(Reference 1, Page 140) are integrated to the final time and printed. The

termination print block follows immediately and displays the values of all

possible target variables. Included in this list are the values of the X,

Y, and Z targets which result in a position error of 82939 kilometers and 6 an initial target error index of 2.75 X 10 .

Following the zeroth iterate and each subsequent iteration is the

iteration summary. The parameters which are listed in the summary are

defined below and are discussed in Reference 1, Section 5.3.

F performance index (mass) DP2 = optimization scaling

EMAG = quadratic target error GAMA = control step scale factor

E = target error (desired - actual)

DPSI = desired amount of target error to be removed

w,Ar 1 I G = performance gradient WRT control parameters

DUI = optimization control correction

DU2 = targeting control correction

DU = control correction for this iteration

C*DU = scaled control correction (GAMA*DU)

UOLD _ nominal or previous control parameters

UNEW = control parameters after this iteration r !` P1 _ net cost (Analytic Manual, Page 51) for nominal and each trial step

€ P2 EMAG for nominal and each trial step t. P1P2 _ OSCALE*P1 + P2

M ' SENSITIVITY MATRIX (printed twice) = change in target parameters WRT

control parameters.

Once the sensitivity matrix is computed the control correction (DU) is

formulated which reduces the target error. Subsequently, four trial i^

57-B

trajectories are integrated each of which incorporates a scaled control { correction in the thrust profile. The scale (GAMA) is computed using

a polynomial minimization technique and is summarized after the trial

trajectory print. Notice that a scale on the control correction for a

fifth trial trajectory has been estimated; however, the trajectory is

never integrated since the scale is within one percent of that for the

fourth trial trajectory (GTRIAL(3) = . 01 ). The best trial trajectory

is, of course, the one which minimizes the error index. Clearly the { i best trial trajectory is number four which has reduced the error index

to 4.03 x 102 . The position error for this trial trajectory is 1004

kilometers, a reduction of 98% from the initial trajectory error. The

new control vector is printed in the summary for the first iteration.

It is formulated as follows:

+ -uTtew old / e '& u

or

129.691 130.432 - .741

272.200 _ 272.530 + - -.330

157.017 165.000 -7.983

77.844 ( 77.590 .254 L 'm

where the units of u are in degrees. In terms of the printout in the -

iteration summary

` UNL'ItT _ U¢LD + C*DU ,

At the conclusion of each run the best trajectory is integrated once

again and printed according to the format requested (MPRINT(1) = 1). Pot this Encke flyby mission the fixed 525 day arc is not duplicated since

' it appears in the very first trajectory printout of the zeroth iterate.

The trajectory segment which chan;,^s from iteration to iteration is

printed, however. This arc includes the sixth, seventh, eighth, and

` ninth thrust phases. If the iteration process were to continue this >;

trajectory would become the reference for the second iteration. j

3 1 j

a

r; i 1

1

•f^^t/flftt :ii11• ♦ ttt/f fll^it t• i• I f^.tt11 •t il^lft iiilffi ♦7 tttlt sl tittilti/1 f11i ii1iffftf iiflf•fff/ffff^ff tfffffti^•if t^f^:i if^iif i ♦ iftfff. TFAJECTOFY IhITIAlI2ATI0h ^.-f^11^f1f i^f1 ^f ^1f ♦ ^Ilift ♦ •ffl ilflt^Iff t//f/f/fif.tfaffLi t^iii/•.Iili/tf ttfsfff lf fifffa f f a lf • t .saaffafafff•aaf.Iflfffaaaataaiaafafalla.F- i INITIAL EFCFH loEFtPENCE DAlcl u ._.. aLLIAf OAT=....,.. •. 244395.E.E547lQOfiO^ -'. _`._._....___...., ------. ' rtLcl,CAP U.TE 1'.7q PAF 24 3 VF 42 PIN `.:.5520 SECS TRAJFCTC O Y STAFT EFCCN 0e0t*000C0C CAPS AFTER THE INITIAL EPOCH - JLLIAF GATE244b9°E.E547E00004 CtLSPrt o CATE ,.... IS79 MAR E4 1 PR 42 PIN S2.SS20 SSCS { TRA.ECICCY FNO EFGCI- 5S3.4S870000ufv {AVS AFTEF TNF INITIAL EPCCN -°`_. ^lLTOR GATE-.... -244455C.15'47ccea3 CtLENCAP CATE ... isto NCV F 15 HR tit YIN .6714 SECS j

- 1%111#1 STATE VFCTn c 'AT ------G.000CE4d000 DAYS AF'TE'R THE • FEFERENCE EPOCH--__ - X Y 2 MAGNIICCE j C CSTTICN -.59211G445CGCG0E+04 .21E714E9E000DOEiO4 .18174C47200000E+J4 .E56153293Ei3420#14 e TScFS'PA«- --YELGCIY------•-rE445ir77? 00A6C 'uE*OI ------. 8526117hsC-9$$Gf+02-- -^,r4331233756C300E+ i+i--sto2tf6$53E7E58E+$c- 1SBE.CC:OGC000{ KG EXf-W4l VFL r

LIST CF f-R:VITfTT/Ir: P.COTES --- cln r)rFc - TAFCET P LANET-IS q )rYE-

INTECPtT1Ch STFr FACTC O CSrr

aEfEA£AC C TP aUST rr,.:TnrLc TLFI.ST THCLLT rri-A-,F TfaLSI PHASE T ► FLST Fh A SE- TPFUST pf-ASF THRUST FFAS°_ TFFUST FhtSz NUhEER FhtSE cNC TO P= lmrOTTLI)G CCNF ANGLE CLOCK ANGLE CUNL FATE CLOCK PATE OF -- 'UtEFQ._ .- (D A Y)(CEG) (Tfr-) -4CEGiSEC) ----4CEG/SFC) -THFUSTFRS - 1 Fc.CrG410 - C.G0rrC0 #.000003 O.000000 O.000UGO 0.003C[0 0.000JO0 2 140.rCC310 1.000CCE E8.1000'CC 2?4.600000 O.000OC3 0.000c00 C.C9000C • _ . _ a ._.. 2o t s 0;v 1.Co9r3C 75 CCGRCC --. 252.GCGO GO- --- 0.CsCC09-_---G .000_OG -- a aG-lCE@ 4 479 lr; S I.C7CCO2 45 S40CL 26S.00GCOu O.CCOOCO 0.900003 0 2.9'.G2 5 r2S.C:C:.r 1.GC9000 120.501000 2EC.742000 G.G00000 C.000000 u.C;raO[ G.....gg7.A.1 a -1.35cCnA 1'G.432C(C-'272.F%EG(10- 0.0CCUGJ----.-.G.J^)vz0_.._.-__,O..u.,G^Jr:- .-.^.= ' 7 577.Cr3,'39 1.Gr9S0: 15J.E4COLC 811.00[00^-vi O.GJGOOC C.8C9ior_ G.C:OjCC D 5147.C:3G30 1.GrOCa: 1E5.000UCC 77.550000 G.00000O O.000GO: 0.33?CGC -- .' S pr, 3.CGGE_^O C.0309GG 6.C8000C .. - G.000OOD _-O.CCLGCO- •---0.;0G6QC _- .6.OJU466 - -

EDOY FAStPETE C S AND ORATIAL c'LLMEAT c NAVE*EEEN RSAC-Ih FOR ENCKE AT JULIAN DATE.... 2444580.0000000701:x0 " -.-fLthFT «sGTUS^'-..-- -- .5 r_{-0 A 300000CE+03 kH•-----. .^ ._ _ FLtPFT cnFcne .lfCCEG0C000CE+04 Kh FtAxFT G°t%IT;. TTONtL 4rhSTINT .iCCE&COECCOOE-08 xP//3/SEC412 _ _ e 0 316G81247GGE+Tc KM- C. i.C, 2P1-hA Cr AVIS -.- -Nh7JC - - -- Ef.t c ) TrL^•ITY ,p&?rrcC:000X+lc G. 1.0/JC -INCLi W TC) .lIi5L00000CCE+02 CEG C. CEG/JC ASi£ +i%I/G- ► up E'- -. 3242FGG64GCGF.+313-LEG---G'•-----CEG/J S --- - cr E GA-T .15G26000OGCGi+G, GEE C. CEG/JC hEAM tFCFPLY 0. CEG C. CEG/JC z r -•

z.. _r. ' 1ifCR1^S.^tlf^R+A4 l^•kaWK YY = 4k^M9^sFY"1 r "^i <'+, 5 3^ _,.r .i-" ^n b `"_'wtxos,... a^t44*lrs}^ce ^'^VL^ ;- a3 ti. ° °`k- ";^. "a(^'Ed5 .-.....^: mt n ^+Art•-

-rf•fN^^fi•NM•11••••••••{••I.7•••go" •{•••••i••••i•••Ii••.{.• g o* •••i• ••••••••.• •i• •m•^1•H^•^•^N^MN^••NNN^---- s • s • • • • • • • s a • • • • • • • / • • 9 TCPSFP - TARGETING AND OFTIMIZATICN MCCE • • • a ♦ • • • • s s s + • • • i a • • • • • f••11i•ii•11•• Iii•fIi••{•^•ilil ii••••il i i• • i• i•i{•iii • 11 •i 7 i fi/fiiiiii/ • iii11••i1i••{••i{iii•••••1{••i1•••i•••ii1•ii i•i•ii•ii•fi•i••

TOFSEF SUP ► CCE rESIGNATICN ; GEMERATF. TAFGETFC'ANC/OR CPTIVZZEC TFAJECTORY

METkelO TPE F FOJFCTEO GRALIELT'MFTMCt

REFERENCES RCSEN.J.O., THE GRADIENT FFCjECTIO! IETHCC FCR NONL'I,NEAR. FROGRAMNTNG 1. FART 1 , J. SIAP , VOL. Q, NO. It MARCi, f460. .. _...., __„Z. 4ARF -I1rJrSTRh -r'-4GL,-4,_N0. • +^r- CEC-^ -14E3,- -. -.. -----_..._. - -

" --TARGFTIRt - INLl CfTIMIZATTCW--BATA ----__ •.__..._ .___.^._. _^_.._..__:____^

NO. CF TtRGETS 3 TUF _ .lC000CE*t1 GTRIIL(f) = .10000OF400 may. M0. OF ICNtF/;Lc 4-.. __: •TLGM ^• -ti100000'^Cl -- - GTRIALI2 ) -- - . S^IORQOEtOf- ----:_ - MAY. ITERATTCRS 1 OFc = .4000CCE-Cl GTR:AL(Z) = .10000CE-01 OFPAY = .ICGE*04 EFE N 0. GTRIAL(4) = .1J000CE-14 ..^ -FCT -.2COEi0~--_^..___:.SiCt»...--.1000OOE't3. -.----GTRIILI€} •---.44CQQCE•01 _^• _._._.__.__..-.___ i • 0% -TAFGET-f#Rfbfrfrs

TARCET VALUE TCLEFANCF 1

" , ! I x .54000OOaAC00G0E+^_2 • 2 V C .EOt'COt000000ti0E+02 _- Z 1.K-.. ^. _ -..___.5C4G013fC3000GE•C2. i i -ThGitST ,CCNTCCL CFSIGNATICN' (NCN-ZFQC- VALCF FRGS CCNTFCL IC OE- JSEO IN STM--TARGETTNG) ---•_---•- - j

TMFGST TMFt <_T iMASE TFFUST FhASE TFRLST PhD":E THRUST Fl-ASE ThFUST FHASE THRUST Fl-ASE -PHASE----- 041 1IME ----,-- ThGOTFL7NG--- •- LCNF ANGLE - -C LCCK ANGLE --•- CCNF" RATE--- CLCCK RATE----•- FUIP-F_E (Cfttt) tCEG) ICEG1 ILFG/SF.C) ICEG/SECT 1 C.C7Ca0 0.00000 0.00000 O.0000C C.000OO 0.0000[ -----x C.C1LG9 •O.a000C O.G^COq-_»..O.G^^,000---•-[.09000-• O,G)OJQ- 2 C.r,.C!Ca 6.70000 O.Ca000 O.Cf,000 C.00000 0.00aCC 4 C.Q^.:^Q C.10GJC G. CCatl O.0000C C.000 ZO 0.0000 ----5 C--c-ECVO---v.,[v00 O. GOGaD ------G.ta0CG----t-00a0G .09000 6 C.CC(CO C.10CCL I.Ca000 1.EG000 t.a0Cl0 O.G00aG 7' C.')CC.: 0.1CGIC a. C a C C a Q.00000 C.00000 C.0000t ---- Lt t 9IL( -Ca c-a3(- 1wT-Q O- __ f.0 Coca ._--8.46000--0.60000 5 E.C4:C0 7.1000[ 0.Ca a0, O.000at C.00L00 0.00000

USER IMFUT WEIGHTINf, -

--SCALE CN CC 4 TF4'LS IN MEIGMTING 2 .1C^Cti+C3 2 .20CCCE*C3 .S00CCEiC1 4 .50000Fi"-1

OCLNOS C ► CCMTFCLS MAX .13!CCOCCOOOGE4,02 .Z10006000CCOEM .1650C00000OOE•OS .S00090000000E002 .2E700E000OCOE903'- .15SOCC000OOQE+03 Mh .1Z•_1CC000000E+03 .7S0600000000E{02 - i

.. «cfkwRn.$FAk;i4t ,.. . I

INACTVIII s 1. COMTOOL AGTTVB 0,. CCKIOCL . INACTIVE 40N fCUtG ► -- -- -1.• CONTkOL MITNT% TCLER/NCF FEGIOb iMAtIVII^- • 4--- i 6._-1 r MLAMK CCP CM PEOUI°ED. &Uli3 CCTALI ♦ - 1CCAE FEGUIREn Fo r 1141S JCR V 9f120P GOAL) –.

• CU8RE;1 CF TIFF 1.802 • s •

.. ^. C

»._ ._ten-- ^ 7

Y

j Lj 3

r -- 0•f/••//•// i// 41004^0111.44`/4fN 4"*Nf•NiN +N/1N^FNNaas/fN•fMMfFfff•• • f • • 1 • • • • • • • • • • • • • • • • p EFEkfFCE TPAJECTCRY IRTFGRATICN • • • • • • • • • • • • 1 • . • • . • • • + • • ^. •••C••-•'•.•/o•!.•I••.•/•.f^1•^.••11•fy.If 1•If•1 ••1..^•.•^.•!•f•111.1.I.c•f1••1.1.1•••f••^•ff^^••^f^••f^^.••f-•ff!•sf••i.(••••^!••1•••f• 4 g%%:

609" TLG PULTIFL F -IMPULSE FAPKING CRE17 TRANSFER AND INJECTION CCTCITICNS,•f•f•

LALNC H CC%STRaINTS

-s'p I► I►60` fCCSTF F. LAt;*CH A274L•TH-'-. 35:600EC-GEE ---_._....._ VA^IPOP E IMS L ►U 01CH AZSHUTN 120 . 00000 CEG LAIIT6CF OF LA LNCH SITE 241.66Et0 CEG

IANSF'FIRKINfe CRBI1

FACILS -+E561.9?24:60. KM-_- ^ - P/X' ALLCWIELE EC INCLINATICN 59+76472' DEGEEG #C INCLINA1104 5Y. 76472171 GEG 0IN ALLCNPELE ED INCLINATICN 2d.E0l00

q VM; FLAKE ChANCE TO CIJTFF- PARKING MIT 4.20726 OFG --f0 IuCLII^ATiCN -CF OUTER PARKING ORETT- ---- 63.47200 DEG Li TUG ChAGACT A f S TTC_ A-10 pErLIPEPFNTS--`---

CRt WkTC ►• T 1714.E0077 OG FIRST 1 ►FULSE, CELVA 0. KM/SEC FUEL FC6 nELVA 0. KG •-'NAV F9FL HEIGHT 10673. g 3l)0 0C SECCNC 71-FUL;EsGEL 'VB .575651093E+ 00 'KPOSEC - •"-- FUEL FCR OELV6 .24e5S C 31P5+C4 KE -- SEP 5 / C 6E1f1- T . L9A9.0Cf9 ^, KG 1hIRC IMPULSE. OELVO .!4E149665t101 KM/SFC FUEL FCF UELVO . 553994 = 2eE•Ci KG ' R;TAL; NEIrki 14 ' 75.EC: : C KC TCTPL VEL INCFEMENT .f0576e774E101 KM/SEC TOTAL FUEL . 1i42553E4c.J5 KG --S0*rlFTf I1ELLSC 3C4.2C000,..;F^:-..

THE-FUEL O FCGIFEO FCC- IWECTICN IS &REATER . 1NAN TFE TUCS.F4EL. CAPACITY.

St"LF ThT: LL£ 9 TNJFCTT « F*GN 11:E' IANFQ FARMING n 6EIT - IMFLLSEr CELVl .5?7534491L^01 KP/SEC 4 -- #UEL FCC 4ilYf---.1f y337271E1 p 5 K<<-» ..» _ _ . _ .._..__

` -1tiJECT ICh•fAfiAYFTtG^- .. ' 4 < s

i :

F r p @ a , .. .-.e r. " a _ f s "! .. r s ., _ „v n 5 as sr . r^9 f. a ,. "

ONO-OVA

------1 ------

00 4 0 --s-3133c, :)4Iadniti34-- Aj)a 4094L14 z WS

ALI D31ah r 104319915ER U69^S'- A11:1313A

VD+ P1693 I SZ 11 366 #13 1 i'. 410 BEI 5 4700Ejo W- till 11 - 16 NIS Z , A, 3;1.10-139 3's

— 3XD43 AM 13911VI NX 000009WIZ —11dV111fiv 13"od A)IJ SA13 3)9343 ofs I*43s3d1----,- SAVI 413 Acou Ahvg lmd I 1)11^33 3Lv3 wi;ir

39riv ,43 Awe t!j7,inod ------— ----- bAbA ilk 66A oil ah *&**&A 6 AA.696 &*b*** 66 "A"bobb*6 kht* *,%& 0 &**& *A& 6 &*a 66 66 akoio iketa &*Ik& & a a 06 gas a a a 0 4 ..4 0* 6 . .3 14311VIOVV .0 It iSlz-ii 5 .3 -Afi I It fit 4 ^,9 4 5 17 :3 s3f^:ia 314lielitild ze-Urt^i0sZ 0 501W Z9-35VQ9Z0t3S9t6DZ*- A")o Aa1WIdd z x

A1ID:)1,JA N31113):!_ _ , 3X31,13, ., _ !^ ?3#39621-136309TUT* T0+333D33Z913T9Z59*- 411,J313A r0111;)a 14111a ZU43D06I)bL1a fTWZ?V- i0*3Q65TZ5RkC0D5iL*- N311133d 41S Dis

3MI43 4008 1398*Ji FIA, 00030000 I T? — 314911169 93MOd. aDe3tw^,F- 4)!!J SA13 -SSUPI 3/3 143S3?1:i--- 1051 SATO 41d63 AU08 AbV41Md 3svHd 7131M) 3Lva mwir

------', _ _. _^ _ _.^- „- _.^,^-.^.». ^.•.• _ ._ GC1 TRCL'- 3 1-ASE GHANrE +•••__

JLIIIN CFTE -- 2444(2C.f.547E004 COMPEL PHASE -- 2 PRIMARY SOCY -- SLN --DAVIS FRCIt-iAU*f M S t C MA55- l9E!.000OOE00 -K6------EPHEMERIS EGGY,-- W-KE DAYS FFCM CUTCFF- 529.49870000 POWER AVAILAELE-- 15.13569E31 KW TARGET BODY --- EKKE

` -, ------•ii+aI15T FhASE -THFLST FHASE----THRL•ST FHASF--- TMPLST PHASE---- TMFUST PHASE --THRUST-fMASE GURATTOh 1FFCTTLIFG- CURE ANGLF GLGCK ANGLE CONE RATE CLCCK RATE (O^YSI (DEG) IDEG) (EEG/SEC) (CEG/SEC) - -.------:f.UEv00uG6--- - 1.09000GGF -bE.1G0C• OOCL----e24.63GG0a0G-- •t.000G0000-- - . -li.G60v000C- - . --_._^_-

S/C RELATIVE SIATFS % Y 2 ?ACNITLCE - S4A - PCE!TICK - -- -.7219: ESEE4E795E*EE------.SE9194S?iE5711E+04 ------. ZfPA2E5882263vea r,^^,.iF'.ei5e08 s 4ilEE^a4- --- VEL'CCTTY .22518367777927F+C2 -.ZG711S'.9L2?55SE#02 -.261783_'6E5S736E*C1 .3C2897E2478E72E+C2 ^ -EiRTt---P[STtlrk------•^;8i?6750ab59284E•C1- - _--y .d1:04rA3 ► 9801gE•08 :211626'.8822610E•0e-35?4f4c72EzYiEf•tt^^--- ;' r1 VELCCITY ' -.4C56400EE8S459F+C1 -.7E497 f7E1E778Es01 -.28178336655736E+61 .9lC5EE18S7,:3EE•C1 v' A.-•EMCKP PrET T TCM _.. _-.65240E314S`.255F+GS .186814288722440E+08 -.3S5lt36S2E6F012E+08 - .f5437ie5L7.15EF4C5 ---- VELEC.TTY .218914E894S36OE+C2 -.25953E47d75191E+02 -.3569ll2421S978E*01 -3418444401tlE;4E#02 CT` __.. Y _ _ _- _._. _ Z - _-__.__ ... StL ACCELFFATICNS % MAGFITGGE -- Ln P:IVacv o C!:Y .3566A4E813CO21E-^,'. ;:3401EOE9975OE-US .4S706fl484Zlb39E-O6 .?EEGE3776te17EE- OS P s FILREINC P.CrTES .E'. 24C4241Ef '_ 0F-1C . 22473iEES51211E-D9 .145C14E2424943E- `C9 E27537J4:12CE?;E-CS Tf4L5T - -.25c7E8457E1707E-6E -- - -.52047741417237E-07 --- - .20271267531807E-06 -- .?:i2S744508534E-et- RACIATIC)i FFvc!U*E G. 0. G. 0.

r_------..------«------^ 1 ••,• CCATFCL *hfiSF CHANGE sees

JLLIAI. C47E -- 2444CS6.f:47fG9C CCN79CL FHASE - 3 PaIraRY nCOv - SLh CATS FFCP LAufrh- 145.1.90CC+l07> F-ESFR. 5/C PAS -,- 18iE.b4497148 KG EFhEMFBIS ECOY -- EFCKE - CAYS FFCM CUTCFF-- - - 45i.4S EI 'GO0 - - •- f01iEF AVi1LAELE- -•-•- -- 8.59832522-KN-^---- - TARGET EDDY ---Ei.EKE

THOLST s,ASF THFL!;T PHASE 71,FLST PHASE THRUST OHASE THRUST PHASE THRUST PHASF --- -. PUFAITCN TFFCTTLI ► E °-- •-CCNE ASUE-- - •_ - - CLCCK ANGLE---- LCNE PATE-•---» CLCCK RATE- (DAYS) (DEC-) (DEG) (CEG/SEC) ^IPEG/SEC) ? - _90.CClOOOGfi 1-.00000004 75.00EG000O 252.00000000. 0.00CG000C 0.00000000 j S/C-RELATIVE STATES Y Y Z FACFITLCE SLA PCSITICK .AlLQ5Ei54EFEl6C+C! -.22S1.357432l411E+04 -.2f2o7:E525228v[ ► C9 25LC71E[2510EtE+CS -> - VELVITY --_ ---»- -. 2ZG5ClFe5O4456E+G2 ------.3000C09Ci15 g ASE + 01----.4508a71S59C774c^60- --.22c5874E3 : 641Sc^Ge

EA c Th FCSTTTCN -.31'_0547545t4E3E.+CE -.13749312157250E+69 -.28567.3E5252c:,4E+i.e .14 eAC7272CC14E'+GS ^ - -•-•^ VELCC)TV. -.--.25fbeecyP.77772f^G1 »- ---•-. e4995S63421PF5E' + 02r- -.4y683715590774n + CC -.251JiFcFc^+^fiE^ir-

EWCv F" FCSTT. ICK -.4SE473G5SEc2ESF + C5 -.51184SSOA30058E ♦08 -.5226SU3737424E + 08 .^0759CS2557181E•CS k VELCCitY.- -.•---- .23712 A 46712307E+C2 -- -^- --.940211'51678446+01 - - -- -.5759ti07335^4 y TE^00 .25514Si8t61 (-3E +Li --- - S/C RCCELEaATICHS x Y 2 MAGNITLCE ' FRIYA: Y FCrY - •_ _-_.- . LS:47'EE4787487E-Cf ------.153502WS4651c'-0 5 .22554145474820E-06.-- .2CF5t63715'lEL7E-C°_- PE 9 Tl! 4 FllC PCCTES -.975571753c1744t-l1 .JC39l?C2'71?47L-10 .38479015264374E-11 .31lE^41555175`1-SC T;PUST -.1S485biSbb7Sf4E-if -.112602:2(2737EE-06 .5:3669:7bl2215E-07 .iSSe35EC9C61E5E-Cf MCI AT %0&-. ^--0._ _. _. _^. __ _.- .^ r_t. .. __ _^ 8...._.. ^:^ _ _1 69 ••••... •••1•••••.•..s••,.••••off** v •,.•.•4P•.••••••..•.••..••• safe •••S•••.••••••• off tests ••.•••• a g o so* .•..••.•...• sea • sees •..••oo r------F ------,_ ------.------:------^-«...

------.o ------,^ .c 3af9S;^id w3i uxotn ---^ a 0^•'3!'4Pt'tTLfth6^fh'^'--y0-!f9h9L^iR[29d3T•- —^t?-3925hE25aMkC9 /t'^ ' ..'•-"- , !S`ia^fl --° 95-33]?9360)L5033T` ZT-3y0LfE^L5^00a3f•- OT-3Bhh[04$55 ahT' TT-3L3Z^LL6]2hh5S!''- S3L]3# 7413e+ni^33 3 SD-3i3SZ3f3)6:C^`aT' 3C-?£Y2.L£Y3?3filiC^'- LO-3CZS7^.6i?h096L•- 57-3033iiaL:3'7Sii•- X1]9 A^^N19d - .21114?Cx _-_• Z "' ^ A k 'aN]litadl JJT 71S

TO+3[?Z^fl.ho3[L4 C6' TQ+3LTh35CYShT590L• 50+3COfBLTZ535ZfSi' T)+35L9SCdLTLO0Z5L' ALI3D13A i?rj Ta ll 2ZT1:?e ll? 71 Ttu+3fZZThL733G67[T' 9U+3hQ928909ZlL'ch' 34"3-- ZOi35JhBZD35T86'B: • Td+3CG6S9Ehz59i34T• T0+36hT55*0t59Vbf5• )44912S'iiELL?Ritr*- AII:I"I3A = -10+39553E5i?aLS!3t - 8'J+3LZSTL?PiM LSZ` '50+319173: St!5LT3T` 3)+3fD50DT?kQ'3hhS?' ^—° V)i115}d - N17t3-

ZO+3;L?lTLtLT_333T' TOt?ESo39£'f_5HLD3T' Z0+3L9GTC"5'eT9D5?T' i3+^LoZ75hhaZ?hike•= AiI?J7iA ^ ' 9Q+3iEL33GS:d892hT` ^]+3CSL£252STttTS?` h]Li3]d —•^-!t'1S-`- . .__ `5J+3^i-Sfititi h itfSZ` "B0+?L25TL?Ch?ZCiSZ' 331LI,M4 Z A X S31Yli 3AI1030 :IfS T `^" ""0?O00000'0 J27p7G03.0 DOGOOZhL•i9E 39003595'7tT JDOCOOCD•L 33003tt3,55 '^ 133S/0331 133S/9371 19301 10301 ISA031 3'1VH X3313 31Vd 3N33 319NT X3313 310NV 3433 94I11132HI N011tb'10 r aYHd-iS'1byY '°"'dStlHj 1S16 41--3SVHa 1S1dHl" 3SVHd 1S'IdML---- ASVH3 1SIbHL--- ' 35bM! tS^OMt ^- "— ""^° -3.33117 N]9! SAVO. j 3X34? -. A00? 130801 MX. 615SZ55 0? 1 9. --31.OV1TiAt,,93M0i 9'DOnLB54'f?i -3X?13 - A003: SI2!_R3Nd3 9>1 hi3hS9CC'bC9T -:S14 3/3 143S3 y 3 09D ) "•7'"114 M74'Itl d7Y3 SAIO N15 -- 4305 AbvAlNd 5 - 3SV4:1 1791NO3 0003Lh53'S?hnhh2 - a10] willnr 39NCH3 3SI)4.1 10314)7 rrrr., ;__

._---._--_. -_-___ - _•_------_- .- -____•_------Arrrrrr+rrl+rArrer a r r s^ r +A . ar r r ra r r^!*.rrrerirararrr^rrrrsr+A+aa', r --"^^r+ra^^rrr rrrar^+rr+rAaarsarr..ar+rarrAa r.ar ►► Arrrrrrt+rarrrrrrrrr ► ► ► •0 •p •] '7 3n0.a.i3Y 11)Il7I0id ^^ 3D-3h4hLL0!935T3C T • BO-3S4tSL5E;?94 IT • Q0-3B6Y55J655T[h)S'- [0-3h5UhfoBCLa1+7LR• 131ad1 --1L-3SYZB1^£'hT0'tT`---^-- 2T-32?DD16DL9h£TLT`-^— --- -OT-3BbL5il7hiih5lDT° - )S-34f51955?9fbd%i • -- • -•—^ 531173 94i3oTrlw3a - tp S3-3SGziii6U 55ZZT' LC-3hh5nbS5J3h66dt' 90-dh6hL3S675iE9i6• 9v :5590559JLhYa55 • - A03b kc:41dd ^p 3^11I43V4 Z A X SL103313)7tV1 ]/S

ZO+3Z3C h i"9TJD9?5T • TO+3h560-0SLDT95ZOT• OO+dSBECfT{>>hLiSC•- ?)t3h[htBhOhhCf?5i'• ALI3313A 50'?DT!U SO^CscnaK' i0+303B3C699 ? GiA75'- 60+359iL^SihC3fhh?T'- b']43Z303C3C4CiYY ? i•- h3ILTs .ld 311743

3]+356iDSLYifZSioi • TO+3YbL5L6LZ026fS• ZD+3STY?hhJQfC9iiT•- ')•3Qhi50BTc795535' ALL3313A +l 30+3531?S3£?C?25hC • QO+30 BThfi96i5Tfi0BT • - 60+35Bf'LJCOZiLB9Zf• 51#3415iTZOD NIT ?T • NSL1IaJ3 tlLnV3

. Z9^7f9PLLo^?iBoT3L` TLs3YhLSLSLZJZo;iT• S0+3TLEi)f.Chi9733• ?]+3Bh55iThihiY"att• A113311A i^t3a^L^_?a!55L^T 91+309Th69655Tb0Yt • - 60*9;SYT1Ci!?TCp??'• i3+31?335LT9L3L7?Z' NJILSi]d 41S j _ • — - a911IV7VM _ _ .__ Z A >< — 531715'aAliyfii!'?YS

0!1009000'0 DOOC7^0^'J 0000fOOtl•o9Z OODODhff•bD OOOD70C0•T 77C70L)0•^hZ ° -.—to3S/9301 t33S/7391 -- 10301 17301 1:,;Ad71..- 31Vb 340313 31V9 3N73 319NV X3013 310N9 9413 74I1113dHi Nitmin 0 33u. id 1"otl:jHl 3SVHd 1SIMH1 3ivHd 1S99H1 3SVHd 1S1nN1 f33VNd 1S.IIH1 33941^IMISIIL - _7 3X743 -- AOOB 139bVL MX E;9099Z9 . 5 31a$':_=='KAtl d3MGI 0000195h•f9C -dd3L(S3 Wadi SAVO 3X343 4313 SIa3N1Hd3 9X h'ahST6CT')$LT -SSY4^b'3 143S3ad 070])5^.7 it N)43f1 033 aA1:1 1700 Aar4Iad h 3SVHd 139143? 3LVa +1r111r

•ru 37NVH3,3SV4d.1)d1N33 rr^r

f

------w------

JGLIAK- CAI c ----2f.44gd1.6547rROC ___:__ ----CCNTFCL Fl, AS ».F_.-.--_ _ -._..___._.» ^..FRIPARY-8C6t_ . SLw_-- DAYS FFCM LA q ^rm- 525.zZoccool FRESE6T 5/C r4SS- 1584.46949651 KG EPHOIERIS ECOY EK.XE LAYS FFC v CCTCF F - 6l.4SE7CJCC FGMEF AYAILAELE-- S.i4559458 KK TARGET EDDY EICKE

SIC PELPTIV F STATEt % Y 2 10 UM LCE SL% FCSITIrN .30528l7863EZF4E+0! .2:SO4E2154SSt4E+05 ^ ^ -^ -'-- V£LC•CTTW -.1847E439527G10E+C2 .1g14'.!?25:G355E^02- .61Z7[65617F943t^d8- . e-1CA77eSStoeitE^Oe

k EAFiM FC , ITICN . 87E0l9E16FfC83E*Ge - - .lZd8 9 Ek8Ji 7ft78E*04 . 3tS7! ! 78E3E7E4E+0e . lSf8eE37F4dSZSF4CS 'r^^ - - VELCrTTY - - . 25E62510772F23E^G e' -- -.171522 . LJf3416E^02 .61iT2E5617E943E^J0 --• 3^i7.. 457b33285EK2

ENCKE FCSZTICN . 215C5EE505CIC4E+CM -.1850l2GU5E0d5E + C8 -.88068716861246Ea07 2SS581.29S9SZ9E+C8 ---VELCGTTY .5?3AEZ7EE15312E^G1 -.^.7303E7G17:554E^03- -^1.77176F2553TSOF^L1 T:i7821!OC•BEa:E^03-r

b SIC ACCELE 4 ATICNS % Y Z hA ( FITICf FFThA o Y P ccY.eiCfR7367411E2E• 05 -- .677331f:2925K40E-v-6 - .300489A5710046F-C6 - - .23a245711S94l1E-CS PERTUD E1/.6 FCCIES -a2'087S19T3C?75E-1C -.6C349QE36?3136E-11 -.31113724171858E-11 .25593.ffi529341E-4t "FU•ST 1:Eb37E271416SE-CE -.328275S05F2234E-06 .4207440197E915E-07 .3Sf9CEa47E779SE-0E POCIATICH Fc=eSURE 0. CT --•------r-a.r-----raar-----•------r ------waaaaaaa v

^^.• CCNTRCL PhASE CHANGE aara i -• JULIAK SAYE------2444 1523.E547f0CQ -_ _-Zr.NTFCL. FPASE FRIFARY 3CCY.-_._^^.SLN-_ CAY:S FFCY 1A0, CH 567. W cco00 PRESW SIC MASS- 1453.44201936 KG EPHEMERIS ECCY -- ENCKE DAYS FFCK CUTCFF 2E.4987000o FOWER AVAILAELf- 16.679875.8 KW TARGET BODY -- EWCKE i

THPOST Fl-ASE 7PPL51 FNASE THFLST FHASE ihFLST PHASF v THFUST FHASE Th7ZLST FHASE y- OURATICK TFFCTTLI^C CC^E ANGLF CLOCK ANGLE CC.NF FATE CLCCK RASE (CAvsi ___ -.- . _- - ME0 (OEGD MEG/-FC) (fEG/SECT- -_-_ i i.003cooco 1.Ga000coo 150.64060000 C.Coococau 0.000000ce . ^A----S.-C FELATIVE-STATFS-- Y -- 2 . _,.. P40- LCE SLN FC5ITTCti .14192f(2S4E350E+CC .SE88lSt5.4?e5lciF+08 .30142694473465E+08 .17i4EEio971273E+C5 VFLOC17Y .ZE2s55FZlEE574E+01.1'.Z'88E24412309L+01 .2S17E3E47G3fC1E*C2

EAis F FCS177f% -.9Z53604327QES4E+C9 .5C761EE084801ic+08 .3C142ES4473465E+C8.55C3E92G3M 4-l.E•!e VELCC7TY - 24588147315041E+02 -.12288E2441Z3.9E1C1 . 124t41Z74°-eE76^L•Z i EFCv E FCSITTrN -.5f1352Cd011473F+07 -.2SS1i871765473E+C7 .8 "z4EiECE84c555E^07 HELCCTTY .34015355 11222^EFCT .ZEt?lS54E54756E+01 .14388472108106E-01 .45105CE41T3°;1c^[a

SIC ACCEL£cATICNS % t 2 lACtlTLCE PFIFORV PCCY 3°4679TZ2`5720E-05 .242114715759CU -05 -.75328733745616F-0E .4:ECO31s5S5u21E-05 --YERTUPftA4 -POF1E5 --^.177304535$ 4,863E - 10 -----.iG5133e79L0978E- Oo^----.-.'59109677491719E - 157------.Si1807ff103SaE-1° TYFUST .476937581 I M E-CE° -.373667ElS84846E-07 -.113927l5437TS2c-0f .4l596C:4'21054;E-iE RACSATICN FRE£SURE 0. C. 1. P. __aASSw •aaaaaa 417MA,4S8r.a.aa 4464/4Lr190.8rrr a,r. aare#***avr n n t rrAi • 489aa.4444ru as ay gar.+ aaraaar• •4S A ara • ^araau w. aa.aulr ^a.N;al.^sal aaaMLcaaai a ------_-.D• _•-•---'°_-.------^on - 3tlRSi3lld M911i1?^d— • a •o •D •o lsrli^l 30 i4JRT^Z . 3Ctii[2 p • 6M1-3.[h6S+Z8[066^^eT'- OT-32Tp55£0^► 2dBp5?'- y3-39^$bL2i£T2933T• $.'ai303 94Y3801i3d _ a3 =^3tAi"L+'StT£, z^L`DSO"-3t5L55Q«'ahT6YhL` • 54 •^3C92LS3ZT5E9L55'-" gJ-30T?[?i0?5L^4ith'--- --"• 1^93y A^9aIttd ^' 3311249Cf♦ Z A + X S$31(1l313^]1 3/S' T7*^ ►?Z:T£5^15? 3599^£" --" ^TC+?LHhiLSSTLOL OPT T • ^ —` T0+3729Lb3 £] p52E5I • --' " -T)+a4CCTZ5 53 @ b???'- "'^'" A119313A - - r [3•?i°GiiSaLiC7iLT • 9C ♦39 £L955SEh£Z59^'- L0+36'+TC3pY)i3Q2tt•- [0+3ZL9ZhELSfo9I?T•- N311i33fi 33r3N3 r+ f a?+a^a «CStStttTi ?£ -T0+3d?C96Q2hiA94h£•------ZO:z3C9537TZ'9hOLhiZ' : 3+3i.]t75Vh152?21'---- A!(7Jlih --'^---°--- 4, i)+3!55Z[1+)203?Ie • p7+3Tlli3h2hLT£Z?Z• L0+^3h9hT;a333L2G'1^L' i]+3Tph3TC3ih?bp[£*- N)I11a3i H1d/3 I --' ?1+353U 'rdJ_d^e^t _ -' I0+3DZ0D52ZhpR93h £• ^----TJ•32TOL^'h0_±Sp °n?''-" Z]+3h95hty5 'it?uQC£"•`- Atky^l9r -- ^ - - N 50-3Tta5 c" STL? I • ROf3IcZi0hZlLTE33Z' R9L°xasT^r5ZJ36Z^?5` B]+35'ah3hL?599_3f` N]Z113)4 4O5 ^711I49Cd L -- A _.. b31f1; 34Llt13d 3/S

]7QC9CD0'] 339C3300.0 39007300.333091300° . 3 33003336.9 ]30?3C3l *illZ (323/033) (333/933) (930) (3301 (SAV3) -__ __ - X3012--° ._ -31V0 3N33----3'10NV )1331:1• -:174. 3437 _ 9121110)1)11 `NOStvtl)7°— ^- __ -- -- 33VHd isnm l 3SV4d 1S')141 3SVH1 1Sndi11 3S1Hd is101. 3SO141 LS1941 3SVH1 1s1dAl 3>f9t3 -•- d008 135mil _" M)1-03)COOCQ' [ Z -•-313dl y fAv 93M9i__ . - aQODC1r '7 •y - - • !3^tn3 N )ia iAtO -- 3)1343 -- A333 SSi?a3N13 9X 9392STT7'2 61 01T -SSV-1 3/3 14353Pld UOLG](r0v''Lp5 -H34011 41$s SAVO i NIS _- 4008 3SvHd 13 y 1NO3 yL73 N1Ll:i( i ^ -.- .- . ..__.... • '- 1. ►/ 30NVH3 3SV ld - FF 'i — ff if/^R R111111111R^111'.i.ill/f Rf11f1111i.RIf11.RYf.RfIIRIf R ► If11f11.t1RfIR.11RR1i1111IR ► . ► IIR IJ'11 ^R ► )111 ► 111. p i1[RRI IfREf ^1Y RR11.1i111f y + { • c `o •Q •3 3a03;3 y 1 4)ILV1311 dJ-3?7iLt£?35 39'35`- -' 90'3tLyh6Tt5a0hiiT•_ - - y R-35L0£30a32£Cp h?'_ -- - y 3-305TCOB.71f9u`?5 • - - isnv41 -r 00 5J-?9 ?EhsZQaT>>i ?2• 5U-3LL2Q£h5^ZZ25t '- 60-3ZE£Z3 5594Dit5hI • - 3413b1111d0.-3p:"e5I6pL5 ?Qo7 Sj1333 i9-?7 p 2?5^6!TTLl55' S0-32929£p•79L9Z3T'- 50-35yZJCL^435675r•• 5]-3Za3QL£33LZLiTh•- A338AdWtId Z... A -- x S14)iif2ills)l TJ+33S'^23i??bfTd2 • to+35i6275£SL7b5Z>• T9+?p2Tb:Rlit9Z5_Z' T]+3L0073TiLQ{t9?L:' ALL3313A 1: --- - t_+33L3wib^ hSTi!h' - ----L]+3T7TeZh5i3h93LT • - - ° - LC+3hZ9c^oy5iBcL Z'- !2a16tTiET8h5?bt.£'- ^- "tootl1B)+. 3'•5.43--' 2a+35^^ y bS5d5 p 3LTS' T^_+3G653Ti91h96J?Z•- 20+3907fD39S:7SLT5Z'- ?]+3p75ZS7haEEh2?T•- A113312'R --3D+35 ? 3?tTZRS.T •t?V?'"-'-1t0 + 3527h560T9 p 23d2' HQ+337CL_5£3311ZSL'"'--"--ftD+3)LBT % i£^SSTZ9t•= --N)LtIS ]3-•--)1111(3--' ^ ^^ `, ' ZQ+?i5Jh3^L?7h9i5i' T7+3C653T99Ah963'Z2•- T0+36£67lOQ23L6f3T• Z]+3923i£9R3Z£L92£•- AlI7)1]f1 59+3Et531hRCil97 y :' p9 +362hh55CT9H29i2•^- -- BO}?SL5539 p (t y L5Q5 • `- ^— 57+y ZL5CL£SCEiEa[f • " -^' N?11I:)d - - mqs 3)11I4?94 Z A A r 319L3 3ALL813b 31S 1 ..-- --..0249DDQo•r.-..._.90000000•D-'-094tT0055•lL _-. .09JDDa79' rt?i --9?01?00)] • I _ -`?Q0?O C':#^9T---^ --'- ,i (OSS1033) (333/533) 1930) 1930) 1SAV0) 31Vb H3313 31V'J 3433 319N7 )40713 3-1941 3 1433 5411113LRI 40111616 1SOtl4t--- 3SVad lsnd"l--35VHd Isnd"l- - 3SYr41 1S'ls4l--3s/Hd 15(( yNt'---35fii 1S(1tli1'^------

3)134d -- A006 139bTl MM C33E2Tfn • DZ --3131lSt4y 13HOd 000^1p65.91 -ji5in3 wa y! SA10 s ---3)(?4 2 —A008 SId3N34d3 '- - 9)1 °o52ZC750 ' JChT -SS / 4 303 113S3dd`_.•-- SAID N13 -• A S A"41Md i •• 3St-ti 379140 3 U00?Lhay'Zii+hhZ -• oL13 -Nvivir F

J ^_._ --. _..._..Ifs• __^-- _.. 39NVH0 3S1ad 13d1 ,03 •Rer- -.-._ _.._ _._. ,.__ .. __ '

s ' JULIAN CATS' - 244455C.15347999 CCNTFCL FRASE - 9 PRIMARY 9001 -- SLN -.GAPS _fr.CM LAU ► rw- _--_593.458- GSSC PRESENT S;C PISS- 1443 . 4115269a-- KG __ EPnEMERIS SCCY -- EhCJLE _-... OAVS FFCM CUTOFF- 0.00),[000 FONEF AVAILAEtE-- 21.8CODOOtO KM TARGET EOCIY - ENCKE -S/C' . R£LiTI{rE_e T1TS4 --- -K-._._- ... _ Y .._ ..:_.. _ __._. Z _- ---NAUNITLCF-- SLM FCSITICN .537425127?F&8OE+Ca .S55215tSGlP9lZE+08 .1173313S41192tE+[S VELCCITY -.3984130340E7E6F+C2 -.678838i541266SE+GI -.43707723651335E+01 .4CE5114076TEv2f+C2

EARTH FCSITICN -.421841397E3023E+Ct -.8156859533E666E+07 .24060St39377C8E+C8 .452506CIES.S'.SE+C! vrtcr T7" -.1851448094?34PE+C2 -.27964335258439E+02 -.43707723658335E+01 .32E214976681CS^+C2

s ENCKF FCSITICN -.5E69E:48535E59E ♦ C5 -.5F84GZSE5E1745E+G5 -.27E787C35315u4E+05 .d2S3S2fZ7S71?4E*V5 VFLCC17Y .iC5354Sl4E952iE+Cl .lb79QS628S7106E*01 %1IJ99111338359E+01 Y____--- .30C7Z97592Sf3SE+0.1 5/C ACCEIEFAiICNS _ _^- x .~^- .- 2_.. ._ rAfNITLuE PFIPAPY SCCY -.52272S17505530E-G5 -.7t482EC749831ZE-05 -.SS769CC1679701E-05 >9E4017^401 l:SE-DS ' -pfSTiRE3Jb-?[[ids' '%536480541.l5E6+09 .14841221-0i1x43aE^i4 -»bi2693123Z55:3E=10 -- r-^:34S34i23T133E.d^^ TFSUST 0. 0. 0. 0. RAOIATICN FRES r UQE 0. G. 0. C.

ct "01 PHI CT

j .1t2EF(173475F+C1 .2S8C13E74141E+!C .134351357239E+00 .678350275883E+C7 .11E_3E33427G)E+07 EG992S5977ef40f i 14& ^172F74465F+00 .S736EE1878Ol E400 . lO5000C4044CE#CO .IZ?261772827E+17 .5994268640E9E+G7 .^,652F6v4EE 4E+QE -.1 4 Ed ,35547322F+EO --.81678f98E!!OE-Ri -- .E817ET457981f•OD --.382466073950E+06--.217847249637E+C6--5L^b117;5dl5E+al Y .18 45 + c]3 p ^6E-CE .2ELG5E958752E-Or .680449NE884E-07 .1,46163519223E+G1 .518513890]08_°Q+-00 .Ef07555ZCECCE+CC • { 2ccccc 894.3E-7E E752SE1812rEE-07 f92C2s7Zl8?5E-07 .10488OS2ElZ9E+C1 .1327E243301TE+G1 .2E49S2619:EEE+07 --:E:5S4f?55643c u7-.54GtE4E 076636-87-- .135C947iB53LE-86 -v2924387280636+E8-- -.c'51J28o85E52E+G8--.it24N-?EE354E449

-.ElE4C859?OClF+C7 .5227397347 2t+0E .22414051257CE+0E -.39T088SlG217E+05 - .94b??i!9)EESE+(E- ,-47525244Sf14E<96,--.471707404148E+06 .341.055826158E+64 -.724l5r765195E+06 -.452334'.787EEE+07 .77P2S852952fE+05 .136166097548E+CE i7s?5EE134^tlS+C1 E90124-977F17E-31 .2194E793044EE+60 - 386313S71451E-C1 -3l pF 75f65951c+]E-- 44573441E172E-01 =-. 4745tEkE043EEf 80--r321364554026E-0 'r .2f354Ff11/76E+CG -.853t2t58D387E+0G .7421528E701EE-01 .1327533C4SOSE+00

++♦ a++a+ ♦♦ yia+3s+ +++a+++i++++++aa+++a+++++a+a+aa+a+++ ♦ TERMINATICh 047A aaaa+aiaa++aaaa+a aa++a^++as++aa+a++++a++a+ a+a++^+++aa+++ -

^-f.ECLESTEO S7CFFTNG CONOITM h 1 TENC ------_ ACTUAL STrfVING CCNCITICh i TFNO v + FLIGHT TTrE .59349C7GGOOCCCF.+73 FINAL SiC FOSS .144241152E97EEE+04 x k * -::EE4E341589E59E+C5 V) = .2CE254514E0923E+01 SOT a .144621344348PEE+04• Ff,A = .427137d925F3e4E-24 - - Y =°--.'_3*^C^4f5a1745E ^g -•VY-s---.Sa 750aE2l^^SOEFt01 - 80R -+T -^.401909T4tl62484^t04- VCA- = -.300T8S759F35JSE*11- - ' 2 = -.27G7u703531^i4F+45 V2 = .1T399111:3lI54E +01 YMP .30078975923534E+01 ICA .717431694447vCE+02 R s .t29:42Ei797174E+65 V = .30078975523535E+01 TSOI ,e .5938174180E575E+03 TRCA i .59381741886975E+03 _Mk ^uCChTC ELEVEhi t A E INC NCOF AFS 5/C TAPCET CENT -.110521!5-C9 .286451E+14 .7174C2EfC2 220225E+03 .E64801E*02 -.745393E+1S .2724ME* 02 ^ tttlff♦ Hff ttfd if if ffflfl+AwM+f++f lfYflff fi lffNffft +flltw ♦ f+Sftff t•tfffff•f ffftfffttff ff ffff fff fff ltfffff tf Nfff ff ♦ ffffffffffft •a^.•11i11111i111111/r11^1sr11i I1/111111rr11/111/1r11C1i.-.1111/11^111r11111111111i 111r111r111^1111111^1111i1^1111^11i11111^111i111/

SUPPOPT FCR ITERATICh NUPEFR 0 -

f z -,144241152E5^^^^4 .: CF2 = .4000OCOOCCC3E t ,. - fMAS 6iMA-= q . _ ... - ^----- .^------.5EES634E5P97E*C5 -.5.e3025E50i7E+05 -.27E7G?3MJ5E+05 - 6PST = 0. C. 0.

Cut = C. C. '- 0.

C f M G. r.. U. 0. O f LCIC = .1'C4 2!ClGQCE+Q3 .2725200000CCE#03 .jESQOCu0009PE403 T759CC000OO8E+02

bNE• 1 ` .1?54224E60sGE+G3 - - .272530GCC0G[E`02--- :1EE000O COMM* 93--•-.7 759000 00234F *42------• • APi _ 0. 0. 'J. 0. G.------f i2^s C. - ,.. 0. 0. C. r -f1FZ _.L^^

-.112C55E40E7EE*76 .91235295CISU4 04 .2:925952SF54EE104 -.693G51C12E17E+G3 .17^25I2S6: 75E405 --- : 755o5E8i2E62Ei g 4•--- . a232tl47Jt84 "eE^04 __ -., 5952547J9957EaC2- .i2E25`.5E6'43S+C5 .135131715037E+24 .237E54E7316CE404 - 7P

-.Sc`10E . g E404 4E*94 .7f*02 .2E*C5 .eEi14 -.6E+34 .EE*n2 ^.f .IF+ES- -.5E105-.1E+C4--.2E+ @4 Lid "" 111111^1111111.111rr1i 111i^i1i7111/i1/r11a^11111x11•Y111111r^111^1 r^111/1rr1i1^i/•11111r11^1i1ir11^1i >I.1^1^111111111ri{1i1ar1ir11 ►11 - .,, j ^—MEIGMTEC SEnSttiYI ► w M► TFIx ^------. ^.F7c 41E+tT-_ .104 ec 197 .41247Ea07 -.49l54E^CE —.-.. , ccl 4Gf^4&— .^T$595+]E--.2^5^5E+F7--x17052Et4` — . .73485E•06 -.924E7c•37 .38S35E+OE .Ea!l3E+CE . f CC%ISCL %ECTCP INAFP PRCCLCTS

V _- t.*!EC". — .^_C922 .5641[--.17E23 a 2 .CC9;2 C.0003C .481227 .s7E5! 3 SE412 .11!127 G.@000,O ,0007E .—_+- -s37Ec? --..4765E ---. .OG C.7E---C.66COS ----- 4.. - -- • ME FCLLCMIPG CCWTFOLS ARE LINEAPLY.CEPENCENi

{

{

i

a I

"'iiiiiiiii'iiiiiif iiiiiiiiii ►► +iii iiiiiii ► i iiLi iiiiiL YSiL ►► iii iiiii ► li •i1 ► LNJ ►► H i ► Lii ► LLL ► •L^•1LiF1•N1 ► 1► •11111t ► tt Kt1•Ftt1rt)11I•'– i8+33ZBZLZ' ST+3SZCZV?'- Z0+315£0Z9' EC+9RZL433• Z3+31ZT95L' OT+3)5EL5Z•' 53-37Z'a50o1- LN63 139x11 31S

^i - - ._...—_.,. -•71 .-. _.,: _. ... q>a ._.._.. _. Sdi 30D4- - - 34I-'-'1 .. 5i-63S1213 °3IWJI--. n• ' Ct+3?Td7iT£3ZSL£55 • = V381 C0#33T3Z3TE9ZSL£65• _ 'IOSL T0+3TiQ9fLTBOZ9TOc• = N A Sv+3£]ZYE3ieESS233' • " -" Z0+3R:519^LL59ZT95Y' = Vol TO.39f03CLT8^Z9TOE' " = dNA TO+jZOL??31ED15-_iT•- = LA - 5L r 3^LT52f5TZ580.'? • - = l C 10#1T£03£L1007910T' = VJIt 115431LZ16192669,hT£•- - d0d T3+3Lt95T3TZh2h5W = 1A S: r 39ZLaEhiu3ETLch'- s A f t0431PL06E0TT6092E• = V3!1 s'0+35B333E99Z92LL9• = 103 10+3)Z9T49df h p T, 02 • = dA` SL•ldT3rZL7^,6a^Z5'S'- = It F 9J+3i5T4Rf2hTb£bhT• 4404 3/5 194I3 cy +30900007405a£55 • - 3wI1 l y S113^- -

'J-43L - - 4JL1Ij4O3 34Ie101 119171 - = '• 0431 L ,40I1IJNO3 `141d3313 J31SAn33d

----t't»t^^^w+srF++^rfr^fr3*rrre^frtrrtrettrt^r/rrr+ett*rrr VL1U 43I10IIM!!31 •rrertrrtttrrttrtrr^ertrrr^*rtrrr+t+^rrrrTrrrrrtr+rrrrrw

- +— 33-30SMIIR66Eh5'-- ttr+335 E EISItIUt • - --10-315?! OtMuJtl---e5#35a959T?E9i3T' c n 11130'

i ^ -- Z0+30. 00000. 0065[['. f0.z3d00Dd0. 03 DS9T • E0.+30J00000EZCZ • f)+30D)it00Zs •Spcf•

t

♦1 ••r1•••u••• u• tt•u••••••• •s••••u••••u•u•••us••1u•u•uf•t ►•tu•u•►► ^•f•••u^fa••u• ^••• ► 1 ► s• •f su•• +•a•••••+^•.1••• ► ••••1• r- • • • • • • • ♦ • • • r f ♦ • • • •.• • • • • T 'ON • 931NI • road 1VISL • r • • s s • f .• • f • • • • s -• • •. • • • • • s •. • L^ a • • • ♦ `^^-'—f\•f\f•^!\i?lllftf•f•1f••1•fff•►t••R•ff^f•f•••fffff••f•111/f!•fif•f1f1f1.1f•ttlff ►••f•► ••f•f ► •f►/1f1f11ff1••11f•11••• ►1N•ff^1f•••'— } 1

d

i

{

'.

+y • • + ------•—sy•rrsssrssrr ss rrrsrrsrasrrsas rswara^ar sa++ss trarAsras rrrrs a-r.^r^►a•+^rN ++• s+r► sarrr► rr^r ►rssr►yras a'^ra r•^^^^tw+rsr ► r►r^rrrr- (-^j ^ 30r3[ 3f56L • Rt+3R59hE5 • E0+3TOODMi £' f0+3TMi93Zf 23.33 SiRZZ • ET+3Zi CLoS ' 6G-35ZiL9T'- tN30 t3^tl[1 7/S { __ _- i! _... lit - -- --' Sd7----^.-300V-----^ _ 9YI -= _ Y__. 3 £0 .35CD+B9659LR£¢S' = Y0tl1 Z0#350R4D?659Lhf55' = IOS1 t0+3S06TDN5505S0f• = A 80+389519?3zgi;aii• = li„; ZD• 3J a 5?82T5t5fhZi' f tl?T -1C+3R06T0£L6605SGR* - dNA - ZA RG+?bDTL's?3ktR25??' • Z- TG+3L79TCfL55 p 55G£' Y3A ZQ+32S6DiLULi69h76' = 80d AA R + 3R3,35i7; ) iZ£5 • = A Mi3+334T59TSSLDCS0T • _ 103y h0+?52Zdf5556ofS)T• 103 C-0+dLT3bZi575 540Z' _ 9A • K

R0+3i3D9DGZi?MiihRT' SSO4 3/S 114I1 _ ___ _.. _ _^_._, ^_ __.: _.- .-- - .: ___...___-__-. .-•.------. C3^39uD059J[r5'tE55 • 3aI1 1"11A - -

1411:3013 l*! 01r•-' 3431 40111On3J'5413d31i 33LS3133a

. Ktrrrtrrrtrr^r++tr♦r^rrtrerrrtmtrttrrfr^rrt +♦rr*++rrrrrld0 • ^tJI-.LIiIM93 1-* rrrfr+rtrtr*♦♦qtr+rt++rr+strrrrrc+ rrrt♦r^sr +rrtrr*rsrr

Oil*35hoi5O656tit •-•--iO•+iB4693?liih54 • ---i0r33Z39h2i,c9ZS?” OCrlt??btB)9iiN--^ -

n 1111`0

Z3+300G03C0'J6SLL' C0+3300.03000359T• CD+3C3)C0D39iZLZ' £7+3237.J)ZfhuiT•

•••••t•••+••••••••••••N•^•••^•••••••^••^•• •••^ u^^h•••a•••w••ia•+••••u•a•••••••••••u•• •••••^•••)•iww+•s•r•.•w 3.••r•s•••^^•N•. r - • • • • • • • • • • • • • ♦ • • • • • • • s • ►• • •► • Z 'ON • 931NI 'roar 1116L • • s • • • • •► • • • • • • • • • • • r • • • • • • • --+t^HS^a ►^sN••++•^^•^^•^^^••^i•^•••s•^• ►••••s•^••••••••••r•••••a ►a••t^•••• ►^^••^••••^••fs••^sf••••^•^^•^ ►lr^w.^^•M•••^••w•ssss^l^—

^iii^i'ti'iii'tiTi'i!!'i ii iilii'iti'i'iilil ii NLii Lliii l lit'!llitYi - - a+'♦}11 ♦ ► i'i'la ^ titlli• ►'•L!'► i-1!!1!'►-1►1M1r► 11lLal rl^111111M•Hai l ► al altal tF^ 20+33D1D^9 • hTt^£06h52' TO+3Zh[B5^' £D+3.40LYCf' Z0+3TiQOZ3` QT+3ChLl5d' 60-^f9ZL:^T'- 1N33 1'.3Jatli ^/S. Sd7 - 3UQt. - JNi------..3._ ^__y _... 31!i3f+313 ?IMO-

C0+3Z^Ob£ZALRflAf64' = tl981 c0.+356099TZ15BhFo5•' = IOS1 90+392EUIT9r^zSDE* _ A n0+j5.32tw 03iL6,43• y' 30+3a59a^7T52T5CO2?' VOI-- [0+35?E'[[T9f££S7£' ' - dM4 -TDry0013G[OR9c04TT • - -= ZA" -'x Z T]+33Zi£[LT9£f'si0i' tlOA 30+3iT ]T3[1TT60T£'- = do g AA F0+3oLiTTL39LT11L3' ^ A EO•di9Z029YETT4Z9b x = VOS E0+399aTO9f?O606F96• - = iOB^ TO+ y ZGhSDbOZ2F6n 02 • _

---- —^— -,--- '{)pill .` --N^IlIUYD2 94Idi0,li 17Hi1Jv - ^^ 7Nd1 VOiiLt7iiUJ 9H1ddJii 'J31S3f19dYJ ----rrsft • rrrt^sr^ rtF^trrrrrsrr*tec^r***trrrt+rrrrrrrrrrtre+ Ot/0 NOIIINIM7131 rre4rrr*rrr^rtr*r^+rrrrrsr+rrrTSe*trrrr ►rrrrrr+rrr^trtrs-

30^39EO1[TSOT£9t •— TOt39LOf^iL'a39Ze•-- 90^3i525ot':°)^Th4'- i°+3?^:TtS!i2319t'-°----. --

7 11730

` 20+30000000065LL' ':0+300000000)SW iO430330003ESZL3 0303 0I00I3i1]it'

••••••♦ ♦1 r••••+•e•••••••r•••a••••s•s•• ► si•us••x••••••1 ►••••••••^1 rwr•uu ► 1••• ►► •Ha•!••••frA• ► •► •a1•••1••••••r!••••u! r••••uau• ♦.. r ,. • ♦ • • • • ♦ • • • • • ♦ • s • • • • • a • • • • • • E 'ON • g314I ' f lsi iVIIJ • • a • s • • • • • • • r • s a • r • • • • • • • • L^ ^Tlif77•7T♦♦♦f♦fa••ti♦♦•1f^♦♦f••1•^ ♦ ••s •se•r^rssitsts••t ♦•11.••• • ► ♦•1 ► ► ► x••1rr•• ►•••••as ►r••r► ►►•► • ►• ►•s.•a ►^a t•tt sss^}••ss•^t ►N•^►^ssr-

o ,

______.n ano •nn.•• •nrw. n.r• ^ _ 1^11111/1.i11111/1111Ji 1111i1111iif1/1111111 ♦1 1Ii111111 i 1i/1i 11i1i1•f111 i1i11111/1i i1111i 1111i1fi1i1/111 i11i11i 111/1 ii1i1111 i11i111i

.1:E43VC0 C30E+C3 .272537C000G0E+0? .165CCOG00000E+O: .7759000OGOOOE+0t

-- •-.-._f--a7il2d6Ey5tybE+ tfr----.29565112c3fi5E^0[' -^^798.i5E0817{f1-Of—x254207-?-74455E+C9----

♦ ♦ ♦+ --+aaa^+ a aaa ►aaa++a+aaaaaaa a ++uaaa+a^sa+uaaa^ +aaa4++aa• TERMINATICb-0ATA-+aaa++ a^++aasaa+aa++aaaasa+saaaa aas^uauaaaaas^aa++ aa^::

SECLFSTFC STCFP7HG CnHCITIOt. i TENC ACTBAL fl9fLl%C-rON6TTTCN- - I - TFNE

i fL1GMT 11ME , 5e349179n ^ 07CCE+G: F FINAL SIC ► / s s .14434Z?lltG60tE+04

+ X .c".^112aS^1C4^F+C? VY .2$452971772MCJE+C1 EDT = .R?750G90,3E7lS2E#C2 FCA = . ASJdA323241SSEi+^.J r r -, c 7C57t1Et8FS:2L+C3 VY = .i9SSZ4SS32CE342F+^1 EDR : .1526335C2112142E+02 VCA z .gu5154e531d252E+Oi ^ ^ _^ . '. _,2c yS774CC5^} 4.3+xE + 02----- V7 • s•---^1140?SG3S8 c5^r1F' + 01 ^— YNP - . 30515tlb531e318E1G1 --- -ICA--+--T2? Sd1S72291Z5r4csgt % 1 R n .1[C3:E2CO57415E+04 V a .36'1S8E5?1t3y1E+01 TSCI .59349E7295421ZE103 TRCA - .593500%5Z3SV1E+03

CG3 l0 flsNfN y 4 _ E I NN NGBE - -APS -- -T^ VC TAFCET CENT -.1073tfE-09 .a296CeE+12 .Z358VE#C2 .28l41tlf+03 .232010E+02 -.430243E+13 .3d251(E+0 .._.^4^111i11+^!iA1111/i/t111111 ♦ 1111.11/11111'11111.11 ♦( 11.11.1111;11111 + .f.1.ll!!-IN'f:11 L1.tft-t-l/.fl-RR/ ►.f-l-!!-tl/-f-f lJJ,f Rt^l.1-R.Rtt.l-{:1^1^.L1i.111.^L1-t1•

;,.`

t

3i{Etli /r^fF°itf PEN TFIIL - TRI3fCTC+ Y_____

is . TPIAL-TcAJtCTt1P f NIYBEq r 4) X(1 ► . SCFLF (Ct!1 10 CN CONTRCL CCFFECTICE (CU ► xO) NC k lN.L FIFST SIEF SCALE FACTGR _,. .... Y(2) rLADF A TTC EYTREF' LY ESTIYAIICN M C FUNTS. C6E 'SLCFE) y^L y (3) CLPTL EXTREVUM -S71k b llCN (11•FEE POIRTS, CNE SLOFE) ..X( r ! • CU C IC EYTREMUP. E`TI1-ANON (FCIR Fr,IN1S ! W) CLADFATIC EXTFEPUP ESII ►A1IGk (TfFtE POIAIS)

r.41Fy— t41GRA410 EcR4A IbQcX^- teMA6F- -».. —__.. ' C7CXI*: EXFz-CTFD 0-ANGE IR QJXCFATIC ERFCR IEEE) UPT CiANGE IN SCALE FACTOR

Y X(Ii Y!I) PFEOICTED MIN V C 0. .27i156^52'^35^E^n7 '^ 1 .1^?fCr.Gr^RCORt.G1 .175546E1255NPE^97 ^ z 2 .SC)CWCrGrCy'.E+Cl .•-. .13472776FS35F1E*C: - .d3 :3EA2812C77EfC6_. ,_ ._ _<__ ^__ ^__ 2 .IEEE°1Ae`713CCEE^^1' .?13C7b21232E2EE+04 .iG2:19E3G738L5E^Lc 4 .L^72552E3SC12E£.91 .44285467°.74712E^09 .35I7Z537E640E5E^t3

4TC>

—• CURFE'AT CF TIFF 14.756 •

t

y. l

pp

M

' alla/!a. ► ffa•lftlffa/l1a1.1/falaaf•11a*1l1ff 11 ► •1•alfaf•fffa ► /alrf111! ► iflf/f1 ► fl^11!!f1!l ►►► 1f1l1f/1 ► a 1t•r1 ►► f1//laf 11l1 11l11lIIl f!

P 0.331• +30 •- RG+3tt • ,)• t' . -2'!+3!'°---'rb+-i1'—#0 30'--9 +3I'-^^-- f

?+-33iT1`L9h531-£Za-----R4+-?,^-£A7T!-9£d'a£T-'--5D+3aLih9Gt ? 5??f-•-'--^5!+?YM:y9fi5 ???F'^"^-^ ^"t+tf' i 2D+3Lb660Eh5Zi6S' hD•3:h8^cLhBZ£2a'- •f0.3Z932EYi59551' SG•35.sDty:727Lt• •, ED+3LTY2TDTS9E69 • - 10+39h53i?5 5?6E' h0#305t056.SZ?Tr,' 9u+3vM-?j?,0711•- 7(TattA h116111S^13Y ^^ ^: _. _:._^ _... - •) ED+3S998536E92W h0+32630MLOETE' SOc36FT?09C2L'oZT' LO.3"a9679406i5LT• tJ+"nhE5ZSO95i513' s 2sT! 4tSL^rLit9R58ZD+r`—RG+392EEtt3t^£TS"—`5039?i39tt?tScT'--•^tfi 1 393tT350Si5G[ -tfis3R£S?Str9ytyt<'--"'x`^-'2i^-^

• D TD-3LOTi2BG19S5T • - T0-3ZT911E-.TET9:T'- TO-3L:R?8F[TB?3T • - ?J-3629EZThhSTE •- •G SA

S ZO+35RL[[OZ.RROLC' f0+34 t1TRa3T0 U"T" 4^ ► 3tLF7^h'JD??LZ' P7f3y"v9oTt0i33ZT• ^ tt3Nl

_..._,...^__,._ - 2.0«3RODOG3 7 065![!— EO+=DJ70DJ ] DOi9i''»• ^ T'0.3]B0D704fi ? f^'--£Aa396OG0L2c''luiT'^--... +' Slv(t'-: • '

D0^35ohhG1102hiZ` TD+30LTDBBi1E33['- )fl^3iLZ?:?59iblE'- L9^39685iS03?FRL.'- _ '133

C TD - 906428 T3bi£15' TO 30 EEL5t"eBSLT • - - T0-3ZS,ZE"shZ9Z50L •:- GC+35h9i3T2E3G4T • - n3 t^ - --- TO -30oJZDTl"a5£h5' —'T0+3 â i:E15CEfivLt • - -. TJ-22i2iiRZ3?5)L • - -r1+65t4iiTZi3DiT r - a - 200 -

. 0 .0 •J M f

hDH0i30L Ali T4i5i'- -i0*3'--3 9iyHT^-^Stir361'fL>iZSscTY--

'i 20+?R830CRCC56i2•- _J+3»6B3TBLi0Lb'+ Ei71?JT5522TTbZ5Z • _ ? — TO+3TiTC9Zi6Z [ 3h• .`Y1:Y9^yM---'W £0+31RL519h'n72D't' 9/31313 TO-3iO3a037003)A' . _ :. 2d0 4697,1210Zh i•.-_

"`^..'._.' ^ il1's,- _^...._.:.^,. -.._ _ ^. --.--t13-3a1'/--'t-)LiyJ31i ^-33# •Al^i+ - 334DV3y N333 S14 S401LIJ311 !0 • OV 4n4ix#4 3Mi ♦• saa ► alaalssss+ar ► lfssasla ►► usalf.•^ausla^ ► far!•auflaf^sfaf^u 1/frflal!•rala^ ► !! ► 1lu !•1aaa1/!_l^^ ► ufl^a ► e ►► 1^+ ► u au^fa ►ls^fl7s r- a^asa^+•+ s^ asassaassassass •as••asaaa^• •s•• ••sa^aiass^ •• s.♦• s^••••4•400 *Age a.a. .. ♦ • • • • • • • • • • • - • •. • • •: • ♦ • • • • • • • • FIFER.IIC.E TRAJEC.TCFY INTEGRATION • a" • ♦ • • • • a • • • • • ♦ a s • a • ••••••••s•• ♦r•. ♦• ••sr• ♦♦♦•♦♦•♦•••♦♦•• s•••••v.^^^ .♦•♦••.•••••.• ^ ♦•♦♦ ^••^•sea•s•♦•♦•••••♦•••••••♦•♦• ••s••••••••••••••a•••s•••••w• ♦•

... .f25E9E7194C4EAC3- .E722CC43417IE402 .776442077745E+02

0.

JLLTAN CATE -- 2444481-E547M C CONTFCL Ft-ASE =- 6 FRIrARY 8CCV -- SLN DAYS F4 CAGhC 52rr. 8FC6C000•.----- FPESEAT S:G MA CS;- " 1584.46949"1-KG -_ -----.-.• - EFLFMEFIS EG&Y_.-- EACKE- DAYS F6CV C eTCFF- E8 . 49n70000 POWER AYFILAELE-- S.E4559458 KW TARGET BODY -- ENCXE t'

_ S/4 PELATIVE STATV x Z - ,. PAGAITLGE __ =^- i SLN PCSITIrN .22E5S2S40CE252E+C4 .697172425Ei515E+0A .3092GL1813E764E•08 .235C4e219492^4E•09 YELCC17Y -.1847E4355271ICT+C2 . M4'9W 2t2035SE+02 .61.272ESE17E943E+00 .2l:87725cc3ESfE+72

LE AFTt+ FC`TrTCh .3C92af786367E4F+C8 .15f88E:'7l4tECSEatc 010 VFLCCITY -.25F05f6772623t+C2 -.171i2ei4r1241EEa02 .61272E5617F943E+C0 .2La70457d 3cE'_E+L2

ENCKE FC.ITICN -.'c1c05EE505CfC'4EaC! -.1l5012CCi5E085F+b6 -.ttC6871EFfl24EE +C'7 - ,ccc5c1 c555S?SErCE ^^ VFLCCTTY .53;+I627Ef15212c•C1 _ .47303ETOl75S54E+01 .17717692953790L+O1 .7'c7l21u ^ df47CE+01

^'5/C ACCFLF= 1Tjre1^, X Y Z tAGNITI'CE ' . FFI MAo t P CCY' -.22CIC7'67Cll62F -05 -.67733eE2`25840F-06 -.30C'vtl9t571lC46F.-^E .2:22a 711Sc:?7E-C° ` Ff a TLaEINF FrTTFS -•ZEG8741°.2343356-10 -.6C749tE3i33136E-11 - -.3111:7-c4l7145AL-11 SSCCLfE5aS141E-1t TNatJST -.1"4752C52150AZE-CE -i22GUSC3'^7E898E-U6 -.4C171508878436L-C7 •35E906i47h71 °-SE -CE RAGIATICH FRESTUO E 0. C. 0. 0. ♦ ♦ ,.' ....: •Y I C ♦ q fr E • r•irrf ♦ c^r . s'r ♦ awr•rr •-• 3• TI•r T71r Y•^rf/t r • ^•e r ♦•7 r ••ar1 .7• N rRSi7 •r R1r •!•♦•,• T Hr F• r1N •1^•1±^Yee•TTf •.•• 1lft MTL.! ! f •lt.Sif Y ^.. ► ► ------.------c------.--' ------. --.------_v^r• .r _ r,CNTFCL•FEASE CHANGE,.--^ ^•••_ - __._^ - JtLIAN C A TE --"2444523.E547FOCC CONTFCL FHASE - 7 PRIfARY 30Ct -- 'zLN • ---GAYS ff•Cl-LA111t+1--- SF,7.E94uCT0G^------.-----4 RESE1-T 5/C PASS- -j49T . 44431065- .- KG . -._. ----it^CKE DAYS FRCP CUTCFF - 2E.4587C9C0 POWER AVAILAELE-- 16.67623038 KW TARGET BODY -- £NCKE - µ-- -- - iHFUST ^ FHASc --THoI cT .Ff/5E---IHFUST FHASE - THRUST PHASE-" THR6 g T FHASF--.- THRUST PHASE--.--- OU16ATICK THFGTTLING CCNE ANGLE CLOCK ANGLE CCNE RATE CLOCK RATE IGAYSY (OM (DEG) (DEG/SM (DEG/SECT •-f4+4980896&^w---•-b.a!E&O^G4G '^^L.54CD0D4b ...,-...-BD:^OL>f0000a--^0."ODOCOIIOG---3.G+7II^tIIIIIIO•------..-_..,_...- SIC FEL11 TUF 6'TATES F V 2 FIGNITLCE SUM -^ fCST T 1Cy - .14196250721650E*v9- ,9f870E245i3554E+08 ,3G1580dIs83572F+08 .17^4^CECb+>ZbE+64-- - E VELCC17Y -.Zt89Efa.5577254E+C2 .3E3042914:7395E+C1 -.122923A3522014E+41 .257541FSc2 EGlE•C2

-- EAR10. --res!llCN - -.5lE5^ 5E162E22E+C5 --- ,5G750550e`:3450Eag s -;3(158GA188c572E^G 6-----.^^ 3iGzi24s454F+z E t VERCCTTY -.IS205c6442SC66F402 -.2459d27C4ST955E•02 -.VZ933e3522014E+01 .21234912821E5cE*tF -- EIiGwK PC51?'Tro. _,^ 5lb51740893343Eafl7 S1i414 8 cc',7075E=07 ---- -.285579576643906.07 .a^S37iS+Gi81Y2Gf-•t7 VELCCr;Y' .342287e240F029ENC1 .25640E?29^'.55616+u1 .144637.129964u1E+C1 .45!67253.6?lf5E4CI

- 5/C ,ACCfIEGATId.S - .., - - - #. ... _. _ Y _ .__,_. Z -.- ^,^_ _.d xAGt ITUCF PPICAp ) HCCY -.3'/r621:1i7=2576-05 -.24-19dE144=182ZE-05 -.7SZ3615673E705E-L6 .42'.8135673°_356'!6-05 PrRTUREINC ECCIES -.17096E7E623112E -10 -.10512CF 2 7-MIE-09 - . 59145536114954L-10 .12.6i3t119aE1E-u5 :' ----ihPUST•------°- -- . 47143 270Ef21,AE-06 - . 3I27E23712l174EE-07 •.i1 : 929j0G2.912E-Ci . 44f85ssSAC43 4F-fb - -- RAG1A'TICN offFRE«Uof ♦••••••• G. 0. 0.- ♦• 0. ;.: ". •••Aas•••Y e• u••ae.•H•••••rA•a•I•••4a••••i••••••••••aa•••:•••••••••N••:•• ^a•••••••••••••}••••••Y.► ad••^ss•N•A••^•^• - -..,."'.

------

•11• CCNTRCL Ft ASE CHANGE '90

JULIAN CATF -- 24'453?.E547t000 CONTFCL FHASE -• 8 PRIMARY BOCY -- SLN DAYS F C CP LAUNCH- 577.000(0300 < FFESENT SIC PASS- 147G.1033E1C7 KG EFHEKcRIS ECOY -- ENCKE -{iArS fRCM-CGLCFf- - 16.49^!7ldCF-- --- ?ONEF AVAILABLE----•20.32 4 8 8 12 2- -KN ------TARGET BODY

THRUST PHASE THRUST FHASE THRLST FHASE THRUST PHASE TMFLST FHASE THRLST PHASE •.-.-- - - ULFATICK ----.. THRCTTLT NC-'----. CC NE ANGLE CLCCK ANGLE- - CC-NL RATE - CLCCK HATE •_ -.---- MAYS) (DEG) (OE0 ICEG/SECT (CEG/SEC) 10.Oa'IOOoCn 1.00000006 157.Oif84ll2 77.84420777 e.00000000 0.03000000

SIC RELAYIVE ^IAIES x Y 2 MAGNIT^L`E St.N PCSITICN .11541E'8G8S737EtC9 .9E950EC88i9110E+06 .28E521t9023466E10o .154709750'.61ZlE109 _., -VFLCCITY------.326511ES331127E+C2 .IC2642E91F4592E+01 -- -.226922 Z 3234470E+Bi-- ---.3ei4l"516511EE+02

$ARTt P(SI Y TCN -.SE162E2F374217EtC! .25i621737ZE982E+08 .28F521l19a2:496c+C8 .44227579$1T7=EE10 - - VFLCP'TIY -.Lb22127S15u05CF+G2-- - ^-.251747044 8383E+u2 - - - -.22Z0222323E470E+61-- M35tl£26957-EcE*ci - V ENClIF PCSITTCN -.3Z27AF.765625tEE1G7 -.ZSEt9Z5?E`•0473E+G7 -.17C28.18732375E+C7 .47161C444lSS!lF107 ^D -- VELCCITY - --- .Z7Z819i5192591E^C1 ^ .23493372954T81E+01---- .1208a9E69?4056E101------.3t:0871713441E+!! I

SIC ACCELE= ► TTCNS X Y 2 PAtAITCCE c9grooY fCGY -- - - -.41:642517c'116E-65 - - ... -.2546E7573:5913E-05 -- -.1C26872E30?772E-65 .Sn4461EE115E.Ef-GS° PE c TUREINC FOrIrS .4;£i3Z/E455?1'5 F.-1-i -.1468E^5E6(317lE-UA -.1254c25905t526F.-09 .ZC(?1SS34542S2E-L5 •fFFUST -.54745215243443E-G6 -.11139f2585a199c-06 -.14893655750395E-06 .SSi676124!E-V15-9E `aiUIillCh FFccclloE._. __. 9. _ C. - -0,- 6. a11w 1^1 a. a:.1 a11a11.1a 1aa 1+.11'. a111.. 11111a11^111aaf.11.111a^i^•11..III^a1111.1a/1i^1^11^I•aa^1111//•^aaaa 11a11a 1/'a.. 11.1111a a1111^^.1 +-_

•a^• CCNTRCL Pt ASE CHANGE /^1• -_-- _ g --JITlTAN G ► TE• ----2444543. 6547(000------CONTFCL - FhASF PFIPARY ROCV -- SLN - -- »-- DAIS FRCP LAUNCH- 567..ptCCCCoo FFESEAT SIC PASS- 1442.42710806 KG EFHOMFRIS MY -- ENCKE GAYS FPCP CCTCFF- E.4987CGO0 FONEF AVAILAELL-- 21.000OOG00 KM TARGET POOY -- ENCKE - THPUST FHASE TH;LST FHASE TMFLST FHASE THRUST PHASL THRLST FHASE THRUST PHASE OLPATTCN IHGCTTLINC CCNE t\GLE CLCCK ANGLE CONE RATE CLCCK RATE - _ _._, __ ..._ ^, ^. 1GAY51 _v»-. -. _ _ 117EG) ---^1DE0 - ICEG/SEC1- •-cE"SECl 213. M 000 CG 0.0006aCC0 0.00000000 0.00000000 [.00000000 0.00000000.

- .5IC PELATTVc STATE4 - x .. _ _, _ Y.__ _. _ ._ _ __._.. 2. _^ -AG"•l"F SLIT PCSITTCN .85 66E4G730C72E1(8 .9E2424223E052:E+08 .2EZ553@720:716F+CE .12"e77Zt44$246SE/OS VFLC C ItY -.3?E3S2t7983ZC?F*t2 -.2459675074323CE+V1 -.34C698L47970074+G1 728E747851t3ZE+0%

EAFT! _. FCCIY'I rN-^ -- -.31E123E2535258E?Ct;^ ^.7C533971005001E107^ ».2E259327203716E*08 .LSEF4uSE4ccB51c+0! - V%LCrITY -.IfZ30452E58790E+C2 -.2E4J17G51E15A9E+02 -.340698Cv7970G7E+01 .3-ci6r625512:77E1t

EACKb N PCSITICM -.11568629540449E*C7 -.1147i7G44E7611E+07 -.64161955504257E406 .17ZSOEt0052t3SE+t7 YELCCITY .2C.3311543SME401 .2t0127t3351406E+01 .11469752871SOOE101 ..1 Cl1S150ECi5fE^C1

57t ACCELFFA7'7CN5 x Y 2 PA6NITCDE PRIMARY PCOY' -.4t402754385540E-05 -.14t8SC1099116LE-05 .75it214C078478E rc -PC4TU9Ei16G-E4Gf1EL 1444 1 M 64117-SC- =-5G327i103s2504€-10- -.,t-44414 41744-xif,-49 THRUST 0. CI 0. 0. PACIAllth FVESSURE 0. C. 0. 0. ------^ _ ... . -_..------•---..-...-.-.----..------

.•._.,. .^au1M6...abn- '.A.tir.b:- _. ..__..:..r.^..;,_.®.^..,.,^..:...... e...... _.u..^..^.,...... :...... ^..:_.:.y....:...:.:..,-..s....-_..W.:..^^..,... - .^. <. .. _._._. .._.. ._...... _..d -. __... -.-.- -- ...... +------•--•-----•-......

JLLTAN CA E -- 2444a55C.1S34;955 CCNTfCL fNASE 9 PRIPARY a00Y SLh DAYS FFCt LAUll r,M- SSJ.4987G000 FRESEt-T S/C PASS- 1443.42710806 KG- EPHEMERIS ECCV -- EINCKE ---•LAYS FFCn •FOMF.i.AVAILAELE. +1.00000000- KM.• TARGET .00OV •-- EhCxf- - -•-

S/C 'FELATIVS e TATES X Y 2 MAGI•ITLCE 5t+ - tEfiITIC k S VELCGTTY .39t45591375t78E+t2. ..fi71497S50G3431E+01 .^27037:1314153E^C1 .4CE43^fy21?E22E+t2. J. ♦ - fAATi+ ;YST'I 104 -- •..4912716000:204E*CS --.8144029tISZ537Ef07- ­ 2 .45cC65iEllfi'^2f^0E VELCCITY -.1tSIS?289161ECE*CE -.27890922257515E*02 -.43703731314153E+01 .337631C98C8.2CEft2

E16CKE-- VCSIIIC /. 2aS62C&E7415E+ a_ VELV71TY .2C492571772t31E+C1 .19524S93306343F+01 .11403103982541f+Gi .305151k5J1`391ET01

S/C ACc v Lfc$TICNS. T Z _ - MACAITL.CE PFIPAGt OCCY- -. 22i'1653G57ACE-05 -.71266539745127£-05 -.19751LE8766427E-J5 .9E27zs 79371444E-CS PEA T UP EIFC ECLIES .t2S5544597SE4SE-09 14736CC507504CE-10 -.ti15812Z27¢F356E-10 .15280852621159E-09 11-aUST RACIAIICN cFEISUoE 0. 0. 0. 0. `/hr

vsaasaa+sass ssaaaaaa^aaassasaasa+aaaaa;+aaa+aas+asasa+aa TERMIMTCh DATA aa+ ++a+a+aasaa++as++aaaaaa++++aa++aaaaaasaaaaaa+aa+aaaaa

---FECL•E5TfC- STCFFSnS CON PITIOh-4 TEND ------_^ ------^__ ._.__ ACILAL 5ICFcIKC CCNCITZCF ; TEND

FLIGHT 17PE.r-934Sa7Cl0000nE+03 F FIFAL cIC ► ASS • 1443427 13f06CtE+04 ..._.._ .,___, ...... ,._ , ..._.

I - V) _ .X492571772821£#C1 FOT - .877500900E7192E+0' FCA .D90183G324895tE+C? --Y = -.57CS7eL(F869 r 2L4 g 3 •_ . VY ­ -.19524993206343E+01 ECR ,-- -.153b33503D2142E+03• . VCA _ .3051586531E392F+J1- - ^. _ 2 •' t2gb'774tC6S436F+'C2 V2 = .114021C3^E2541E+C1 UhP _ .305158653183E8E*01 ICA = .23S8872291Z53LE+C2 Q = .lCC: E?CO57415E* p 4 V .3C5158E511[391E+01 TSOI = .59345872954212EvA3 TRCA .55^500_5235871Ef33

C9$IC EEEKEt.TS A F INC , hCOE APS MA TA SIC TA CCFT CENI -.IG73EEF-09 .e296CEE+12 .Z396E7E+C2 .2t8481E+03 .232310E+02 -.43C243Eei3 ?2EfEE+t2

fTIT11tt11ffltff 11fT1T1ff T1+^11t1f fflf Tf111ftt1 fffflfil ♦ fltlffttff ftffl iTl+ iffTf ♦ t'fiftT(ftfff TTf/IIf•ff ♦ T Tf ff4If•f ftlffff ♦ TIt^f/ffT

.1/S/1IfIf 11f TIIff •I •I..fI f11-. J71 0 CURVEhl CF TI C1.710 y • ►'E • .^+11.F.^i11411A1 211 •I ♦ a.I:S t. ^...- ._._ ^ ^•'^ / { 2 gv { 80

3.2.2 GODSEP ,I The GODSEP sample case uses a targeted Encke flyby trajectory,

generated by TOPSEP, and performs a short error analysis over the

terminal mission phase near encounter. The run actually consists

of two cases, the first to create an STM file containing appropriate

state transition matrices and the second case performs the error

analysis.

The first page of output is a reproduction of the $TRAJ and

$GODSEP namelist used to create the STM file. Of particular interest

in $TRAJ are the variables MADE = 2 (for GODSEP), ISTMF = 1 (for STM

generation), and IAUGDC (for augmenting the basic spacecraft state

vector with ephemeris body state and thrust bias parameters). The

$GODSEP namelist specifies only one scheduling card along with the fl STM time span from launch + 543 days through encounter at L + 593.5

days. The scheduling card follows $GODSEP and is a dummy measurement i to create transition matrices at half day intervals.- i

The next page contains MAPSEP initialization print. This is fol-

lowed, on the next three and one-half pages, by the GODSEP 'initializa-

tion print and the standard TRAJ print blocks which are displayed during

the creation of the STM file. STM generation ends with the output of

the last STM record covering the next two and one-half pages. This ^a contains trajectory related data such as current (TCURR)-and previous

(TPAST) STD time points, and finally tho transition matrix (PHI) over

the interval TPAST to TCURR.

Next, the namelists $TRAJ and $GODSEP are shown For the subsequent rt error analysis using the previously generated STM file. With TSTMF = 2 in

$TRAJ, reference trajectory data is obtained from the STM file. $GODSEP _; I l i ! I ^

81-A

namelist for the second case specifies a spherical a-priori knowl-

edge covariance, one guidance event executing at Z + 567 days with

a half day delay time, and no measurement print. The total aug-

mented state con sists of 15 solve-for parameters (S/C state, thrust

biases and Encke ' s state) and nine consider parameters ( tracking

station location biases).

Four scheduling cards specify (1) simultaneous 2-way/3-way

doppler measurements twice per day from Goldstone and Madrid, (2)

2-way range once per day from Madrid, (3) 3-way range once per

day from Goldstone and Madrid, and (4) 'three simultaneous star

Encke angle measurements taken twice per day. F 1 Output from the error analysis run begins with MAFSER initial s ~ - ization print followed by four pages of GODSEt initialization

print, including the input a-priori covariance, a The first event printed is a low thrust guidance correction. r This begins with generation of required transition and sensitivity

matrices, as represented by TR.A,J print at 566.5 days (last effective

time of tracking to be used for guidance computations), 567 days

(beginning of guidance interval over which thrust control corrections

will be computed), 587 days (end of guidance interval and time of

nominal thrust shutdown.), and 59365 days (desired target time and F- time of nominal Encke encounter). After the TRAJ print, the -

sensitivity matrix of guidance cutoff state with respect to thrust

control parameters is shown.

The knowledge (estimation error) covariance is printed at guidance M

JEd i ,i

81-B x

initiation. Since the Encke ephemeris is part of the augmented

state, the Encke relative S/C knowledge covariance is also displayed.

After the knowledge covariance, the control (actual error) covariance

is shown in analgous fashion.

After the knowledge and control covariances, VMAT and SMAT

are printed. These are sensitivity matrices of target parameters

WRT guidance initiation state and target parameters WRT thrust con-

trol parameters, respectively. VMAT, SMAT and BURNP (S/C mass and

thrust acceleration magnitude at guidance start and end) are also

provided on punched cards to be used in subsequent GODSEP runs in

order to minimize computational time (See $GEVENT in Section 2,3.3).

Guidance corrections are computed next. The reader is referred

to Section 6.6 of the Analytic Manual to better understand the actual €i guidance computation logic. The giiidance cycle uses the various

sensitivity matrices, thrust control constraints, and control and 4 ,: r target weighting in ultimately computing a "final" set of control a . is corrections. Included is the additional propellant needed to execute

these corrections, in this ease .8677 Kg. The GAMMA matrix is the

final guidance matrix of control corrections WRT guidance initiation

state error.

Finally, the guidance event ends with 'a display of the new

control covariance, which assumes all guidance corrections have 6 occurred, and the projected target dispersions before and after guid-

ance initiation.

^, ) The next event printed is a "thrust" event which is the same as

a: ^; '^- an "eigenvector" event at the time of a nominal change in thrust ^'

low- 81-C

control policy or a change in the number of operating thrusters.

In this case, both control policy and number of thrusters have i been changed. The information printed is a standard TRAJ print followed by eigenvalues, eigenveetors and covariances of the helio-

centric state and of the S/C relative state (WRT Encke).

A measurement event is printed for a star-planet angle

observation with three stars The TRAJ print is followed by

the knowledge covariance before measurement processing_. Navigation

related matrices are output which include the observation matrix

of augmented state WRT the measurement (three star-planet angles f taken simultaneously) and the filter gain matrix. The knowledge

'j covariance is then printed after the measurement(s) have been

processed.

The final event shown is a "zero burn" guidance event. This

occurs automatically (if a previous guidance event has been executed)

at termination time (TFINAL 570 days in $GODSEP) to display the

final knowledgeand control covariances.

For this,GODSEP run, the contents of the SUMARY file are -i :printed.. Results of every measurement (before and after processing)

are displayed and include measurement time and code, RSS S/C

position and velocity, and the standard deviations of the knowl-

edge covariances for both S/C state and augmented solve-for para-

meters. Y The user should read pages 31-54 on output control for a better

understanding of GODSEP flexibility in termsof printout. sI

3 law;-

li

0 tv ^Vt

PSTRAJ ENGINE a 21-6S# 0.659 21.6So EkSINE(II) a 0.649 9 39 109 TP 109 TLNCN a 24439S6.654789 GO THRUST (D 9.9 64.9 8*0.7 I.r 140.9 1-0 68.19 224.6,5*0.9 1.9 230. p 1-9 7S.w 252.9 500.9 1.# 470.9 1.9 8S.3349 269.ffi'500.9 I.* 52S.o 1.9 120.5019 268.7429 S*0.9 I.* S&?.t 1-3SS9 129.6743. 272.20929 2400.9 6.9 2*0*9 Ito 577 * v 1.9 ISO.649 80.9 Z*0 * 9 7.9 200.9: 1.9 56T.9 1.0 156.88149 78,.62279 2 400.9 Tot 2*0*9 9.9 800.9 600.0 IAUGDC=3*l p - - 00 ICOOPD a 09 ------TSTART a 543., TEND 593.5i NLP = Go 157OP 10 MODE 29 IPHINTxSv SCMASS , s 101.35889 5TATE a 1-94838095S494E$v 8-40846535668802ET# 3.14215402068406TE?9-.--, -22.404272ST125379 8.18889S92239259, -00143401542li9l3$9 ISTMF w It S END TRAJ ENCKE FLYBY APP^OACH PHASE-.----.---

SGODSEP USCHED-19 TCURRs543.9 TFINALw593.5v SEND GODSEP

5S3 0 593.5 .5 1001

'Ts+iis`iTiiii. +-s is^.iiiii7iY sii sTiii- -f^s^iiiJY -its ^ea+iis.ia.ia^+ iisi iii ii+^^iii+iiii+++s f+ss•-Ts+^Z + Tiii+Tii Z-^i^YiY7^iii-- ►► ► ► ►► TRAJECTORY ZNITZALIZATION► ►► ► ► ► ♦ •+++ ► ++•s ► . ►► .:++ss ►► a ► . ► ss ►►+s.•ssia ► ++^i+ss ► +. ► ss s..•s+. ►► +.+ssi^s^issiiwiss+•.•+a+••s+++s+s+^ssss ►s+^+vis+ss+++s+^++^+a

i I►.ITIAL EPOCH IPEFERi:NCE DATE) JLLIAh DATE 2443956.6547800304 C1LENCLR ' CFTE- ^1.579' MAR -_- 24 ; .-`- 3 HR -- 4Z' hTN 'SZ: 952 D SECS T -- TPAJECTCRY STAFF EPCCP 543.0300000030 -GAYS $FIER TNc IhITZ1L EPOCH JLLTAN DATE .... 2444459.6547870.04 - CALEI.CAR DATE.... iS^_O SEP 17 3 HR 42 MIN 52.3930 SECS - TPAJECTCRY END EPOCH 493.5^00000uGO LAYS AFTER THE INITIAL EPOCH JLLTAN DATE . 244455G.1547830004 C'ILEKEAR OIFTE :: -i480 NOV - _ 6 --15 HR'42 MIN 52:59"0-SECS

_....INITIAL STATE___._. VECT OR AT 543.0030000000X__ ..... DAYS_ AFTER THE REFERENCE EPOCH --_.Z Y- .._^ --°- -'MAGNITL'OE ---Si^=- FCSITICN .154o380E554940E+OS .d 4J84E535668b0E+08 .3142154020684'iE+08 .2145Z138)35275c+CS VELOCITY .c24G427c871254Et02 SZd88S59223926E+01 .14344234276914E-01 .i33535L347:^4TE+Q I `SEFS N6S5' °- 155i.35cACG0000`KG ---.- ___ EXFAoST.VELCC.I'TY 29.4.1b0004.000 KM/SEC ELECTRIG PCWE D GT 1 A. U. 2:.E500vjZOJO KW 00 `TFFUSTcii EFFICIENCY '°-"---'^"'" .c40000000C W RACIATICE FrESSLRE LOEFFICIENT 1.Q000CC0000 ---UST CF GRAVITLTING Son TE''S "- ' SLN EAPTH Ef•rKF I ► TARGET FLANET IS E*!CKE d d .'Q5u0_..___^._._ _ _ . ,.- _-. __. ... ` INTEGkATION-STEF C?,CTOR' ..e^ REFEVEACE TµRUSI CONTROLS THFLST-- THRUST FHASE-THRUST' PHASE'"`THRUST PHASE 'THRUST FF! SE -THRUSTPHASE-`THRUST PHASE `NUMFER' --- PHASE ENu TIr,E THRCTTLING CCNE ANGLE CLOCK ANLLE CONE RATE CLOCK kATE OF AUPEEP (DAY) (GEG) (DEG) (L'EG/SEC) WE SEC) TMkUSTERS I "o4.C1CC 17 0..000059-'-•'C.0000;;a a.G00000 0.0:G60J 0 00030u: --0,00006 2 140.0 "^.: 1:3G:OJu EB.I000CC 224.60CLCO G.0G000u 0.000000 0.0JJ0G-0 0 b 3 13C.01GC3C_ 1.3C0000 75.CJ0000 254.000000 G. 000000 O.000C4G 0.0G7GGJ 4 -- "'470.C3C - OG - 1:0LOCG0 65..:34000 265.0aGS30, - `0.000CGG'' G•.0G0000' C:'00J^0C ^, 5 .25.C.CJOJ 1.000CGa 120.Su1u00 268.742 00 0.000466 0.0Cu004 O.JYUYGO 6 507.GJOC2d 1.,Ji5JOC .- _ _ 1Z9.E743C0 272.2:Si00 G.D..J063 6.CG0oui 6.003009 -7-'-'S77..3.,.C_C--^1'.OG0000 i'v.E460G0'--"80.OYQ.00 0:^0000 6GDO-T.0G03`C3-- iaA;I- 8 587.000dtO' S.u0000J IS6.8d14CO 78.022700 0.000000 0.000000 7.000060 - 9 C.000000 0.000000 0.00[600 0.000000 0.000000` 0.300Y60

80CY FARAMETE o S AND Oken AL,ELEHENTS NAVE EEEN • REAC-IN FOR ENGKE AT JULIAN DATE.... 2444586.004000050000 PL A NET PACIU5 .5CC00CGCu,000c+03 KM SPFEREi - ^.ICCIuzJ7G0 0uEa0i-RM GL.W'T GRAVITATIONAL CGNSTANT .1LCCG000CC0QE-06.KM••J/SEC••2 SEKI-!'AJOR AXIS .33180a12670E+0S KM d. KN'/JC -»ECCEhTRSCTTY:QtiTGLDt000C7E+00_ _ _Q. 1.0/JC ' I INCLIPATICA .119505CzOODGE+02 OCG 0. AEG/JC ASCENCThG hOUE .3242LJ0000GYE+03 DIG 0._ DEG/JC IfE"- . .c YEG/J REAR AhCKALY 0. OEU 0. OEG/JC JOB NO RUN DATE 08130/74 *of f -t7tt/!i'r^r sirr ^r ss^ss v go ro rtsilrof* wr y rs 0r0 rr 0 *wow s9orrsorsrr***sf rr/rryos **off* ow ^rrir a.rrr rr rr rr^rrr^^•

SCM::CULEO'TRAJ4CTORY TIME 543.0000 CAYS `QTY FILE--TR'A JEC'TU'KY-TIME-'-543: eJGO' "CAYS -

—""REASOFEMF&T-At:O"_^.PATATICK EVENT SCHECULE-

" `FFCN'-553 i1u3Cu "PAYSZD--'353:50uII0-IIAYS-"TN'IKCREMENTS'DP :T^OG^i IIAYS"^ •-CODE-TIO:-`T^QS ^^

------_ EIGEb`YEC I0R EVENTS ` °-----• ------

3 TPRUST EVENTS CD EVENTTTNE IOAYS!' --- .TYPE'-'_ -_-_ _- --•------— ..-...—__.._ _.__..._ ------°- --

3 567.0)0 0 ^ 587.070 C

R GUIDANCE EVENTS

0_ - PRr. DICT ION EVENTS

CLARENT AUK SEGMFNT CR F ATLS STM FILE ------__— ------

—JULIAN GATE ----"'E ` "` "—FRIYARY HQT1'= SCN 4 y DAYS FROM LAUNCH- 543.CGaC;a0C PRESENT S/C KASS- 155i.o5880000 KG EPHEMERIS SEDY -- VNCKE GAYS FACM CUTCFF- 50.534,•COCG FOWER AV ASLAELE-- 1 1.75187639 KM TA RGET BODY -- v.NCK E

S/C PELATIvE STATES % Y 2 hAGKITUD_ SUN FCSI'TTCN .lS4833j955494UE+,G9 .84vd4E535k68J0E#08 .3142154020fb49E148 ..214S21:6735275E-09 VELCCIT1f =.'22404272871254E+;2 " .81888959223926E+G1' -.14340334ZT6914E-:r1 :c ESSS23yt1C47Et:7^

EARTH FCSTTICN 45211334980722t*06 .46721Cf3229414E.48 .3142154024E64yEr08 .113036L11273S7E4C9 -" - "VETOCITY`i' 24a1$351194949Ei-dz :2134979314'8540E+DZ ._--.1434G32427f9I4EirG TZS7g^a^Z ---

ENCKE PC:ITICN -.127TJ75c6e7805E+08 -.613395t821112ZE+C7 i9447/A94S:211£ai8 ^"' VELCGITY"- . 4a 15^3E675 ^ 0u 6F^G1`"'^ . 4Gi1Li436 : 6Z13E^D1'""—'iE60165o59v336E`4DI'—`6152i'2o11^i:73CFsp2"— ^ S/C ACCELERATICNS x Y 2 NAGNITUCE P^TNARY- ECC -"FET9i7iEE2E572E=Z 5-- =.SI71TS5998EG437F- D5""4224n49' - ^ ^----- PERIURelti6 BOGIES -.4039854316444&L-10_ -.2S8425Z6435659E-10 -.67784978TWO1E-11 .46!533172243S%E-a0 104UST -.1c1477896le634E-46 -.6963710131725SE-06 - -•S4l715546S9l91E-47 .44e612T903/559E=26 _-RADTA TIEN FICMIURL U. U. W. JULIAN CATL- 2444499.6547E000 CONIRCL FHASE -- b PRIMARY 1300Y-- SLn " DAYS FFCY L.U,. r H : 543.00007000 PRESENT 5/C MASS- 1^51.3588CG{0 KG EPHLMERIS BCCY -• FnCKE' - --' DAYS FFCM G(11CFF- 50.500u0000 FUWER AVAILABLE-- 11.751d7639 KW TARGET BOOM -- EfIOKE

% . 7 . _.....SIC "RELATIVE STATESV^"^-^.. -.. Y ---- _ --HA3RITLCc`-_, SGN GCSIIICq .194828".9554940L+G9 .84..84E535c6804t+a8 ,J142154043i849L+u6 .214521.37!5;75£+39 VELOCITY -.2442427[871264E+dZ .di888S592z39z6E+0L -.14340334276914£-:1 e3d53923+71:471+02

it EART1• FCSITICf1 .45cll3349eG722E+CS .9e721Ce32194i4c+08 .314215%020Ed44c+:8 .113C3e411u 397.+u7 VELOCITY -.,e48:d341159949E+G2 - -.2!3497S314854CE ♦ u2 -.143403?4t7i914E-.1 .32737P.377 c75c•4i

E%CKE FCSITICN -.1=9601E0263432E+G8 -.1[.707526)I605E+08 -.61339568211122E+37 .19447T 945:111E+6! VELOCITY .44158::E675000bL.u1 .4C1142538.;6213t+01 .ICE51656594336E+G1 .•i1:25.3114.7yoc•O1

SIC ACCELERATIONS X Y 2 MAGt•ITLL'^ po lr.A?Y OC r,Y - =.21192316626572E-05 -.113035998-:0433E-05 -.42240349746370E-G6 .261383c4924141E-05 PERTURLING SOCIES -` - =.7u?99533i64441F-1Ti --=. Z:o425Zc435854E-1'0'^.87784978Td8731z-il: -" .:GE53C1722:354E-13 "-- Tn°U:.T -.121,j/74'018634L-C6 -.42fi3710:3d7255E-..6 -.54871554654891E-.7 .44t011793^1^55[-i8 2 AuIGTICN FBL."'U P E C. G. 0. ^.

JULIAN CA1E -- 2444',14.419%8499 CONTCCL FHASL -- F, PIItARY BOUY -- SLN JAYS F6CM LAIJAGH- 557.7(-5.3499 FRESEAT S/C MASS- 151d.ldc93029 KG EPHEMERIS MY -- F6CKE CAYS FFCM CLTCFF- 35.734:5501 FOWEF GVAILAeLf-- 14.37392785 KW TARGET BODY -- ENCKt

SIC RELATIVE STATES % Y Z tA..NITUCi 00 :G to FC_TT Tr.N .1£S y'C577S:8027L+C9 .5 Zoo444C dt 0458E+08 - .3C97C574i35165iEr o -' -.15122435282[: EE+^9 _ 11t VELOCITY -.cE1d43481915E6L+.2 .57598S456t6d'o5F+,.1 -`.7320o9:J4909t7F+:a .ictzJ37:414:a1E+:2

EARTH PCSITICY .I551S5451537131E+C8' ""'.b9;7c7910::5579E•GB "-- .3097 6574b5lbFilL +0 8 .761722EZ67Zd:yF•:8 4ELOGITY ->.21 9945067 y 105t+J2 -.235b32o2041286E+02 -.73208910492917L+00 .31o3SIC044S4.l1+32

',ENCWE PC5IT7CN"-*'--'-" -. 3 7541729i78553E + C7_ -"` + "= ,744245595 ' 7 1.59Eiu7--"--= :4CO441934l6719E + u7 .1219o25bic.iuZE+=6 j VE,GCITY .Z7C29?E3822216E+Q1 .34.7y231a1d838t`+01 .l54G2lf471t,836L+:l .Si75_594CF4; Si+:1 S/C ACLELFkZTIC17S - % Y Z MAGI:ITLCC ?G IMAR7 :• rCY - 31Luvrd820572'7(-05 -.177224072(47b5c-45 -558565078707636£-.o .SL 2692'.3va 1s'Ic-5`_ F£^T)d IBC ?BLIPS -.31c876COG4IIIIE-1G -.j^18d30308:3.)a2E-10 . 616C078a2b937t-10 .7va1S2715u'ait-1: TNr 7JCT -.514'.95b391!748E-G7 -.545643S4213297E-C6 "` -.74116594448504E-Z7 .a591555531:1SbE-:E "- v.ADIATICH FRESSUOE •Iffi••Iif•1^•fiiif iif••fff•ffiff••^•ifii^• ♦••• i•i•i•••i•••ii i+i i•iiiifi••iiii i••fi ••i•iii+iii/i^•^•sil a i ii•i • 111.111. 11 •iii+ffii •• ^ M , - ► ------'------•------.------.------.------.-----

. if•i CCntRCI. Pt• FSL CHANGE if'i o i JLLIA•l C A 171 -- 2444d43.t5 t.7c3;0 ;UNTPCL FHASE -- 7 PRIMARY OCLY - SGN i LAYS FFCt' LAUNCH- 56 7.CC'uGGGO PRESENT S/C PASS- 1 1.93.44521a17 ECG cF.ItH_R1S 6COY - _A;.SE 71 5A"Ya' FROM GUTCFF- 21:.53 L. COL FOWc-F AVAILABLE-- .16.07711523' KW LARGET..30uY -- r:ACnE

THRUST FHACF THRUST PHASE THFUST FHASE THRUST PHASE THRUST PHASL THRUST PHASt ~^ DCRAT IC:i THROT TLIAG CCFt ANGLE CLOCK ANGLE " CONL RATE CLOCK RATE WAY 51 (DEG) (UE6) (CEG/SEC) (CEG/SEC) ^J _ 10...3.0001 1.0:030.00 15G.64C.0000 80.015003000 C.00ti0000C 0.00000-000 _ P-1 S/C KELATIJE STATES R Y 2 MAG1,11LCE SLN PcL :7IL4 .1419557oJ2314€F+13S .9fid79267oe2G73E+4d .cC1576512122i7f+C8 .114y9vi5'0 ';iE+.Y " 'VELCCITY -.2P.8966C2L72fi74C+C2'- --"" .3E2 y aE481C5232E+01 -.1329b282774445E+C1 "-`--' .251540ZZ67j357E+ZZ

FAR IM' ' FC:.ITTCN -.654622753238b8E+C5 SC'/50F327'_1704E+08 .36157651202297E+08 .59C34510171LlEE+e8 ''YFL^CI7Y'. =X15209941524488£+02' =.24593818820776E+02` -.13296ii1277L445L+^2'-'-' .91 i35:.7571:33E+C2

~ EhCK£ FCSITTCN _- .589198G0b84RC5t+ 7 -:5125178C973935E•07 -.28462304477i53t+07 d328y27^2b71 4E+C7 VELOCITY '"" .34224211451836E+C1`- ":2E835239037414EaG: 1448G813Ty597CEsT1---Yi32635197I4c..ci^I-+

SIC ALLELERATICNS K Y 7 hAGNIILLE PFTY.A?Y BC7Y' -.1S464F.731908JiE- -.24L0161L911728E-05 -.753426.475246ZE-06 +"`-',4_59:2 °3:75.pGc-.S^" FERTuk21hC 9CCIES •170bZ529316056t-SO -.1051225672S169E-39 -.59146257081009E-10 .SZ18Z315aiii2fE-4y THRUST 473d57464V%581E-06 37 2d7901 o69504t u7 -.113936931 49d83E -C 6 ,48587937137972E-0E _ ItAGI'ATf N C7fc'E^URE U. '^ - _ -.-- -- -`------•------F

------_ _ _. ------^------+ y;

t JULTAh CATL - 2444525.99x14107 CONT6:0L FHASE -- 7 PRItARY uODY -- SLN - DAYS:FFCF LUNCH- -" "`"569.3393FI98 "" `-'FRESENT E/4 PASS- 14hE.357194S3 K6 EPHLMERTS OCGY -- ENCKE DAYS FRC14 CUJCPF- 2M.1bJ6_692 FOMEh AVAILAELE-- 17.37079368 KM TARGET OODY - ElCKE

S/C RELATIVE STATES`" — x Y 2 MAGNITUC- SLn FC'ITICN .13cJ32.E.4ZEZ18L+.9 .97b52ctu12S938t+u8 .29d74794u48977C+C8 .17 CC3y.a97r838E+t5 VELOCITY -.Z572314E322967E+C2 .311G7E77227759E+01 - .151184v5s540G3 +01 .2452sa519C7c.Sc•:2

' EAATH FCiITI;N -.3525yt15275o17E•77 .4.76651758Y63EE+u8 .258707S4U4b977E•Cd -54792J_ca5257^E+t-0 ' VELOCITY -.1do952882495o7F+J2 -.247ldG67ua49o8E•u2 -.151J34J9354UCJE+vl .S11S2CZ3c27EdaE+Oc ENCKE PCEITICN -.5c1642t522E779c+C7 -.4609129-23410i+07 -.2ECb554E392688E+v7 ^.74.22 c5357E15E.+t7 r^ YELCCTYY .32c15219129789E+ 1 .253428E272^525E+01 .141767445885cvE+41 •43E6Y1Z7d8:1661+v"1

5/6 AC,ELF+ATICNS X f Y Z MaGhITC.:_ - P:IrL-Y F. CZV -. L72C fy6ua3viE-05 -.2E2325f3EiCd17E-D5 -.oCE323siCv2dybE-O5 .4«55S:d0C .^77c-CS PF % TCRI,IN6 RCCIES -.72E855S67SS515F-11 -.7sZ72,859528Z3E-1'u .1355ctiEZ.'.v^5:=-t5 T, 2 oL T -.49.7ST33i411c6E-06 --5.234E3492E934E-67 -.1243WJ87o939.E-G6 .507diS.33737x7E-.'E ` ?AOIATIC^. FRF.STU^E C. 0. ]. J. •••••rr^r.. n •:^•rrs• ^.••••^^^..••••k^r^er•••r••• ^•^•••••.r^•^••+•^•••.•.•••a••••r••• r• ••^^••..••••^••^.r•••^..•+•^.••e••••^r•.••^^•.•••--'------. ----.. ------.------. ------i r•w• CCNTRCL PHASL CHANGE r•*• --'•-

JL.LIAN CAT; -- 2444523.E547E00C CONTFCL FHASE -- 8 PRIPARY DOUY -- SL% aAY ,.'FFCF"L^WCF{- - S77.ir:C;9C0' - - FPESE p T S/C VASS- 1471.:o3CD75b KG EPHaMERIS ECCY -=`ENCKE vtiYS FACM CUTCFF- 1c-5G C"_COG FOWrF AVAILAELE-- 2u.u2797695 KW TARutT 830Y -- ENCKE

- ° " " ° ""' TsFCS7 Fn4:= THRUST PHASE THFCST PHASE THRUST PHASc THRUST PHASE THRUST PHASE Cb DUKA(ION THROTTLING CChL-ANGLE CLOCK ANGLE CONE RAIE CLCCK RATE (LAY',) (uau) luEG) ICEG/SEW ICEG/SEC.! " IG.007000C'u S.00DCOOJu " "156.8814000O 78.0227DOOu --- 0.000CCO39 O.DODLODOC

S/,5 k LATIVE STATES :K Y 2 M:AGRITU.. S1N PC:ITTCN .I14 4C:39QE758Ea:9 '" .5ts9i975584y4O1E+G8 "" J .ZfE51477b2.F.6E+^8__-..-_ --._ .1°477s :1EL^:ct • CS _ VE-C:IT( -.J[6i:34:r;277sc•.c .103561/U173518L+01 -.[ZJ05do5509G.2c+Gi .321417:: 'iiZCE+`C2 1 µ._.-^ EAFTr4 FL.:TIC 1{ -.:E:69Y7o364T1 E+CE .ZS261Z4GE57272E+08' "`" .2oE5:47792CSJoc+Jd' - -- `"°.44k29.1:i3+:iFc4E5 VELC.ITY -.vZ214;485I63:E•2 -.1517951598a374ctul -.ccJ.hdkv55d.bZ^+A1 .11:d2.7o5c,Tlc+tF

iNrieF PC;ITISt1 -r3223517Ef6.514E ► G7 -.ttB98E239.15i6fiE+u7 -.17035429760371E+117 `"'" •47222LLS1fi31nZE+i7 -"" VELOCITY .2728036917.6535E+01 .234852dO5E8867E+u1 .13085334o524m.E+01 .3e2al47448286EE+01 w_ -_- _._^_.. - S/C lC%ELFFATICN5 _ - R - Y _ Z NSGNTTUCF - Pi7 3 A rI f ECSY -.4136v54.114137t-05 -.354Y04:65CE568E-0t, -.102696 412 5.149E-05 =.=vSCzPI+4=3.fc-i5 PE?T+.r.SIAG EGCL .LL?577447: 75T3c-10 -.14L847c7E(5)sGE-09 -.1254.60w917t59L-:,9 Lab9327oauv.r_- 9 T„re'.1.T -.a4AC523C111285E-C6 .177051575451'75E-C6 :4641-5_5u3Z2J6F-UG iA:IATI {'H F^EJ?E C. D.

s JULIAN'CATE -- 7444535.6"v7.8E5.5 CCNTACL FHASE -- 8 -' PRIMARY BOUT -- SL.Y. DAYS FFCP L40LH- V/d.y231a.S15" FRLSENI S/C VASS- s465.0082.9ZCO KG EI'hEIERIS ECOY - LNCKE GAYS E.CA W CFF- 14.54W as FONER AVAILACLE-- 2..80o4hGo0 KW TARGET 300Y -- hCKE

ifG PEL$Tlv_r STATES K Y Z YASNITLC= S PC +ITTC4 "z8"t27_E8E15y3E+C5 _.« ._.. .,i •_-" .4.9t0u093vy5h44E+J8 .262o30e0u95T99E+J8 .ia^5y4I93:774ic+u9 - 'YELCZI7Y - "^ ^ y o3454430bEE43BF+42"_" - `.=8149b^30E3193Ei00'-' -. 4v55u78G xJt952C+^1`"- .33:429'c1.55'5'0821£^OF`+``--x:25345 4 79 2:2.'75E+' -.24 055 0 7 8 0 98952E`+cr- -7li6u5 2667761E+D2 EhCKE PCSITSCN -.27E484P9G12542C+U7 -.25Sd97002^976EE+L7 -.14853c1912T159E•G7 .4vd853 x5Li134_+G7. 4 - VELCCTTY .Z:54377Z462434c•CS " +^2B4^5E5041.63i+Di .127703161$0-602E+`vl :3Et^113335i71TC"•II1 a S/C ACCELE F ATICNS x Y 2 MAW, ITUCE PPTNA^'Y LCCY y -.rc`E7a`773*iI764.3L-45 -.3E;duE7N792701E'-05 -.109d24870u626E-05 .585i831II7EJ23cE TiS PEPTUKEING CCPII;3 .46370322755729E-10 -.15411014339716C-09 .223857.00SOiOtIE-09 1MOt1:f -.SEu459Jd3724471-0E -.ay134ib75ydi17E-06 -.15b11di94a871E't-06 .b17951992C4r71E-DE FACIATICH FOESSURE...3^_ ♦ •!+♦.•.•• ♦•• 3. :- ease • r*••+•. P.•f••7'7f•• o7•-r• •oi r*l#q*f#g00tt('1Nvolloo veto •1f gqvv#we g o 00040 60+ n • n ^ nn .^YSU nn t= ------I, Xsr" ^••• CCYTPCL PHASE CHANGE ••^•

JULIAN CAT=` -- 2444543.6547EOGG CONTFCL PHASE -- 9 PRIVARY BODY -+ SUN DAYS FI-CP LAUlCH- 5bl- GJ6;JJ0 -FRESFRT S/C PASS- 1443.42143ui5 KG EPHEHERLS UCOY -- EACKL DAYS FFCN CUICFF- 6.50CL0000 PONLR AVAILAELF-- 21.00000000 KW TARGET BODY •- E1.CKE

' THOUS ► PHASE THRUST FHASE THRUST PHASE THRUST PHASE THRUST PHASE THRUST PHASE -OLA ATIGh IHFQETtIFG_ CCNE ANGLE CLCCK ANGLE LONF FATE CLCCK RATE ( p AYS> (UEG) IOEG) (UEG/SECI IDE"SEC) ' 21f.04000J4G 0.00000000 O.00EG000O O.OJG00000 L.00006440 .,.DJ000OCO

--_ S/C RELATTUE'STATES ._.._ X _ -,-.__.^.. Y - ---- $LN FCSITICN .b53592?8621?IaE#Ca .2E278418682948E*Ca .13i7E773a52111E•,;5 VELOCITY -.s7319353t,93670E•u2 -.2599926M 9413E•01 -.343696u59o3a256+i71 .37Z677Lo674 6:,E+0Z

EARTH PCSITICN -.3lb3S615143612L+J8 .7C5211271L930ZE#07 . 2E25b47d68c94dL*0a . 41d6d9C906b1E-c•C6 VEL{CITY -.14c3141856E213F.+02 - -.2E4J17563132o7EfG Z' -.34:696u55638254+61 .32cc^2Z4931c43£00Z

Et.CKE FCJITICN -.11E4164567SSf5c*77 -.11u845%62t3310E+G7 -.o42494 G75Z5990E*C6 .1T?11272oy:E7E^•OT f VELOCITY .20a2345876J71/c•01 .2C012V18c522oEcu1 __. .114o99517346t12c.C1. .31=751a7o6..y63E+0: S/C ACCELERATICNS X Y Z - '- - NAGAITUCE PPIFARY E-CCY- -.48404976353tl61E-05 -.55710220253654E-L5 -.148904d4766889L-05 .752das56a17845_- 8 ` 'PEPTUR`P_7NG 9GFT_5' --" ."°- '.16„599d1574059E-C9 -.50JJ65746i37Z1E-10'"'" -.14435E5Z876122E-G9" - .ZZ3b5a16735CSEP-C9 - t FORUST L. ^. 0.. C. RADIATICN P C__URF . _. Q C. 0. 0. 0. TCURF ^' TcLSI 59s.L@JG ►;ac3, 0 kTPHAS AQE o T C)c .12951375E-49 .14737696E-10 -.1553734E-10 .12951374E-G9 .14737691E-Iu •-.8153375EE-10 .15427440E-io .46E6C2b4E-17 .16563553E-17

G. J. 0. CPPIC -.52.2.1.761E-05 -.7e2e23S1E-05 -.157b4773E-0i t YlS .14434214F#04 FFACC -0. Tt. FACC 0. 0. 0.

.IC532526E+09 .10372123E+04 0,. ' -- .. ..^.. E3715504F+U8

3 0.` C.

I' G• ^• G. -.Z1327307Ee-._ .ZII7S478Ep42 a. E -.41895436E•OZ: -.d6683590Ec11 -,55109053E+01 0. 0.

„ G. r.. C. f e 0 • o• 0. J. 0.

r i

LTRUE ...... - ;-G3TA6393E#a8 95572631EI, 'a .24CA7260E+C MOE -.3i84/264E#,;t. -:6716,72SE-;l -.43740SCEM LTSUER I174JkC6k+O9 VTPIJLK ' .4364495U#02 bFCWEF .21305000k#02

5137EZ D 6'--. 26 36Z5;95'-; JF--. 16570613E- 06- .2544 .412E-G61 -.S1S4s8J2L-Qfi .6927467PE-07 -.70475594E-01 -.2469292GE-98 .23833570r--06 ---CTSAVF --55115137E-06 -.e63625U9E-06 ; -AbS?Q6I3E-C6 .2 15443Rl2r.-06 -.57548ME-36 .6927467EE-07 7 0 4 7 55 94 E - a 7 2 46 9 2 9 2 0 E- a a 2 3 6 3 3 5 10 E- 4 6 .9S9993?OE*QG .99359937E-04 .251596ebE-04 -.34846056L-09 -465057^ZE-05 0. .993ID9937E-*04 .100OCT12E+Ci .36922biU-04 Q . .465CO752r--45 .339M.87E-08 I7JS9f26L-G8 - 0. 0. U. a Z51596f6E-C4 .36822653E-04 SS993SILE400 iI7,473S2F--G8 :17499ME-JS -.3Q4va662-7-48 C. 6. -A-320011DE445 ------V. L . .999991z5etoo :10151.78?E-13 .2ssssas?E-04 0. U.. C. U. X32COUGUEM, .1ultp4fGft-uj lu JQ u i 445-itt- CA OD 0. .-Q3cQoQ.Gr-*Gs C. C. G. C. U. 0: 0: 0. I 0: Id 3 j a Door.4-0 I 0

-.7S9241loE-16 -.31165928,-16 0. 0. .99-j9-j:!7EE#GQ .99C46920E-04 Z5111459E-04 -.3468433AL-09 .46430966E-08 ..A7.56487E-06 455576'. g E-15 ------^-.5ie627ti7E- 16 -'-- '-.i3769El7E-i5 ----; .37i69928E-16 -35I7I6J6E-L6---.3dC-38C.31E-1? :9904692CE:94 -:JibQOTZ9E*,QI 367i6CUL:641 ' :4.1.43L9W-08 ':33905944E-48 0:17375966E-06 26346634E IS 2376961?E- S :21266527E IS .25111459E-C% .3672EME-kA .99993535t+oo IM1644YE-05 .17475566E-06 -.344415IIE-46 0. 0. -.345256??E-11 -.IttQSZbS3E-U --:.5bS786LSE-12 .14949126;^.+24 .10153485c-03 .2559ulUE-04 0. C. -.LU52853c.-Il .151947jft.-Il -.16797460c.-12 4. 0. 0. U. -.1 I'a BIT 3j-4737T73E-CZfk-- 0. 3. 0. -.56s?8fiI5z-Iz -.1679746DE-12 :I1,ZU94,E-Ii 0. 0. 4. 0. * 0. .4320aC6JE*05

r

if1^•t••iii.•ii• .i •. i.• .44V w .• .....•.•.•• .•• a 0 0•0•0..•••4 •..••.•.•l ♦ ••♦ • ► ► ► ► ►►►► • ►►► i• ►1,0400•0►04r" 4 a 00404 a 40 s 4064440444049444 TRAJECTORY INITIALI2ATION •4^•s•.^^••s..••••..•.•4•..•.1••.....'s s.....•s•.•••s•..••.•s ••.6....•s•••s•4•• 6 4• s4444 •s^4••s 644 N49 •. ► ► ► ► ► ► ►► ►• ► ►•s44•s••4••►►►►► • 1 INITIAL EFCCH (REFEp ENCE OATS) - JLLTAA OATS 2443956.6547100004 --!" CALENCAR DATE. `- 1979 MAR- ' 24 3 HE 42 -MIN 52.9520 SECS "------TRAJE/.TC o Y START EPOCH 543.00000OJGOd GAYS AFTER THE INITIAL EPOCH JLLIA< OATE . 2444459.E547e00004 CALESCAO UATE 1590 SiP 17 3 HR 42 MIN 52. y 520 SECS TRAJECTCRY -E10 FP IJC'F 593.5003006004; DAYS AFTfw ThE INITIAL EPCCrI JL6TA?. OAT? 2444550.15478JOu04 - " - --'C/LEKCAR CATE'. .. 1580 NCV 6 15 HR 42 MIN 5Z.9920'SECS' - - -° INITIAL STATE VECTOR AT 543.0000006000 DAYS AFTER THL . _ __- --l- - I - __.- 'REFERENCEY EPOCH PCSITTCN .lS4d3P09S54940t+09 .840d4E5a5f68b0E+08 .5142154C2L6d49E+08 .21+5,13e7!5275E+C9 VELCCITY -.22404z728712'.4E+0Z .al8e8S5922492fiE+01 .14340334276914E-01 .Z3d5Qi234?iO47E+02 - SEPS ►rAcS_ __-- I551:`35a5aC9000_KG -- _ EithAU.T uELtr,ITr 2'a.41d000JGGC KH/SEC ELEZTRIC FCi.cS AT 1 A. U. 21.E503Z0000C KW THRUSTER EFFICIENCY FACIAT:Ck F QESSLRE COLFFICIENT 1.0000040000 N ---.___ --^ LIST'TSF ` CR /VITATING ECOIES SL N c/^IH EFCKC -. TARGET PLANET IS ENCKE- TFtTEGPATICh STEP FACTC7Z - L5ai0 ------_ -. QEFERtNi= Tilr JST CG6TvOL'S THRUST 1 HRUST FHA ;E" T+ARUST PHASE"- THRUST PHASE -THRUST PPAS ="`THRUST FHASE -THRUST PHASE - NUMFER "- PhASE END TIME THkOTTLIPG CONE AN4LE CLOCK ANGLE CONE RATE CLOCK RATE OF AUPBER (GAY) (CEG) (DEG) (DEG/SEC) (OEG/SEC) THRUSTERS 1 64.4?D030"'^ G.?C-OD00 ^- '"O.LC7000' -_ "0.000007 O.OJG"uGD' 0.000GC0' O^000.07 - ^, - 2 140.;.JOC.t- 1.0L.000J EA.1D000J 224.610005 C.030r.00 0.200301 0:.003x00 3 2;0.008Ca0 I.0 CC30 i5 .Cy0D00 252.00GIO. G.GLGLGO 0.000000 0.050.100 <4 47;.G33]"-" 'U 1.000000 85.3340GG--` 265.GO : OG -- °L.GDC : OC D.Ou'uDCO ° D.Oe/J0 5 525.00033u 1.0LG^Q0 120.501000 268.74210:] 0.03JGOJ 0.0xOJ00 0.0J0000 E 567.C,0a _ 1.+55)00 129.6743[' 272.205203 J ^u.iJ060 0.0CQJG0 6.000JCD 7 X77 OC1C:G S.000JGO 1'3.64J0Cv_-"8[.7[4100 C.CO'uG4G 0.20JECC^ I.OLDOL1 8 547 '5J 1,7 1.Ci,5COd 156.8#1140L, -78.022701 0.038DOO C.00J^.OJ 7.000404 9 8GJ OJ07JC O. Gou00@ G.GJ000C C.Oo0001 0.000000 0.000001 0.000006 ^800Y PAk1YETERS AND ORBITAL ELEMENTS HAVE BEEN READ-IN FOR ENCKE AT JULIAN DATE.... 2444580.000000000000 PLANET RACIUS .50J7G03O9G0GE+03 KM r PLANET SPFFRc` CCcoca QG00Gc+0 ri_KK__ - C . I AHT i PLE11T G=AVCTAT1014nL "N .ILOG.J003000E-08 KMT63/SEC ► 4E SEMI--tAJOF.AXIS .331o^81c67u0E+u5 KM G. KM/J ECCENTaTCTTY .847uZ0003DGu'E+C7 ._ 0. `-- `-1.0/JC" INCLINAtIC1, .11950r0004GCE+u2 DEL 0. UEG/JC ASfrNCJNG NODE .334209Gv"030CE+03 DEG 0. OEG/JC r bNEGA=T 3672'OiiEu'0VEOEs"Ql-CE EG/7 MEAA ANOMALY 0. OLG 0. OEG/JC

jou RUN GATE 46/30I74

SCHEMED TKAJECTORY TIME563.0000 CAYS ±— y Z_Tk FILE TPAJECTOAY TIME 563.L030 DAYS

` TOTAL JC0 fIELU' LEt+GTN '= 070200 OCTAL. LENGTP OF eLANK'CCI'MC.'l '•11577

NEASUFTFEFT`Wi:"RCO'AGATICf_ ETiENT`•SCFEnUt:E`---

`— FFCY—`563.5OC?0' DAYS TO ' " 570.00031) DAYS IN INCREMENTS Of'" — .30000 DAYS -C° ODE- VU.--• 1212-- FFCM 564.00u30 aAYS TO 573.000JO CAYS IN INCREMENTS OF 1.00003 GAYS -- CODE NO. 2:02 FFCr 564.00&30 JAYS TO 570.,.0000 DAYS IN INCtcEAENTS OF 1.030GO DAYS --CUD :- N0. 2121 F'FCr"' 563 500G DAYS TO 570.00440 DAYS IN INCREMENTS OF - " .53030 DAYS -- COOS NO. 16123 - -"— — --

- D, ` EIGENVcCTOR EVENTS ,.'^ t

1 THRbST EVENTS

'-----EV---NT "TIME i0AYS1 -----"---TYPE A7 567.000 0

i GUIDANCE EVENTS

GUIDANCE GUIDANCE EVFNT TIME f0AYS) CUTCFF TIME (OAYSI CELAY TIME tOAYS) FJLICY REAL CCNT£CL

565.500 587.000 .500 1 O 570.430 57 0.500 J.00J 0 0

0 PRiUICTION EVENTS FILTF.F7t1G ALGORITHM IS KALMAN-SCMMIDT

t-RSLREMEhT 6HI% NOISE STANnARJ OEVIATIONS _.— _. -- CATA TYPc STE DEV 2-WAY OOPPLEP' .t0000CC1c+Cl NM/S FER 1 YIN SAMPLE AT 12.0000 COUNTS/DAY Z-FAY PANGF .3000C6t.JE4L1 MLT6RS - -mAY OOrPLEP - """ .100010GIc 4 00 MM/S (FRED DRIFT$ - -WAY RANGF .101CL.OuCF402 McTEFS iZI-UTH .l60G]000L#u4 t1CRC-RACIANS ELE`JATTON-- — '—"- 16000ME)C4 NICRC-RACIANS - STAR- PLANET AuGLE .15acmoac+v tICKC-"ALTANS FLANEI LIrl ANGLL .15LC.000G-aE3.YIl;kC-RACIANS C v KTER -FINDING `" .lCCtCZJ50E1'72 KILOPETCFS ECOY FT-/.SCEuSIOt. .300000G0E+01 ARC-SLCONOS ECCY CECL1tlATICN .30000000E*01 ARC-SECON4S

iCLEg ANCE ON MEiHiNG SCHELULmG 71K PCINTS WITH THOSE AVAILABLE'UN STM FILE m .`33CE-01 DAYS TOLEFANCE ON HFSHING SCHEDULED TIME FCINTS WITH THOSE AVAILAELE ON STN FILE n . 10uE*01 DAYS FLIL6 0F TC-MESH -aITi1SN TOLERANCE`IS FATAL-- CCNTKCL IS PRCPA.,ATEL SIHLLTANEOUSLI FITM KNCNL:CGE INITIAL TRA y ECTCRY TIM: 563.0LOC CAYS XAL falitc y ck y TIME `STif 3030 CiYS` SNIFF- 1 7

.x*y —IbRi?+k#{5k%iFSIt}tXia A!'.FSr.Yr3e a,.cp.i4iti.Y a.4.^`^Mi$N° s"v'YfF$.'Y'::??iYpNy'%'K ^ql.'h` `a `.'tl%i°^..'°'"i.q '1

1 ..----, _ _ .__. ..------• -- - _FRINT'CONTROC .. _ ^ 1 0 4 0 G 0 0 0 0 0 0 0 0 0

STATICN LCCATFOA CUOkcrNAIES

—" SPIN fACIUS"""CCNGZTlCE -' — 'Z-HEIGHT,— LATITUDE— —

': i 520G.234 a-03.167 3693.429 35.'.84 . 4855 . 414"---356. 33r---4 fZ4-.7EE 40.41 1 3- i2G4.135 149.136 -3680.233 -35.311

ECUIYALENT STATION ERRURS - - 1 SIGMA SPIN RAUIU3 '1.5o0CJ0 METERS . - -' - LONGITUaE `3.J00u'00 METERS- -- ^• f Z-HEIGHT 10.930000 METERS - iCAGITCGE COkRELNTICN .97u700 - - - - _ __ .- _ ---•- ---

OYAAMIC FCISE PARAMETERS - i FROCE SS STU - DEY CORRLLATION TIME

—" _ —if/GRITUGE I --"- .:.5000,E+01 PER CENT'-' - .400003Eapi DAYS CONE 1 .1:9000E-J1 RAUTARS :10&J00E+01 DAYS CLCCK 1 .1000CJE - 01 RAOIAAS .10000UE + 01 DAYS

V r'

i

- 1 c ti

I k

• s'

-x a ,,ru JIw.L. .I Rr IC. CRJ

-'_^_ ____ ^_ 0. -STA6CAkD' DEVaICTTOFS - AtID CO^kECATICF-CGEFFICIEFTS

SIC DEV X Y Z VX VY VZ_

X _ .l GCOEECL*05 1. lOJOaJp _Y..__^._.i:oi.3iE^.'S "'C.COJOGu^0.- 1.DCCJ3^^0'------• Z .1000OGCGt Mb O.OGJOCOJc O.G0000000 1.00060000 ^x .53000GGOE-3-L O.00JGG000 u.9G6OJJ00 O.000OOOJa 1.00000000 ` VY - .56,1303.6E-52 ' -_ 0.0000pGd0 O.G000JC30, O.E0000000 6.00000030 1.00300000 VZ ,SOOu0GG9E-02 0.40000300 a.00000000 .1.00600000 O.00dOu000 C.a00Oa000 1.acm a uO f. ACGPGO O.0O306000 O.OtGOJUOJ O.000OO':7 0.00030000 O.JJJuOOJu J.OGu:OCLO ^.1•c C.9COGC3ac 3.44 CO^CuO u.COGO^uOLG G. GOGGG OGG C. GCi DE GO' "' ,aC"vC 0.^ ^- - `- 'v CLOCK 0.0000coaa o.acsojcja 0.63000.00 G.OJIa66CG 0.0300Sc6a c..Z4.41ccc EPk x O.COJp40C0 O.CCJOC:O 0.60400000 O.000OOOuO 0.00000000 J.00PLGGcO - EPH Y'Y ------' 0.00000080 a.OaCOJaa0 " ` O.000GJ400'" `6.00300000 6.40006000 - O.OG0000:0 `-- EPH Z 0.603000CG O.00000LGJ G.00000006 u".UOJuocoa U.00001uoa 2.000CCCGG EPh V% 0.00300000 0.0000J0G0 0.60000000 0.00003000 0.000000.i0 O.000JJCCO __- EFH VY" - G.CuGOGJCG G.00:O,C:J C.00u40300 0.0000000O C.OG736JOO " T U.0006:EC0 - ^' EPH uz O.JGJ000OO J.00606000 0.00000500 6.00300000 0.00000000 0.00460300 p P, 1 6.ocloua00 O.000a^o.o G.6000OG00 C.CO.000JO L. GCG".3a0 1.30:Oo?GO E" LON 6,.00J00333 f 1 O.00Cu04LO 0.00030000 0.03330000 G.O630GU30 c.JNac 3.7, Z-HT 1 GI CLaa603u"- G.03003 000 - -^.00J0000J i -0.00300000 - G.000OODOO -31000DOG30` RS i 0.6600JOGG L.006000JO 0.00000000 0.00000000 0.0Uo000JO 0,300064[0 LON 2 0.60000000 0.00000040 4.00uoaouu 0.00000600 0.0000GOOG 0.0000,:060 - Z-kT a -- -G.100000aG-G. orcouC;U- -O. Coco GOG0-7:00353coo '30':60000006-G.'o"uLt3'G: U.00J031C0 G.GO•:aG000 -O.00JJk.000 C.^oaaJcoo u:LaCaGoo.. 3.oc-103.0 LON ' C.OGO603CG O.JecowEc0 G.00u000G0 0.00700000 G.O6UG00JO acccocc0 Z-HT 3 0.0'COu00aa-- G.00coacac, 0:4 coca 008 4.a0003J0a-O.OAOG.ZiO es "`-' SCLVE-FOit PAitAMLTEFS r

t •

,, AtNNRiV.`^+ia-.^r""•dSe>t^^. d ...: sw4.Y4i.LTrittt4H^sSS6tiYwY.Fa,tYd!wA4tiiski.:k^: .+^usttiir`a./v^ivdr."(ts:1,+NVuSsTdsuSU s-ik"3+.Aa•+iwszeiYUrti urtikN.tue+,v^{a»ert .3st.3 ;£+^/^n+eBi^cR!h}1N+11a a '•

.- ...... ^. ._,.:.:-. . _-...A:...._:...._.... _ :::. .. _...,._ - WYfliYlyML.Y•+u+1ac - STANOARC OEVIATIONS AHO CORRELATION COEFFICIENTS

STO DF V ACGPNO CONE CLOCK EPH X _EPH Y EPH "Z EPH VM EFH VY, EPH j - --- - °- -- -

ACCVFO .2200000CE-01 1.JGJG3aGO ., ------` CORE. -'-- .35000QuOE-J: 0.70006300 1.00'u0J000' -.,_ CLOCK .35000000E-J1 O.CGJOJOJG O.00CO:000 1.4Ou000J0 EPH X .3000JOC3E*C4 0.-0OOca•o u.0ccocc4o 0.00GOJ043 1.Lu000G00 --"-'EPH'1---.3GQCODOJEFIIi -G.00000000" -'O.D0000000 'O.000OOOOO -0:0 a g o g coo -'I.G000OOOD - "` "- EPH 2 .30OOOD,0E+04 0.00000000 G.OEOGOCUG 0.Oabouj0u O.Oc000co0 0.000OOu60 1.000OOODO

-EPH VX'`----. 170GDG0Gc''- u'Z-'----" "' G.007oL000 Q.GC:O7C c0' G'.,G070aAGD '" `II.YOOODOOD -V:DQCDu`DB0-^:DDyai4ED -'-

'r -^EPh VY' .1003000DE-0 2 O'.0cocaj70 G.00o00000 0.36GOCOJO U.000004 00 0..0000G O40 0.000coc:o --- - C.3COL000u - .. 1.OrJGCGOu- - ._ ------T EPH V2 .100 0000E-92 G.GCa0Galc a.GCc00cG0 0.04000aca C.00000000 C.0000000J 0.006000.0 - O.000aJocc O.00JD000O 1.00000030

PS I - -_ O.00000030 0.000U0G00 4.00000000 0.00300000-._ __-_0.00000000 .._ __ 0 ...00000 .. a J0 -- -0. 07 0r0000-`0.0009o000-"G.Oa000u00__.. LON 1 G.auloLO:Cc 0.00CaJ0Jo 0.01000000 O.000Oa0L0^ 0.000000ou C.Ci.7i.uCGO n.7JCJJIJA O.Ccic,3 O , 0.0u-Or.-0000 - _ .Z-HT f' -_ - -- ^..JCDlA.G v.:YCYJrYJ .'- Y.GGuuJYJU _- 4.uDaOrD00 u.aOaDuDDD G.0a0,D.'r0 ^^ G.GCGL0000 O.C4000YOO C.OocaucoU s RS 2- C.OGJo'4OGU 0100000OLO 4.0000060. 0.0036000 0 0.00 000O UO 0.000GacGc .. _- -.. _ O.OGGG0000- O.ccoo(jac - G.00000OJQ -- LCN 2 D.ccocia00 u.00000auO O.Y000J000 0.00300000 4.uaoG000J O.000GJLCu 0.00000000 0.00oouuou 0.0roo00u0 - -' Z-HT Z -- ' - -- 0.07000GL0 G.000OUCCO O.uGCOuBGJ ` U.COD00000 -0.0J^000Q3 - 'u: IIC^uC ^- 0 CuGu3000 0.Cra7,300 O.OJ000GCD 1^1t RS a.5G3ouG L ...000JOCJJ 0.60oc9L1D O.Ca44aac0 0.40000000 G.CDO,0,c0_ O.DGOaaCDC - "O.QCDOuJJJ .. 0.00.000:.30 -_ LON 3 O.Ou000o0C 0.06cia Cuo 0.00400003 0.0000,000 3.000caOJJ O.a0u054JD ..000 OJco 0.0004a00u G.OuoCaa0a d --`- -z-Hr '3 = - ^" -- ` " O.C30050GO 0.000OGGuO "_- u.ac000UG - O.aDOD000O`-- Z.COD GOOD Q " " . ' G.GOCDOM 5 O.Ccacooc, O.6cocco00 0.0,000000

s MEASUFEHENT PARAMETEFS ^-

STANCARC GEVIATIOfiS ANC CO P RELATICN COEFFICIEATS - _-- - -

STO GEV' -- ' RS i -LCN i"" " Z-ri7 "1"' - ' RS-2 VON 2 Z-liT T- RS .3 LON 3 Z-HT 3 f.... - PS .15C700a0E-:Z 1.00066000 - --- -_ -- --- LGN i .57699712E-+6 G.OGOOJJOG 1.GGCa4oJo ---- 2-14T 1 .1 0.00^JE - vl C.000CC330 0.00:06cC0 1.00uJa000 Q! Z .550; 7G LE-!Z -"`-'u.C70E0: 03_-0.00000;.30 -0.9000OGGO -1.D-0700000 - - -- "- '- --- LCN 2 .517066910 - u5 0.,43,j00a0 .9JSGcc.J C.00JG:Cao 0.J4JJucoo 1.0000oOJD Z-HT 2 .23r C:.OE-J1 -- 6. aui^oJ00 C.00006cCo0.00000360 G.Ouoaoco0 -- c.000.50u0 ` - I.O6 Cacca

PS i .i5C;0 WjE-7Y 0.2a300000^ 0.00000Coo 0.00007000 O.U0000ca0 0.00040Go0 0..'.o30JCl0 1.0040000 0 ,l LCH-2 .57646x6-b U GCG0003c . 9CC+"GUO .U `no,occ'o7i-O:Dagog .19IIGGo4ju-u.uu`G7SII0[ -' 0.049oaaae S.CDuaccoo Z-NT 3 ,lau03COJE-al a. Goa aaIaa C.UCZD3cca O.J000ouGO 6.00000000 +0.00004200 0.0000acoo 0.60000Da10-_ . 1.00000000.__ is INITIAL S/C MASS ERRCF O.CG00 KG

..K. ^s art. Wr N4E, a . !ie*.M'•"•*r^ . _. . .- - i^kkf•w.'"ius ^+i^a^i t Fna _'.ur v ....,.^: >s^, ^.4-^:ww . l/' ^\.-r ^•^iNa. acs ..,. a,,i5?.as.,de^rResW - • -- M1j JOBB N0: RUN DATE 08/30174 r i s i A -YYIYYIII'1I/IYi•IY jYi^II/IYIII•+IIIYYIii Y11YYYIISIIii YYi1/^rYIYYYY7i'i^Y'ii/1irMriY1Y7YiYiYiYiiYYl i Y i ii7 issiYiit7'iii71Y7 ^ /^.^ SCHcCULEO TRAJECTORY TIME 56e.5000 DAYS S TN FILE' - TRAJECTORY-TINE- 566:500C DAYS - ^1

r

«- ^ JULIAN' . 047 E - 2444523.1547¢OUC CCNTRCL FHASE --- 6 PRIMARY 6001 -- SLA ^^ FPESEF7 S/C MASS- 1494.88289798 KG- EPHEMtRIS $CCY -- cNCKE OAYS FFCC' LAUNCH- 566.5uU.a$C0 _.__. _ 'uFY FitCY CUTLfF-""--°3'.50CC400u ----POWER AVAI),QBLE-- 16.535240 t8' KW . 'TARGET 6001--- _.-= EACKE

S/C RELITTVL STATES % Y Z MAGNITUCE -'SUN ' PCSITTCN'` -:14.i26C68295158E+39' - :9E7L06aCT15841E+08 .?C2143G6b297ZyctLb^:i75420^014i33ZE^Y- ^p VELOCITY -.26741573660874E+02 :,,,7.14455328.59E+01 -.129336238i4313E+01 .Z9Cl55Cl2924laEf0Z 0>

` EARTH FCSITTCN - .7E6325^9044J37E+C6 - - .51811588Z4J884 r +08 -" ' - .3C2143,.6E29729c+08 - :5998276641 677:+08 - VELCCITY -.19Z99782577JilE+CZ -.24540611040354E+L2 -.12933623814313E+01 .31247325n32:46E+:2 -:ET.CKE"" PCSI77CN -':'ECtiCZ073960085E+OT =:5237571516.671E407 -.295590245ZE44BEi'07 -05-44TE^6C=956E+'u7 VElCCTTY .343944S6o81177E+01 .2619y926505304E+01 .1453468GU41873L+u1 .45t-1r2E:526317E+21 _ .._. _x .. _ ..Y _^_._ _-_...`___._. ._- - :;/C ACGELERATICNS _ Z -MAG6ITU0c "PRIMAPY 8COY -.352060.54555521E- 5 -.2377641619?867E-05 -.74282224472570E-;o .431Z728525;?n2E-3S PERTLREINC BOGIES -.1E681350456417c-10 -.10231u4160'534r-09 -.5649122327214dE-10 .11c3549602l5o0E-DS ` THRUST' '" -``-'--.56394419340935E-07- ' = .g43322531Z .1i5i1375+974915E-08- RADIATICN FRESSURE 0. 0. 0. 0. -

.EFFECTIVE 5/C Y.ASS STANDAka UEVIATICNS. (KG)' - CCATaOL= .5958 KN.,ALEuGE= 52.9512

JULIAN CATE -- 2444523.6547E000`- LONTFCL FHASE -- 6 PRIMARY BODY -- SLN GAYS FFCM LAUNCH- 5b7.QJJG3000 PR"4NT 5/C tASS- 1493.44517362 KG EPHcMERIS BODY -- c'ACKE "'GAYS' FRCP CUTCFF--" -Z`E:5'u1 U'0000" ------°" -"FOMER AVAILABLE-- 16.6 7 7114 58-KN TARGET- BODY--` -- E6CKE `

S/4, RELATIVE STATES: X Y Z MAGNITLCE ` - SUN -• FCSITTCN"_"" - .14195576116864E+09 .9687027301o787E+08 - ' .3C157652231133E+08 ------" ,17L4d.253Sv5^aa+CS`^^ _ z e - - VELCCITY -.288556.^75c137E+C2 .J6498d4l9.39673_+0l -.1.129o283c251o9c+01- . c -I54._4c9oJ1.Q#jz

FAITH FCSITTCN =.b5464.38142395E+C5 " - '".5Gr502383Ei,279E+08 .30157652201133E+08 :SSI3+5235Z7578E+LB VELOCITY -.15239.939603951E+62 -.24543819437732E+62 -.13296283225MsE+61 .:1235326e84782E+62

ENCKE PCSITTCN - -.58519821r12590E+07 -.5125172462„792E+07 - "' -.28952254488790E+07 `.83289249744713E+07- -` VELCCITY .3422923II6572CbE+C1 .25d3523346i855E+01 .I44d0bl3Zi524?E♦ V1 .4 c635SS 72405E+C1 Y z . _ .. _ '-. . - X _ ^- ___ - _...S/C tCCELERITICNS ­ MAGBITi 1 E ------^' PPIPLRY PCCY -.35464671686174E-J5 -.2420101764,,247E-14 -.75342635145977E-u6 .4359125Z2683.OE•J5 PERTUrctING EGCIES -.17081525365332E°10 -.iC512255121954E-09 -.59146242940511E-10 .12182a1a27cYScc•0S - THRUST- - "' "'" '-- = .53753D4D404846c • 07 -.L457 ,ii5781E"979E • 06 •.91886732135004E - D7""-""`.65DJ66:55D163CE• CE'--` ------PRESSURE` -- 0. ------0- -- _.------0• ------

J t--JULIAN CAT: -- [444543.6547Eu00 CONTRCL FHASE ! PRIMARY BODY ----'SL't: - ' -- j DAYS FFCM LAU"CH 587.J'0uC0OJA PRESENT S/C MASS- L44,3.42139371 KG EPHEMERIS BODY -- ENCKE DAYS FkCM CUTCFF- E.503000D0 FONEP AVAILABLE-- 21.40u000G0 KW TARGET BOUT -- ENCKL

S/C PELITTVE STATES X Y 2 MAGNITUCE Slim VC:SITICN .85j5927bk59084t+G8 ..98[y1E5497u29QE+V8 .26258480b2674ila+U8 .13276722724 17E+CS

VELOCITY .37013345962450E+C2, .29999227481389E+01 "''" .34069595598151E+,;i "--''. 37_877;Q628592L+02"

EARTH FCSTTTEN .31b3S6E7506246E+C8 .70521Zd69G2i71c+07 .26258480626740L+U8 .41E689:4dS9112E+08 `- VELOCITY- .18231410837593E+GE- ='.2E401752831425E+0Z 34069555590151E+0r--.3226S2ST6C5922E+t2

ENGKE FCSTTTEN -.11E41869300223t+C7 -.11084:885E9942E+07 .6l12495932U66Z3E+06 .17311178c68E12e+r7 VELOCITY 20E2353E04Z919E+C1-"' .2001206E53147E+IIY- -:1346y9E207J35bE+0Y ::2 752e519e2o3E+01

S/C ACCELERATTCHS X Y 2 MAGNITUCE t __. __'PFIMAOY ECDY" 4E40T5E3265E70E Z U ----` = .3b7132158121Z5E =0'S- :T489048Z394b4DET5 -. f5-$8T4472EZZ6E-t5 0 ERTW6llkG ECCIES .1E05997555S255E-G9 -.50006646228704E-10 -.14425848225030E-09 .2216561083LSi1E-OS S^ THRUST_ .555115136581222E-3E .2E362'_1375V265E-0b -.16570613571341E-06 f, _.... _...... 01. .622C28G914i735 rCE "RACIATTCN FRESSUPE'__.-_.... -- ^---__ -0. -- - S/C MASS= .149345E 04 THRUST= .6583671-06 AT TTMt 567.0400

S/C MA'°S= .144342E+04 THRUST= .633028E-06 AT TIME 567.0000

v JULTAFr L'ATF ONTROL' PHASE -- - 9--^ ____ --- ... _ .... ----- PRIMARY 800Y --_- SL'N- -_ DAYS FFCP LAUNLn- 593.5000'Ou0 FRESENT S/C MASS- 1443.42139371 KG EPHEMERIS BCCY ENCKE DAYS FROM CUTCFF - .00169000 PONLR AVAILAELi-- 21.000000G0 KW TARGET DOOY ENCKL

-/C REL/TItiE !YATES X . Y - 2 - MAGSITUOE SUN PCSITION .b3788094552524E+08 .95572648950013E+08 .14087262868869E+3,8 .1174u2C8Q33284E+39 VELOCITY .35847194934075E+A2 .6716568R8E0397E+GT-' 34370673154cs81£+02-`- - .^.OE4S942352E15E+Q2`

EARTH PCSTTICN .4[137162427563L+&d .8148^178I64E185E+C7 .24087262868869F+08 .4S2152.'10670 aE+38 -""JELQCTTY"^'°'- `-,18519E87852b60E+II2'"- = .2jd9t84671E592E+Q2 -.427067J7542ii81E+0i ^'.357645298^73o4t+C2

ENCKE PCSTTICN.74CA8E42535J319E*34 -.21bu775547E9I3E+;y -.77279GS8567905c+03 .775T816319d75JE+G4 -- "''JELCCIYY'^ .2G482411951L77E+CS :19519S05E53896E+01 .114D2315985140E+D1^"395T,52Z4Tcit:5E+L1

S/C ACCUFFATICNS X Y 2 MAGNITUDE } "--PRIMARY ECCY - 5F21474C8S5E75E- QS '" '-.78382312552807E- Q5 .19754TE6540T95E-05` .9Ec853 °.63314E9F-CS° + PERTUREIN6 BOCIES .12951377523410E-QS 14737E4108y 744E-10 -.815337E057/229t-LQ .1527494%i27836E-G9 ►^ THRUST -0. 0. 0. 0. -RAOTATTCK FRESiUPE U. UNi-EIChTEC SENSITIVITY MATRIX ICUTGFF WRY CONTROLS) ^+

.7f d5 TiS952/8E^06 .1[o05G528Cu9t+0E .9522957E5947F.+05 0. Q .1EC92743T297E+CE -.8C742G516111E-06 .iId:;93248094E+05 0. 202678116 WIE406 .5920728EP53CE+05 " - -.36523165536EE+'OE "Q'. -.94E565884279E+C3 .203132601988E+00 .LLl410u52S4?E+OQ .551151365813E-06 -.281E6 c,221582E•Q0 -.9b694G3446074+00 .108740739234-61 -.2b3625137503E-06 - -.25357CO91363E+50 .7960r2323075-01 +4128,l9uF756_E+0G'° '-.36576615713E-06""-

KNGrLECGE LOVARIAUCL AT NANEUVEN EXLCU710. TIME 5E7 . 00QO DAYS » -EASE( CN MEASUQEMr.NI Ur TO SE8.5000 CAVS" .'_ FSS POSITION = .2074E733E#03 KM R55 VEI^CtY •:.i'ssi,3a54Ei'01 M/5 ..J

.. .. .wvmv--.irc MiFiRiai1K1? h 5.-Y?hban F_^fY\1 -.a..iwY.l .4ia.' ^'^:!^MN9^Ei"tifM-f4.MAC-#.{sN'!P'l4ailN^"11.x....vr..- _ !T`J,?1H^ •a P5^"f^ ...d_ _....,...^...... e _ _.... . _...... _^ _...c _?^,....n.. .. ^_.u.sr...... ^...... STATE PARAMETERS

STANCARC LcUlATION S ANC 1,CRRELATICh COEFFICIENTS_____. STC OEJ X Y, Z VX VY V2

x .48925157r#u2 1.,000x0010 '• t .lC2St952cc03 -.8J443262 1.0000u6^.0 - T .1733683EE-33 - - :83458317 -- .9599ii587 ^l - .506y2J87E-^3 ,7165.beC -.58757729 .58753891 1.003000GO VY .6157737E-.TJ -.657217F5 .7E225247 -.76 18586 -.8570Y311 1.006000.0 - -" - v7"'- .10915685E-.2' '- :64758525 -- -:74 3 25175 -----:?4018973 .86317727''-- .94929273-T.J00070: ^p 00 I ACCPF[ .49a54771 -.38.25x2E7 .38262769 .84114825 -.12791i1b7 .74212%75 CORE - . 4964112E .33328819 -.33320734 - .8813ZE28 .05957616 - . 67184413 - CCCCK - - -.439268v3 .Z735u985 - :2735!231 -.78732471--.61503079 -.6316C51 EPN X .00335698 16.001,8728 .0015 917 -.OU082434 .J8181281 -.OJ189074 EPN Y -.u2 973Z5 .0240753J -.J2408043 -.00405731 .40335509 - . 00241x32 EPH Z" -.05465395"-- .65942185"--. 05943797-":01124137--'=:0104.3 i86 .U-5CCFC-5 EPi- fix -.CC398694 :C2658U5 -.u01b5b95 -.002443Z0 I .00.)97431 -.U:394acD EFN iY - . 00479673 .GOU29r.11 -.0062358 5 - . 0x324583 .00534428 - . GGE2C7c3 EPH 4Z .C103T155 -;01615EZ8`- :01635i5p :01063301 =.11749138 .iW214EI

PS S °:205219C0`^= .CUT37v62i "•D 0750761' -.Qd69955T---':003121c5 .00ISBZT4 _ LON i .671509JZ .04529250 -.0451o438 .010040[3 -.00757529 .G1358G!G Z'-HT 1 -.44582835 .35c828tl5 --.35087d49 -.02164Eb1 -.00502296 402065211 FS 21-- `•0T35Z713^=.9 749132 ° - ' : 03757367 .!! 0104086 : '00514338' =:DL549ZE LO 2 .02 32737 .03221255 -.'03211'117 .U121l.i731' -.00777578 au113?E?6 Z-6T 2 .34t5G2C9 -.3466c919 .34676978 .Ullo48E5 .%1287751 -.GUE6'50 'RS'3` i:.030['. 0G`-"u.0tc30t3u'- -,,:00i00LG"+ G.OLJ_606 '0--D..3G703iu`'D:DO=D:L:u r CON 3 .44587001 .93b71E92 -.03660611 .01089,646 -:0G12715b .61182271 Z-NT 3 0.0400 030 0.00000000 0.00000000 G.u000000a a.00u00000 0.02::3JEC0

SCWc -FOR PARAMETERS

G, r

,. - .. f '«y .:,...... rx.,c SYt.gr.Jerrh*.*K vrtyi,`;'+*}a!! •

STANCARC DEVIATIONS AND C04RELATION COEFFTCIENTS

STO OEY ACCPFO CONE CLOCK EPH X EPH Y EPH Z i EFH 'YA EFH VY EPH VZ

ACCPFO .54492807E-02 1.30000010 CONE .13518733E-7i -.91387515 1.00000060 - -CLryC1^ 175 7f9 987J41E2 .9Ct05097-1-.Q0J07000_.__ EPH X .217[1314c•^.6 -.3CJ4Y6Q9 .Qcz27b3s .G^06291.6 1.00300000 EPH V .190E-6a17E*o4 -.00222374 .QQ210bC .0020a8d8 .i3?67799 . 1.0000000G -`"EFM Z'-- .11519611E#a4--- .CCv58232 -.00522117 -.00471060 .90317'.33 ` .81665764 i.0O1CII CO - "-"` - - - EPH VY .98776338E-03 _ 56illJ28 .00180047 .00.140582 .15013636 J^ .07494941 y .0697930 __l --1.QO^G000O -r EPH VT .99076961E-33 .6G0520E5 .0GO17C40 -.90051647 .06090219 .14403249 .05453313 .02441483 1.60030030 "- 'EPIT `VZ - . 00151677 "- : L2R96769 ' -: 02752334 .I676I7Eb "" "-"' ,7239923E -:00394547 1.000GOOGO

J RS 1 .00170995 .00C-4Z472 .60143c24 .00263002 -.00303845 -.0u161779 . - . _ _ -.40023506 .GLJIISIG .03J27850 ' t LOW 1 - .0026692.1 -.0/'2o0210 -.0024EQ91 ---.00069757 ` _-:00205288' ""-.008860316 -"--- " 11 -.00G04810 -.GC000075 • .00019.$43 •1 Z-HT 1 -.GG221248 .u04dIS81 .007901 5 -.60345338 .021753x8 -.05122977 .0008F.51G.._.._ .00031945.__._x__.._ _ PS 2 -.00J96uitl .O0u277E7 -.30u84216 .00080114 -.00Lb5753 .UG481145 .07011482 -.000QE533 -.00014035 _ LCN 2"- - - .GG19d0E9 -.00[37430 -.0024.653 .00010549 -_-'.6019:4791 " -.QC613^14 - .Caa l.2®s? -.033J5876 .GL.011842 ^ Z-HT 2 -.-00773520 .CC527252 .001829,41 ..00344811' -.02172954 .05120941 .0007584ff'-- -.000e5635- -.00038374 R5 3 0.00ou0o00' 0.00000000 0.00000000 0.00004000 0.60004000 0.000007C0 8.00000000 O.oGJ00000 6.000008o0 .IIC2202 g9 -.00235553 r -.00232553 '--.'00738182 - .0016903s^-:IIGTlaq a. -.Ga:OG12.l5 -.C.3J2dl9 .00014770 7 Z-HT 3 .00000000 0.04u00000 ._J.00300000 0.0000000.1 0.00000000 0.00300020 0.,x030000'0-"O. Cu00C00z_ C -Dal 000-mi0

S/C UhCERTAINT7 RELATIVE TO EPHEMERIS HOCY'

's

t!

RV

----- ,,, . NOARO DEVIAIIOfJS AMP CCRPELFTICN COEFFTCIEbIS

Si g OFV K Y z vx -VY vz

t .217251XEa^O 1.000acdoO t .11Gh9Gl7E.34 .53tS14t! 1.0000OGJO .1154699JE^,;4....._._...^:. ,_ Z • .b9923450 _ .#133ui43..,._1'.00000C-u0_._.,.. w_.._,-_ .__....__,._:_.. ., ^Y .11113616E-.r2 .14117592 .0S38o206 .09736148 1.00330400. - WY .116375s9c-^2 .34714219 .1423:u26 -.30793878 .1d974760 1 .L000OJJO VZ" .139015171-1 Z" .034151E3 .u5700270 "-- '19Lb539 .Z973245D =:37360029- -1:IIODIIIIOL

HEM R_-_.__._ iw6STTTCW-SUB = ------E-VACS /SCRTi EICENVECTOPS

.:L2588E#C4 .71125916 .11223545 :545[7722 . 180561E#03 -.c54?y985 3586013 7 . 64214804 ' .z23553E163^-x25552039- :0822468~ :.18441917' - '^

f`-VIES (SCFT) EIGENVF.CTOPS_

.102114E-02 .ek6697E6 .56071059 -.04663270 .577555E-03 - . 41985466 .665945i6 .61624693 '156 0156E= 02' .374557-IZ :'48659727-78y259Zt`

COFTPCL CCVAPIANCF AT MANEUVER EXEC6TICN TIME 567.600C DAY,)

PSS PCSIT1311 z .1759891i.E ♦05 XM kSS %TLOC1TY = .99 443770E-01 M/5

O O STATE PARA4ETERS

STA4CAPC GEVIATIONS AND CC-RELATTRF COEFFLCIEI^TS y

'TO aE1 x Y ., z _ _ - vx -_ Y_-v ` b Y.i'Oi75^E^f^S..'_"-3-:Oo7Jt^GC'.._- -- -•--- - Y •10164125E115 •GUJ487,4 1.30000cio 41n Z .101419256. 5' .ud1333aG .09494343 100000000 _- • '-'-'VP .55C93825E-j-Z-' 18520546"-'.018547 y 4 ::-0726983- 3:C000u0'UO vY .57527051E-32 .0213t,342 .11423578 .LOu38405 .L0274U82 1.000C3000 V2 .5i 5E6318 E-72 .CL8164EG .DC257148 .155247th .e1513CSO .038569c 8 1.000CCCco

^I ACLPFt' -.x935:.684 -.,vi:54264 "-.94455641 -.43366138 -..33725898`--.D4893756 CONE -.-G51b2933 .ODE39089 -.CJ560667 -.52362701 06251509 .00031ITC7 CLOCK.GJ4-JC•854 .005U3213 -.P3992o97 .04948112 .0.52E+159Y -.4269d141 EFN Y " " ` `-.003cu^OLu" --0Ct000U0 .L000ccuo .OU4DaiaG -.uu707030 J` -.^_CC33000 EPF Y -.34700030 .3GC,,c0J0 .LO,,O.OG3 .00,03Cc0 -.00uGUU30 .COcu4cu3 Er-l'. 7 -.,Oia:OJi. -.00Coccoo .1104'0.S00 -. u0^0 -9 -.003U JOO .0 ­3CCPVG EPF 4Y -._.OR]OtiO30 00GOOLuO -.LC000000 -.+x4006520 .LDOGOOJJ -.Gcz'iC"UO - LPN vY .0400JOac .O600ac30 .L'oocia00 -.00000000 .0000040J -.GLc00cbo EPM %Z .USO'c0090 .0000acd0 .00050000 .GOJoOCCO -, _. En " llJodc .000030t0

7 RS 1 L. 0130 Cu^.0 0.0504a000 O.Cococ000 0.00006coo D.J3 00000) O.JJDOOGU9 1 0.00940090 C.oL000C,i3 0.000:00940 - 9.00344000 O.GDCGaOSG o.Ot:,OJi,iO I-HT 1 O.OQ^-L0^30 0.0Co00UG0 G.LJ0030o0 0.00000000 0.0000LO0D' U.00311`Cc0 Rs 2 L.=193903.0 i..00'CA3t4G 0.10303000 0.003EJdc0 L..G5a cc-0 O.CG000CL0 C.C,000.13e 0.03300,.,i0 0, 000CCOJ C.J015uce0."_L.COJCCG43--' i.i4C3tCCe 1-NT'2 G.00000006 O.oC0ad000 L.CGOOJ000 1.10000040 a.GCJGOOOO 0.000.3CCO its z 0.00000330 O.ocGa4Lja O.EOc00001 0.00390404 0.0090a000 0.004000ED ----ECU 0.94000M - b.0030aC30"` ` G.00oa0GoJ - `0.00Jo0000 4.400230.0 '- 4.000Oce:0 Z •NT': c.0000v00O O.000OOEGO 0.00060000 0.00000000 0.600O3000 O.000OGOGO

SCLVE-FOR PARAMETERS

WwAw 10, STANOARL DEVIATIONS AND CORRELATION COEFFICIENTS

• 'STD-'OEV'-- ACCPAO "- -- CONE - - CLDC c EPH "X" EPW -If------EFK- cFH VX EFH YY EPH VZ' _ ._ ACCP9C----- .ZZ9rG030E-31 1.00006309 _- COAE .35a;ODOGE-11 L.COJuaOCo 1.OLa00000 CLOCP . - .350:7CCJc-y1 0.60006070 L.OcG9Uu00 1.00000000 EPH X .3a234955E • 4 _G.OGCC93.[ - O.00C Oi7^9 + L.00ilCil0uil .dt3pOC;O--i ..• EPH V .30193969E#04 0.00003000 - 0.o000JL00 O.GUa00000 .100311871 1.00008003 EPH-Z .301E6430E+c4 0.00000030 0.0Cc00000 0.000000u0 .'OJI03348 .UD067847 1.00000000

EPH YX .10019473E-02 0.00300030 o.00J00LU4 -0.000OCOuo ,13554119 .62840348 .609c93c4 1.00cLOSac - EPFf" vY""" 3IICII3CS9E-r---DSoaocacoa - 0.00coccoa - n.000G00L0^ JZaz1301-:112S5T39 ±^OSiS^_ .G.354470 i.cCJJ0000 EPN VZ .99512232E-33 O.GG3ococo O.CCUU LOO 0.000occou .04929853 r-+ _,» --. .00618736 .49561429 O .0012876 4 .00086627 "' 1.0000000 0 r3

E m ^5 1 ` _ G.003C0000 - O,oaC0u070 O.aJ'?.011ao C.Oaa00ooca G.GDOOD'OJu u:O GC C3vCO -" ^- ^_.^_ 0-aGGl00o 0.000J[05a G.OJC,,400c •^• LON 1 O.U000000L •J.00GO0000 0.00000000 0.00000000 G.OU GGO00 0.09ococco 0.03Lc0 cc0 0.CJOacaG,. 0.00000GOi _. Z-HT 1 L.ccl000Gu ' o.0CL0,0 f,0. 0.00060000 0.00104000 O.000000Ju J.0ccoacl0 O.ilaJ073aG O.Cco3Cy36 L.'0C3CJLG0 QS"' G.0006Lo.-o --a.cc 0.0. 0""U.70300o 9 ^'^-u."u G900080 'G.?D7C3G1T`^< DaOL07D" O.00000008 0.6COJC4lo 6.00000000 ON 2 L.o03U00ic 0.00LJOCZ3 0.ua4o 3ou0 0. 00090060 0.000041,o J 0 .00400 060 -, _. 0.GoazccaO c.GcG30U`GO 1 2-HT Z 0.00000000 V.000JJCoo 0.000accou O.G0000Co0 0.00000000 .4.00006030 O.00uGJGDO O.0000CCOO 0.00600000 i Rs _ G.CCJQDJUG `- D,3 r _ufL.OT O'.OAJ000GJ - ^C:00D'63L00 u:CDSSui+Da-"II:DD3II J.GoL JCO; O.CJOLOuJ$ 0.00000UL0 LON 3 G. LzL03C.: G. 00.05Z00 4.00..00063 J.00uJ0006 0400000000 J.000000"6 { ,"` . G. GOC6occD°^_D.^cc3GCao^- -c.cocao^o^---` _.. ^. _..... s Z-HT 3 0.LoJ3Co0o U.00000Co0 4..00000300 0.40003000 0.00000000 3.000000.0 _ 0.000000CC O.C^U30000 0.06000000

` SJC UNCERTAINTY KELATIVE TO EPHLPERIS.000Y STANDARC DEVIAI13NS GNU"CORRCLATION COEFFTCTEhIS -- _._._..__ :. _ . _ _.. STO OEV X Y . Z' _ YX -- -« VY."'-^Y

-- - T .10E15795E.05 1.00000000 ------Y .1060312Ec.O5 30.82518 1.00000000 2' .175b1057E.a5 .3013$941 .00388516 1.300.00000 -" -" VTt" '.599371546 3Z' ""' .18148805 - .01887236 '.00731296-"_ 1.00006600 + VY.58390332E ^2 .02349578 .170Q24.30 .0633076 -.00254S92 1.00000000 Y2 .564>7419a 02 .06617122 .00366799 .15128016 .41470016 .00835481 1.00u00A 0

POSIITCN SUB-BLOCK

` E-VACS (SORT) EIGENVECTOP5 .tC5321E•65 -`___ _. .79573644 .58 764546 .1E176070' ^^1 .IC9882E+C5 -.58592470 .80545869 -.03832661 .105797E*05 -.15g2832a --.OE4Z6461 9a609041 ^' _ E-PALS 9SCFT) EZGF.NVECTOPS .549887E-02 .99256136 -.02962352 .11608E?9 .484lbIE-42 .:1479304 .94210416 .12454116 .Bb3731c-02 -.12J84335 -.1216089 .90516248

TARGET WFT BURN START STATE

VMAi_ i .1Gb8977 13Z14E+,1°"".'145576056E45E+0J'" -"'.'a9Z:73933375E-L^ -":23336297'a725ExGT- i3I066234II74:+7b .3497Ti^^6Y3Z+Cc`si.5 .1 & 4252931347EtC3 .1u24;21047F,6c.31 .415C504C3810c-01 .130424386194E*CE .23Z5352147J7E*G7 .Ze376106bbi4E.05 .423921540814E-71 .40Co5a3.80134E-01 .90397J45779:E.CO 366r923594z3E.05 .37526061893CE.05 .2c`949161E387E.07 TARGET WFT CONTRL

SMAT -.1:2527CG4852F+J7' - - ZZZB4EZ551e22E*06--=.156C794CC34CE+06---=:312.4514919576+0 -.3Z901C2E6537 s,6 -.115556516362E+07 :lA5671c53bSfE+05 -.150173454E2CE-00 -.347e5244".952E•J6 .b918Y3753C:aEfC% .592781336•Z78Et06 -.934161635121E-01 COMPOL WEIGHTS ACCF°C .10,0E+01 ' --- CCNE" .16322+^i` T - 9 CLOCw .100JE.J1 CUTOFF .100GE401

TAPGET WEIGHTS z .1,ae.p1

t UNMEZFTE^'C.t1IUANLE ROLS MA WRFR X (CON TARGETS1

.6 9, 26331451e4E-36 .110344E95622E-36 .3571t6700147E-0E •:1:6^85'Q121914i:-J6^7Je78.9424044E-OE"- -.b819Z17503EE-0T ^ ; .4c71hEE29068E-0E ' -.42S27t148513E`-07 -.157237563469E-05 .1948i'.^148C6E^00 -.Ec9E2b561766t-01 .69761618 04E-01

TO^MpS

c hCCNSTRAINEU CONTROL ..COtECTICNS

'STANDARD DEVIATIONS AND CA?RcLAlION COEFFICIENTS-

STO DFV ACCFRO CONE CLOCK CUTOFF - - - ACCPFC .IJE755C3X-;-1 L. 00J000aO w. _-._ ..__._ ' CCFf .130,69L5E-a1 ^. .C923E10E L.00C40GJO - CLOCK .27214157E-41 .CZ08305? .u1146795 1.00000000 CUTOFF .96?4E350 .2EEb9853 .147329[0 1.04.04,400

- ACCPRC. STGkA= .1;.67EE-01, MAX ALLOWEC= .5OCuOE*00 CC9'cs SIGMA= .13047E-31, MAX ACL06EC= .872E6E+G0 CLCCk, SIGMA= .27214_-E1, MAX ALLOWED= .872t6Et00 CLTCFF. SIGr.A= .1506Ec*C4, MAX ALLOWED= .43200E+67

FESIC TARGET ERROP

STANDARC DEVIATSONS AND 6O{RcLATIOh-COEFFICIENTS

X .3104584Et-j9 1.0000oJ00 Y .Z955162SE-'9. Z .23IS91IJc- .tl7i21179 .019d8777 1.GOu0JU.0

UhtErCHTEC GUIDANCE MATRIX ICCNTFOLS WkT TARGETS)

6 c6J:1451[4L-L6 llL3SS695t22L-0E .157186700147E-C6 lEF8F.r1219:4E-7E 7321E:424C44E-Ob .bd1392175G46E-07 4.i .42718E521G64F-36 -.429277149513E-J7 --15723?iE346St-05 b ' .135EE 514c:6=iG0 .k49bZL5b1?6GE-01 .697£98783173E-01 Yr FIlinL CCNTRCL CO?kLCTICKS INCLUDING CCNSTkAINTS

STANCARC OEYIATTONS AtaO CCtRELAIICN COEFFICIENTS'

StD' DEV ' `--"' FCCFRO """'-""`CONE- - CLOC'R "CDTOF - ACrP c C .136755'3L-31 1.O^J000JO CONE .130<6915E-J 1' .,,R2J613E 1.0.0000"u0 ------.LOCO .2%214157E-% .G2b*3697 ..1146795 1.00000u60 - CUTCFF .35j65954E•.4- .5674E350 .ZE569 M .14731925 1.3J00.i000 CCNTPCL STANUAFL SFVIaTILAS 4ND MAXIMUM 4ALLE5 - ______. r _a ACCPRC I.J6755 - u.o0 PER CENT--- Cc4E .7475.3 50.00 DFGPEES CLCLK L.559c6 5C:.00 OLUPEES ° Ci.TCFF -"^` . y ^0595;.un DAYS

MASS STANCAF9 CEVTATIG'! FGR GUTrANCi= .8677

- GAMMA M/TPIY

.7C3545127b.'4c-06 .212934469417E-06 .1715C2374265E-06 -Vl-J32740346F-01 .34684427b454LS00 .Z73Z9t6d47SlEE#ZJ ""` = .BcI'!o"T722i27E-3T .E925E9987632E-06 -.393555444413E-47 .3 4d533't1dC9E+L0 " '.16G954v038'2E*91 .12417Eb3.7c.c^s.: `- --- .3E^r,' z42 4 5E-Co -.447813781417E-07 .93367O428,0/E*40 -.102837408J16=tu: -.34532EO15d:9:.d1' `^ .1E1'S455b9'3E^70 ,876595597894,E-J1 .7LcCi0h3i72EE-01 .33716-*3Z297JE+C6 .167361339970E*06 ./c121110121Lc*0E

SIATE EFRCA AFTER eUP ►: CCLTRLL CCVARIANCE AT MANEUVER EXECUTION TIME 567.000ir DAYS- d A

eA - Pik -STANCIRM -UMATTONS 'AN0'C04RECITIII -CUr-r-FFICIEFTS- -

STD DEV X v Z VX Vt VZ

x .489253F7E+L3 1.00406030 - V :10 0007000G`-- --- 3 ' Z .17336.63EE#.3 .0345d317 -.95595967 1.0000ii40 _. .._._. SYYX .. __.. .50652383E-:3 .716506!0 -.58757729 .36753891 1.J001..Oy0 .61577033E-05; -.651217E: .7E225247 _ - --.762185d6 _ -.85737312 Vz .10C15685E-02 .64758515 -.7402511b .74UI6973 .86317727 -.99929273 1.0004CUG

TARGET ERRCR BEFORE BUPN

STANDARD DEVIATIONS AND CO,?RrLATION CGEFFTCIE^IS

Tx .I9C?5b2fE+j5 1.0000003C .1990 875 97 4 ; ":19516853 -_S.0U000000--- Z .16833437E+Jb .L7080052 .UEUMS 1.000000GO -_' .- -^-`TARGETE.Tiitt^"AEl'Ei^- BURN -•-

-STANOAPC • OEbIGTI0N5 ANO'CGRP.ELATZON COEFFICIERTS-.^

STO OEV x y Z

0 .11773o3EE#04 1.0000GOGC j Y- .14091596E+u4 -.82722541 1.00000000 Z -' -` 23176617E+a4 - `:851G035E" " -.55846044- 'i:0000D00'0'- - -

- J

si

r

{

.:.. : r!%iY^wir-W.e^,w+s+n!.k?4r7*xd+..>4`arM?KkYAtri!YS+kb.,: ., - .: ^^. :". .... :...: *Fri,...... ,,., •-rr •0rr 4101 4FO OWWO rrrs •rrr•rrr'u4 of 4f7mrTtvl rr7 so*-** 44 fWf rrrr}rri of* vvwv < rr'Jrirn' riiiT7ri y7irr^`fi r77i1 =7s^ir7Zi71r=r'7p777i'i7i-

SCMECULEO TRAJECTORY YtME 507.0630 DAYS -J` _t7M--FTLE"'-TfcAJECT06Y-TIME iT,67:34u1-0AY5

-_ THRUST.._ _._ ------

1 -.. - ^------. --- •-- -. ------.--- -^• ------a------.--.-..------.------^--- ^^ ^.

JULIAN DATE -- 2444523.65478uu0 CONTR,L FHASE -- 5 PRIPARY 800T -- SUK UAVS FFCM LA 10CN- 5g7.003Ci.3uC .. _ FRESENT SIC PASS- 1.493.44517362 KG EPHEMERIS BODY -- ENCKE DAYS FFCM_CUTCFF-" 3.000;.S000 - -- FOMER AVAILABLE-- - - 16.67%i498 -'KM_ ._------TARGET'5001'-'------EhCKE_,.^_... ^.-- O S/G-PELATIVE STATES X Y Z M4GAITUCE l!i SUN FCSITICf7 .14l95570llS640E*09 .9E87G2730l8550E+05'---"-" .174, 5.2ESSe9c8E.LS V2L^.CITY_ -.2E996610753885LsL2 .3b29dC43877[93E•01 -.132962d3251794t•O1 .29154GZ07u5SBeE*Q2 _ EART{T PCSITICIA - . F5464360294527EsL5 . 50750238533478E*68 . 36157652204509E+05 .59134523656021.E*48" VELCCITY -.1;209919644874E#C2 ;.24593819453643E+02 -.132962d3251794c#01 .3123532692c59CEtC2

-"ESCKs - "PCSITIm -` ' ---- - . 585198227J3199E + C7' -'=.51251724557176E+07'- - - 289622;4595381Ea37` '.83'e8525C77.:15CEa;7 VELOCITY .34229230313464E+01 .,lL5$4523J288au4t#01 .1448U813c31459E+01 .4526359y535285E•G1 - ._ _ _. - Z _...^ - S/C,ACCELEPATICtts x -- Y _- NAGKITUC= P;IMA O I 9tDY -.3:464E11678281E-05 -.24cO1C17634E15t-05 -.7534465123834E-J6 .4359125225c2%E=-0' PEkTU9EINC MIE5 -.17083525327859E-10 -.10512255084064E-49 -.591.46242561655E-10 .12182313221238E-C9 --TFRUST' `- - Ti3753C40446822E='07--^ -.'649702978714152c-0b -`":^1188b732114227E-D7 - o5a3fc55487Ji1E-OE RAOIATICN F"Rct^3UP.E 0. 0. 0. 0.

EFFECTIVE SIC PASS STANUARU DEVIATICNS tKG) CONTROL= .E457 KNGNLEGGL= 52.6428

KN(JLLECGE LNGLPTAINTIE4 AT EVENT TIME 507.0000 DAYS

POS.ITICN SLB-BLOCK

E-YAlS 15CkTT EICENVFCTORS

.193584E.G2 '- .9Yd!5610 .IC718370 -"-.17810758' -- -- .E9C267E-02 -.0011861 .85967347 .51084257 .136227E+03 .20786035 -.49947291 .841J2174

E-VALS !SC O T) EIGENVECTORS 1:239SE-03 -*'-.92795366 .21754630 -.302614E3- .159051E-04 -.02c542D3 .84647505 .52856940 .764922E-3 . 57174928 -.4824559 0 .7S311SE4

PSS- POSIT ION's .13759578E•03' ttn VSS VELOCITY • .78011E73E•O0 HI5

'.', '^^iNr'M^tun»fuk^&+^s+en^s e3rF: k .,,tea vv..*!al7v^t9u^. nrr. r::,r €tee ^Y?k'..kY;*_%YtY^.ksvlMb.; ^y'!q.p .ra$iWl:r4h^NWHR.k?'"" aF ^^,+. n w: =. w.F.4t1aaNK^wc?sN`.q c.,r. .4+if'^?kfq:4++A3^di.ei•A^aiakikJ.Wgg^+n§St^.^ R.: STATE FARAMETERS

STANDAaU DEVIATIONS AND CORRELATION COEFFICIENTS _ _ X ..^_._ _ ... _ _^ _.off s 4% STU OEV-- r

--- Y .68073425.*02 -.!'1394355 1.Ouli00jo d Z .1145214!E+43 .81-617554 -.9'.'.55:91 1.00000000 VY"-":3175R237E= 073228-=:33 CO 3035 - '.339C779G"'-1.0x303 EGO VC .37617Z74E-J3 -.258y7493 .45784i8i -.45716822 -.851437C7 1.JJOJ0030 VZ .67848265E-33 .27516471 -.4147887) .41472052 .85895693 + .5986450 3 1.00000JCO

ArCPFC - "- J`- - - "' :19260718 ' ""-.14756884" -'- .147638Z3 - .86381476 -' -= :65859607 .681D7C4 CONE -.172187E0 .12583559 -.12587485 -.62909630 .620/7170 -.633E88i3 CLAC g -.18273599 .39179895 -.09186573 -.b2873Eb8 .57258896 -.56u911c5 EFH X"`-- - - .JOSb4d25-.^u !83537- ".003RJ7Z4`-•.00^6Z:17" .00176580--.0.l93ZE4` EPH Y .0.x35559 .O!S11683 -.02912u60 -.Ou997792 -.oG132226 .DL2794EB EPH Z .06243197 -.06953678 .069542!8 .00275683 .00271450 -.006435:' N ^EPEi''V' .GO11L9c6`-'.00 .41295" -" -=x00041101-- .60154181"" .30359836 -.00x523.9 O ` EPH YT - -.OV360835 ,06505322 =.0050 °.273 -.0023x7)3 -_ . 00472872 ' .0045541 EP" V2 .30:67985 -^ -.00437415 .30937394 .00750313 -+01559198 ____ .01534058

PS 1 .,29509026 -.01173729 .0.1192471 -.02o78965 .005586L1 .00375519 - La. i ' -' `" - - .10333245 -- :gEE5,i779 -='.3 684 1 8 32- `.01696079-`":01312 73 .L,2741L1 • Z-nT 1 -.4927E857 .52593Eb1 -.525SM,4 -.C21714t9 -.C15v: o2i ..4298519 PS 2 .lG5175L3 -.04Eoe430 .14887715 ai01558v? .6.872338 -.0C927o:1 ^" Lti^ri 2. .73665027 .04i378C64-----.14871643,.02141,%19"-.01343723 .41902525 Z-HT 2 .49581765 -.52485lo7 .324989-4 .023480.44 .01777493 -.044699'.2 PS 2 O.OJz00000 0.000u0000 0.3u0G0003 J.00300Go0 0.000000G0 J. 00u0u04 0 TON ` S -'`:D6642124- :OSSSy186^-'.35548L8'8- X3819)99 -` :31258069 .D19764i?b Z-HF": 6.000i10000 0.00000000 0.40000008 u.060000O0 9.60038occ 4.000OOCCO

SC-VE-FOR PARAMETERS,

STA!ICAPC > DEVIATIONS AIiR CORRELATICN CCEFFICIE%15 __._. _ --.. Y S TU Dc'V ACCPRO CCNE CLOCK _ EPH X .__.,EPH' EPH- EFH VX EFH VY EPH VZ

CL•NE .10614265t-01 -.93E1,.7F2 1.00COaCJO CLOCK .13601145E-41 -.499d5133 .9177!351 1.GCu000uG _ EPH"Y' .216?i53^c•;a =.06037653'-- .00024410' - . 1 3GO4425 "^1.00JOJ330 " EPN Y .lgWs513E•94 .00016759 .010503539 .L00 n63 .94775100 1.0OJ00000 - EFk Z . Ll361232E+u4 -. G 007645 8 . 0 0327191 -+ 00033499 . 9 1467210 .84371450 1.00G00000

EPH VX .96094705E-03 -.031,72745 .00144431 .1'0113295 .14329953 .0800b805 .47SOSEC6 1.0040JC00 EPH "VY .98587672E-u3 :OCG76222 6132.45 -:LQI55417"--7i68 air 496-ZZ76b4^8 -Ti62325 .03336027 1.L0000000 EPH VZ .97254322E-03 .0021E751 -.0011204. .lQG46Cl? .J3397563 .0329a323 .15194404 ..035'.4463 _ ..-.005579825:00000 x ..,.. .^. ;r•r -cam..-,

'r a

--` i[5-1-'--- -- .07227934'-- '.90G45SJZ ""`_.001871b0 " -"' .00255337`-'=.00302951 -.D01544:6' --- -.Ou0J807 .G^u[4G71 ,00042553 LON i .00437310 -.00431,476 -.0341Sg27.GGd7CkG3. .30197365 -.00878548 - --.000577cS- _-.60344598- -` .Doi, 3^227-'__ - -- - Z-HT 1 :LJS84338 -.04249974 .CV13y106 -.00365275 .021d2783 -.65159141 •_ -.Gd110'4i .00134237 .3CO73927 ^__ RS"7 -.CC1211SG -",00032192 -=.03117245 - i80082224 -:00265412 :00476675 .00016 EE -.ClOJE436 -.0002o964 LON_2 .iO3J6714 •.00367799 -.01402000 .00013408 .301115742 -.006G61c6 . _... - .:_ k' -ODOL3447'- -CG41i528-.7 0 0 26 94 4-__._. Z-HT Y -.OJ646J,31 .OG292387 .01161661 .00366443 •.02183417 .05161520 - .00114577 -.06104915 --70081213 R5 3 -' -- G.J000OOOu _'" - J.00i00JJ3fi.CIJ000Gu --^:Ii0003000- O:L000OOCC-T:'uu6tOCiO _ 0.0000GG0C 0.000.0,.30 G.i1000CCL0 LGN 7 .GOo66643 -.66:66762 -.07387013 .00039605 .00181472 -.1.0703267 -.000L2008 -- - -.60008112-" :40025662--- -` Z-Hi 3 - 0.00000000 0.00404u00 0.00000000 0.00040600 0.00404004 0.40004CGO' Oy0u0^OJ00 O.G0000000. 0.110000000

SiC UNCERTAINTY RELATIVE TO EPHEMERIS BOOM

STANDAOC DEVIATfONS AND CORRELATIGh COEFFICIENTS` -^.,-.,X-. ! `STD DEV- _.._-Y --Z --'ll)t- 1TY r.r. O v • _ _-11---:Z1E65284E*74^-^1:0JJ00000 $ Y .1098149ZE#'4 .94822502 1.00000040 Z.IL339320Et$4 .91633331 ,84750250, 1.8000001:0 YK' "°" :Lu 31571uE-;:2 "'- .1342.712a .07271330 .0!126816 -" 1.0000uC00 `- "-'"' • V7 .10516533E-42 .06151733 .1:19154 .04174655 -.06517827 1.G00000m VZ .U39269'3E-52 .03229487 .01897411 .14-496842 -.169SJ470 -.18554GOd i.00;000.0

FOSITICN S UB-ELOClC E-VALS ISCRTI EIGENVFCTORS 2 CZ 531Es04- .71360296--:61292954-34548EZ5"-- .346379E•03 -.65281440 .:9120250' .64868E34 o-. .557104E+03 .26244393 -.E864 y689 .67811888

" E-VALS (SCFTI EI6ENVECTOFS ,.^0779c=L•'^^-90^5'S 53-73535.566-"'07452 72^ -- '--"' G „45a481E•03 .60190E .50946905 .61464266 .123844E-02 .401780!9 -.47215274 .78462979

4 J

r-. - •------°JOB NO-^^-_----- , RUN DATE 08130/74 • 'ss^^s^d+^^+•^^•+s^^+s^^^+^s+^a+++^++sb>r+^+sib.^+s^^•^^+^s^6^^i6i^^^^^s^^ssis^ss^^s^s^^aabs^^^ss4^^sbss^^^bss4s^^4^^^^b^^ ---. ___. _...--

SCMECLL£D TRAJECTORY TIME 570.000C DAYS ""- STM FILE 'TRAJECTORY TIME °57 p :0000 GAYS- _" - --- -`- - ' - -

PEASLREMENT CCDE = 4123 3 STAR'-PLANETANGLES r^.p PEASL' Fc-MENT NITH STARS 3 "2---f S/C LECLIAAIION = 5b. 9368 CEG. _ - _ ------•----.__------^-^ ^- ./C LCRGI1u0E _ 21.2515 DEC. --.._

JULIAN LATE -- 2444526.6547EOOp COkTFCL FNASE 7- OAYS FFCM LAUPCH- 57G.L05Lu0C0 PRESEbi S/C PASS 148b.OdZG5628 KG EPHEMERIS BODY -- ENCKL SAYS FRCP CUTCFF- L.C.:4L5000 FCNER AVAILAELE-- 11.57295lb3 KN TARGET BODY ENCKE ` S7C RELATIVE STATES x Y 2 h4GNTTtICi SUN PCSITTCN .33432rEaE5e5C4E ►'(5 .977454C242J'381E+0b .Zg7daC!7Gti4459=+L8 .1cc7cL:6c03::Ec1:9 V£L.SITY .Zb5o197G610346E+Cc - .2955L32291R717E+3i - .1 64244d$Sa'8302+01 .SC14d7LEE8636J_+II2 -T

E-RTN- 'PGSITICN .45924233755846E ► u7 .443545E5032P80E+C6 . i:9?d3037b54459L+08 :4' 5o9t2735873E+08 - ' - VELCCTTY .1981967121ZZ59E+C2 :'24753255473(82E47Z .1564244885283CE+OI - '-.3113L42E653S67E+OZ--

ENCKE PC_IT'TCN .50315712305555E+07 .44E36709GELS83E+07 -.2525925862.8199E+07 .71f4801212d51dE+47 "`VELCCITY' .3 2 1570 2 4 2 2 0742E+01 ^- .251977154;T:85E+03 .14088496909191£+L1- L.215u393II4425E+OT

S/C ACCELE G ATICNS X Y 2 HAGAITUCE FPI W l4Y FCCY --` - :37U88286$C4267E-05 .2c982082791T74E-05 7;22312o922E49TE=D8 :Tic596i'c87852`02£-78- 3 ERTUAEING EOCIES -.12232513313180E-09 .17784084272292E-10 .1..C13E35E77Lo^-0^ iPPU.T .45E64697091981c-C6 -.544a7t25345629E-07 .12221028918914E-176 .514316799oS 871c-:c

KNOWLEDGE CCVARIANCE BEFORL THE MEASUREMENT AT 570 . 00000 DAYS

FSS POSITION - .11569008E+03 KM AS S VELOCITY = .3b528141c +3 0 P/S-

STATE PARAmETERS 3

STAADARO DEVIATIONS AND CORRELATICH COEFFICIE14S J ' - _ _ X y' - STS OE:V - - Z- -11X-WY V.Z i

X'" .34611336E+oZ- "1. 0000GD0p Y .591740(,3E+02 -.E6444151 1.000UOCJO 2 .93191633E+02 .87976630 -.9595092L 1.00000000 V]K .ZZ575338E-03 -"".28537631 °" • .18643GZ2 - "' ` :19406523 - '-- 1;0034;000 -" -- WY .15374511E-93 -'.t5tl9977S .3460101, -.J5Z7E748 -.522694b3 1.0000++OuO VI .2425#559!-03 +21923315 -.25746357 .25749636 .64061186 -.98249512 1.00000000

bpi v^..â.. „-. an_ ..._ i .._ -. al.^ . _I .^ ,.. _, -.x._ . fit- - n_<., _, YrkkSX•'!-^°ryy.la" 'dam."., E,-..,...,^., ..d W,

r yam:', •„

I

-(CCP6 -.05959053=.00°23426 `- :OJ130066 =.35901352' .333995375-:38551255 CONE, .06515052 -.04764553 .!.491u7a9 .42925455 -.50694624 .S4Zb54SO CLOCK' .07787166 -.01968211 .02346048 .43561747 -.41252281 .460g5670 •-' `" EPH X - . 00678l i9 ' ---.00603726 " `- .00613160 - - -.00052759 - .00169555 - `--- -. 00Z186S5 -- EPH r -.42722955 .02894089 -..,2904008 -.00061C31 -.0016F431 .GQZ3b7l3 EPH Z .C592Jbrl -.LEe47534 .16655828 .CCL04274 .00446997 -.91090453 '- ELMVY `- - -':00438798- '--.GC413091 --- .40417955 =.00056956 T'.60224197"-"-.002574ET ERN rt! -.00822b94 .01001585 -.60958347 -.00557141 .01358889 -.01258351 EPH YZ' .00562036 -.00929294 .CU913683 .01149051 -.02988917 .4267937.6

VS 1 .225048?9 -.G09226S7 .[2298843 -.03134E01 .G0086353 .CI344%L4 --` LON 1 l511D624 --- .0E254711 --- -.64972037 --- `.02751323 - -.0237---785- •051727 1 1 a Z-HT-1 -.53176172 .57178111 ..7377517 -.u0693Si'Q -.G61955b1 .1153 6+.2 oS 2 .ICE43010 -.0405/557. .L45G 9944 -.00263542 .627695,7 -.32432&22 LCH-? :0551$342' .OS23854` - --03115182 -`' ,G3Z10f.Z6 "--.02341961 -' .%4269849'" Z-HT 2 .534558dl -.5IG91977 .57323463 .41361921 .06173490 -.11376937 • 0.000600.0 _U.00000GOu 0.00000000 D.OGGuJC.D RS 3 - 0.000ouGo0 0.0ccooc0o --_LO4 3 -`- ---" :1166E352" .G48i1A26-= :03831261 :02824581-'-.32232353'--:0447281 Z-HT 3 0.00000000 O.00000000 0.00069000 0.00000000 4.00000050 0.0030;040

SOLVE -F07 PARAMETERS O t0

STANOARO OFVIATTONS Ann COH.cELATICh COEFFICICNIS j _ .. Y.--_. _.:._EPH - - - STO OEV CLOC K ------EPH X EPH T ANVxEFH fCONE VZ •• "'"ACCPRO" :23823819E=ZZ^i:'u0700070 -`"------^ -- COtiE .31645296E-12 -.97711401 1.000Ou..00 CLGLK .7b162C58c- 2 -.99353051 .9E88/315 1.070000:0 --^ EFH X - .21P571113E•34 --' -- ^_6435681 -.JiC90540"^ -.00062861--1:00300GD0i -"--" ` "` EPH Y .19258105Er04 -.00045896 .00139423 .000794dY .96325775 1.30000u6D EPH Z .11466196Z*u4 .'00037141 -.00316747 -.03152443 .93007769 .89491119 1.9L000000 ^-- -

EPH YX .92772638E-03 .OUJ14075 -.00105749 -.uJ0637il .24192476 .14374880 .14&728'2' ^- 1. 830000 -EPN'VT-'- 9i"Z47Q22E=Q3---:QG.^1833'^ = .OQ27o367" -:1]131223 .14429147 :ZSo4219T-:1278531 .1363052E 1.00030600 EPH VZ .895C1276E-03 - .GIIZ453C .00725710 .09368949 .0825005 5 . C7334051 .M67418 ":1i21958E---.E3264537- -1.)LO:I00&0P-

{ -" kS- 00193134 - .01474E38 -' .0.1555217 - :00186547`- :0028~174`-=':00094636 -.001104E7 .001OE524 .OG15d/82 LON I .0u166131 -.90427175 -.011143550 .00u77088-. .00133553 -.00736823 :; -- - -.00005187_ -.00083847` .00183622 -... -. -- Z-MT 1 -.CO.972S2 .03112J54 .02402587 -:00495304 .02113717 -.04862452 :j -.CuJbdE71 .00153798 .GGSZ2?Z8 RS' ".tOGEJr705 `-.06980911 '-.004173tl0 - - .66093.72 --.00234989 '^:003975i4 .03043478 .00u12%95 -.00115608 LON 2 .CC1oci49 -.00E55S76 -.0•.i228415 .00037760 _. -.,G&12278L -.00491CdL - .00L4033Z` = .COiQb603 --" .,0127663 ". Z-HT 2' -.0035s0?G -.02752516 -.aP994504 .00495925 -.02113104 .048625EG .CC3?2DS8 -.CLl5:640 -.40539980 RS ? 8.000OG000 ` - G.Occoacco -- a.0fs0 g oo Go -'0 00900000` -G.cc000QDa "'-". 4711IIt7 4.06400300 G.CC4OCY00 0.10000000 LON 7 .00127080 -.00'14566 -.0E176194 .00054402 .40121422 -.a0581E:9 - .00016505" -.0009C213'-"-.Lu14745i Z-MT 3 0.00300JGc O.GCC000GO 3.04000000 0.00000co0 0.64204004 4.000GUoic '. o.oa4oaooL 0.0coro„G4 0.44004000 r ----

h

S/C UNCERTAINTY RELATIVE TO EPHEMERIS BODY

1 STANDARD DEVIATIONS A140 CGRRELATION COEFFICIMS _ _ STO DEV x y 2 Vx °- 'Vr' _-V2

-ar ___._ :Z1E582OEE^:^4 __-_ ..1:D0007000 T .1925uf.E0c+04 .96383910 1.0CZJd000 - 2 .11342d49E*u4 - .93171225 .84907745 1.00000000 VY,95492377E-63 .23615577 .13862580 .14000719 5.00000000 V1! .95287179E-03 .14190856 .25545Ey4 .12217610 .11197592 1.30000000 - VZ .92652975E-03 .60161709 .OE837518 .28119145 .IC_ !AR2 .J363656J 1.00,i00000

POSITION SUB-BLOCK

E-VALS ISGBT) LIGENVECTORS __ •._ :_ -- o3U7527'cc4D4'- .7CE189E7 .EIE70178 ,.34781477" - °--•--.__-....:.------2'_5b12E+03 -.666763Q8 .,14.17i8 .bl969943 .447531E.03 .23d17182 -.66953464 .70356062

E-VALS {SCAT) EIGEAVECTOR$ r,

:YCZTZ7E-: Z' :TTZJ1434` . 13338535 - . 46494143 - - -- ^O ,5 5 7946E-03 .16455756 .66812225 -.57966037 .63323CE-03 -.62694623 .39!89293 .6691956E

OeSEFVATICH MATRIX

x .943111973c-67 -.991865634fl-07 .995679187E-09 .5R56267ZdE-77` .886687274E-07 .693538479E-07° - Z .836097319E-07 .408864900E-07 .120645453E-06 Vx 0. 0. 0.* Vt o. G. 0.

ACCPP[ 0'. 0. 0. CCTE 0. 0. 0. -- CLUCK 0.,. _- ^, 0. EPH x .943111973E-07 S91b65EJiE-07 -.455679187E-09 EPH v .5C9b2b728L-07 :88EE87274E-07 .653938475E-07 EFN Z` 836697319.-07- 408e6450CE-OT`'.-.12064545:E=•D'6 EPH 'VX -0. -6. -0. EPH' VY -0. -0. -0. EPH vz -6.

-" a RS'1 C. 0. 0. LON 1 0. 0. 0. I Z-HT 1 0. 0. 0. f `PS`s-0. LON '2 0. 0. 0. r Z-MT 2 0. Ps l LON 3 0. 0. 0. k Z•HT 3 k ` HIM NOISE

.. .N - - .. ,-.._ .. ,.,._.. ..._ ..,. >,,.. .. ._ . _ .. i ,-.^.^..^^ x.ttk,, t3^re+.^raroa^a:A ^Ye ,,..:.,.. s. ..,:: :uucs-vr.*.a.:::^ •..

E

.2ZSO35371e23E-07 0. 0. --- 0. .225419371.13E-07__ 0. -C'. .22R019371ecJE- OY-•-----

-.246%e163175E-07 .205457816416E-08 b314e4351909E-05 U5457818416E -^S' :249537763S55E-07 - -.772538053018E-GS- -' .6314843919G9E-09 --77253.053018E-09 ,262015342638E-07

GAIN ►ATRIS__

% %1753575E•0 -.1E0571E06t•04 .22134013:E+04 Y .65263L^45E•JS .2741381S3c•44 T`-.530841945L•04 I` -:109174821c•C4 .4.51044S6E+C4 .827620876E+04' Vx -.244662746E-G2 -.110130540E-ai .i23JS4143E-01 Q VY - .3377bS9dit-02 .105812741E-01 -.364256"kL-01 IiI .469667^3tic-02--- .1E 535087Gc-OS - .5535S997EE-01`

-• --.^ ___,_. ACCPFC - .23[""7,979436-91 .26551109EE-01 -.573926237E-02 _ CONE .367121939E-02 .b7294082.E-01 .16368108Eh*00 CLOCK -.621221716E-01 .141142E12EY00 .1979C205tE+40 EPH X .fi7653l8UlE+06'-- ° .7353E225tE+06 .£8773G107E^05 - --__ EPP Y -.54E323674E+04 -.24187272,4F+Go .6.92G960F.E+06 EPH I.212261666E+06 86c4f21C8Ert5 -.75015662CE#06 r. 1 EPH"Vy - :696794433E•aa .7356G2:33CE+OJ -.14547450EE-01---- EQN 4T -.401964538E#CC .65426oSlEE+O4 .57570416EE,,60 EPH V2 .6G5777909E+00 .2569E3517E+C4 .974197742E*o0

KNONLEOGE CCVARIANCE AFTER THE MEASUREMENT AT 570.00000 DAYS - -__.---^-•--_- - 'RSS POSTTIOY - --".11567480E*03 KN ASS VELCCIIY : .36508400E+0C M1S:

SIA.TE __ - PAPPI ETERS

---_...___ -- "'3TAIIQARt"DEVI7ITICNS"RAT CdKHfC'ATTDii- -COEFFTCIfFTS STD DIEM X Y Z VX VY YZ

X .34bC4252E•32 y 1.00300040 - 59165 yJ5E+:2` .66442125'."'-1.4CO ,C a P 3 .9317o1)6EE•:2 .d79.74846- .99559910 1.000OJJJO E VY 22511651E-^3 .285213'E6 .186ldE7d .19382548 1.00000000 f -' VY "'»" .15362003E-J3 "' -.25875531 .355745.7 """^.3:L4E465 `-'-.5224990 Z; -- 7.00000000 ""' "" f YZ .24436186E-03 .2tas5659 -.Z>749182 .25710899 .64071670 -.962,96947 1.00;00000

ALCPFC -.45956241 -.00525767 .0%32375 -.39405616 .34020112 -.36977505 ! CCbE - .0§5C43el .04750388 " - '.0489o742'- .42917831 .50701680- .54273fR93 4 GLCCK .o77816JI .4156CC79 12347997 .43560311 .412b7831 .46103388 EPH-X .00141.135 .00E64192 .GJ675132 .00406512 .c319ye2t -.3015B5i0 EP VOZ7970E5 .5295.147- :'D3G00041 •:TiD1609u1 .0,0056330 .OL2230o0 EPH I .06085215 .06!67612 .J6873611 .CJ375472 .00017024 -.06649114' E►N ' VY .04592542 .06548065 00555210 .00073864 .00110493 -.00140865 ----,Tpor TV .:01050414--- . Cf264119 - D3259843"-'-;DDD30582 - :91572892-'3ITSE: EPH Y2 .0Q688608 -.01158309 .01138121 .01410566 -.03745411 .03603141

^• kk

.-,.. .+:nk Y v,. . - s-ze rmh;, a. _:8:=7 Y.'.^ wrotaa K.r .,.. 3-r u.aaseaw .^rr7.tl• r.x r

`____ _-- _-- SCLYE •fOR .; FARAMEiEOe

"ST/NOAVC OEVIATIONS ANO CORRELATION COEFFICIEk1S STC OLV ACCPRO -.-_ CONE '^.. CLOCK .-_... EPH X EPH Y EPH Z EPH VP EPH VY EPH VZ'-- ACCPRC .23e23747E.-:2 1. 0096sJR0 _.. ^_. •_ . . " -__._.. -_ -_ CORE .31EC3973E-u2 -.97714840 1.OGGOJi00 '" CLOCK .74loC992E-'2 -.55353822 .'Ste88217 1.00000004 F EPH X' .21795955Er.r4 :30917319 -.00065879 -.00038601 I.00G00000 - EPH 'Y - `° .1.9ZZ9049E • I 4 - J003„02E _ ..' .01088526' -- .00051445- '--_ "..96892 770 - --1.00007000 EPH Z .1.1286C68c+14 .GZ135416 -.0O21853b -.00107046 .9.i95+s298 .90881282 1.00000CyJ N EPH V%"' -- .g LZ72512E-:3 '" --.003299$5 -.0CG56L31 -.00008422 '. .23269944 .14930636 --.14,556115 1.OJ000OJ0 EPH.YY ,. __ .92945582E-U3 .00038050 -.00406765 -.OJ216916 .15718103 .45280.989 .141v6273 .IF47JE21 S.CcuL.000 4 EPH vZ' .b7434GS3E - J4 -.00005441 .0987b2.J4 .00422569 .09214382 .083460k4 .26574654 .15750(53 .Ci202783 1.00000000

^v5 f .60192747 .-01475058 .00555587 .00174829 -.0026,380 7 - .00089675 -..._..._._ _.._.".._ ' -.00223256' .00126340...._._ .6187279_-_ _.__. ._ L04 1 .00166288 -..-0449347 -.OuV.4b34 .00080414 .001286.-2 -.007138!7 }^ -.0000018E -.CC11?217 .G;23J16l t.,r Z-HT .OGJ9J816 .0?109443 - .0140i638 ' - .00516055 - .oz.'96084-`'.048v15TZ^-b- -.00426130 .00148496 .0065y973 RS 2 .300J57Jc -.00S79875 -.G0416946 .00J94403 -.00229350 .04386i27 Q .0004724! .GjJ2cbL3 -- -.00142713 LOW ,2, .GG1C23ptl -.UCE64403 -.&0[[5448 .00044SEZ .00110810 -.00470545 .000`.3248 -.0013!582 .0.-1.4463 0352500 2745 SS -= .07993534 ` _ :0'051700% ---= .020'97308 '--.04840555' ^4 - .00430J24 -400148090 -.00668949 RS 3 u.00003J30 O.000OOLCO 0. 80000060 0.00J 00000 G.G 00 000J0 0.904 0000 0 « 0.070.-0000` U.CG060000 u.OG00u'0:0-" - LON 3 ,0.127271 -.0051E955 -.00177220 aa4358510 .00109616 -.07561047 .GG0251 117 -.CO11SZ73 .06165951 Z-HT-3 `,*- -- 0.00JCuOZOGOOJOi u0--0.` Ii 060coca 'D:L'GDOD UDG' -0: UU0aO- u LII402400- 0.00000000 2.40000000 0.00000000

"'-a7.END.tC

"STLNOARG DEYIATIGKS'KH6'CO=xEI'ATTON"'COEFFIC:IE ►TS"" "'--'-"'-'--'- STO OE4_ % Y 2 VX YY V2

^^,. v...... , . :.: .. I.rxxeew.+:,. ... +e. . .., ....., .a-e.. '!+,er. ^, ". .,. .^.,. . - ._ ... ,.:..,. .: .. .., ... .. _.> ..r. .. k_.. ,...'.. i..x •..y. ,s> 3 _ .-..^..n to ... r .x _ L, _ __ ^_ Y ._..__ .2179516SE+G4 1.00000300 .19[Zuy70E•34 - .-.5E957.913 '- 1.ii&000CC0 2 .11[6045EE•G4 .941341c1 .91334295 1.UJG09000 V, .940G5o9CE-u3' .2271G133 .144198u7 .14444351 1.00600000

T - -33VY° .93922245E- iS4af694 -- ".25160663 -- ^:1365 y 92o .139564171:00 « rJ VZ .89e95513E-,s3 .05087505 .U1682644 .,-6566155 .18731137 -.03074781 1.mC000CE0

FOSITICH SCE-BLOCK --

. U73E5E•34 .70522544 .E1148553 .341'38011

.307713E+01 -" .67x82764 - - .42213094 "- .6G97505T - ^- .41195'LE+O3 .22945013 -.Eo371462 .?1192383 i . . _ ...._ - _._,:. ------..-...E-'v3lf [ SCRT ► ILi kVECTORS . .102626E-02 .75526045 .48029324 .43913776 w .937761E-03' -'-.144947C5 - .76263412 *" -.60537151"-- .#C0745E-03 -.63443985 . M,982b2 .6E364C23 i

1

1

a

a

t

e. wa. • _ w...-_.. .. ., ...... x.. ,w. ,...... ,. ..r .n .... ,." ,.. ..,.n..rrr .. s..n+. .., 3.. ^.s... [,:'. .,- ..-_ ._... s _. ... . '... ._...- '._ .. ,. ., .., +. __,,-.Yewx n;:StiYj}sH.t. .. x _-F,[^M&11`.t:^^WMxtgx}^3{*'4Yt,:rv^^!ileta. ,. ., JOB No. RUN DATE 06130/74

A of Wgfoff off ff f f*f *qWffq ff f *#f f f fo off fo p woo *fee a of ff oofow* woo* of* of **of fooffoo memo of

{ SCMEGULEO TRAJECTORY TIME 570,000C DAYS -' ""- - SIM: FILE TRAJECTORY' TIME'' 5s79. D000 CATS

k

1

JULIAN CATE 2444i26.6547E000 CONTROL FHASE -- 7 PRIPARY BODY -- SLN DAYS FRCP LAUNCH- 573..:u-30000 PRESENT S/C PASS- 1486.88205628 KG EPHLM-RIS BODY -- ETCKE KK -.__. .. _..._ ....-_ GAYS FRCP tUT{EF- C.607CC700 ' POWER ' AVAILAELE- a: '` 17.57595161" TARGET'BOGYT -=' ETCKE'"' --- '

S/C_PELA,TTYE STATES % Y 2 MAGNITUCF SUN( PCSITICN .1343ZEE8698504t+09 `- .97725402433980E+08" - '. .2978303T654459EsOd I6l7ELT^6905ulEEstQ' VELOCITY -.2S5615"IG61G246t+02 .29556322918217c+A1 -.156v2448852833E+01 .J3148Ji.6b6b360E+C r, r^ ....EARTH PCSTTT4N -.4952+233755846L+07 .44354565022980E+08 .29783037E54459C+08 _P_ VELOCITY µ -.ied19671212259E+C2 -.2475321j5413082E+142 -.15b42448d52830E+01 .311344Zbc5dd67E+02

ENCKE PCSTTTCN.5tl315712305555E+OT"'"^ -' v--.44636709060583E+OT- "-"'-.25259258628199E+0 p - "'.73L41JI2i29918E+Ot VELOCITY .J2i578d422,G142E+G1 .25197705447185E+01 .14088496909091E+01 .43215039305425t+01 .__. ._" S/C ACCELEFATICHS X T 2 ItAGKITU'Jt.._.-.___ PPIMA D Y BGoY -.37088286804267E-05 -.tf982C82751724E-0S -.d22312692Zt497t-0b` .465960bd785263E-CS ' PEkIUKETKG COCIES -.38895Eb5213965E-i1 -.11232523313ldOE-0.9 -.77764080272292E-10 .i45Ci3E35677,6E-09 ThbLCT "` - -.4SEG4E97G92981E-G6"'" -:54207825345f29E-U7 '-'"- ` = .1222102.8910914E-OS .5143Z675963871`c-Of RADIATICN'FRFSSURE ^_. C. 0. U.

:i EFFECTIVE S/C PASS STANOAkJ UfVIATICNS'1KG1 - COMTROL4 KNUllLEDGE=___t7876i 52.1613

KNCMLECGE COVARIANCE AT MANEUVER EXECUTICN TIDE 570.0000 DAYS BASED Oh PEASUPEMENTS UP TO 570 00u3 DAYS m PSS POSITiO4 - .11567480E+03 KMT RSS VELOCITY - .3b5d84caE+OG M/5

. V. STATF PARAyETEkS^

STANDARC DEVIATIONS AND CO?RELATION COEFFICIENTS [^ __.-...._.,.-^_...,,STO __... DEV _ .% ----. __. Y.__" _...r--..^^:_...V%:..: S p! Y .54165935E+32 -.86442125 1.003000"00 w 2 .931785i6lEtC2 .67974846 -.9C950S10 1.0000000 ITSc' "- .225716'S1E^'u1-`- 2851i3EE -:71613(76- 19J8Z548 -S.ADOOD0all- VY .1536ZJZJE-J3 -.25875531 .35570557 -.3524E4b5 -,52249902 1.00001300 VZ .247141R^cE-lA .'2369565,'4 -'.2574vlaG .25710699 .64471470 -.9A t90947 1.04000060

+F".n^^141Y1SNl"Y i F3 +ptiv =Ct C ': :' '.. ..: ' .._ e.. _.. ..._ _. K ._-'.k^¢' 4`^:x'i,.. _ ^ x

•-''ACCPFC "" -•75856241 .6C525/67' .CC132375 -.39305616 .34020112 =.389775[5 CONE .6b504381 -.0475dv88 .04896742 .r21178.)1 ••5070.16061 .5427385E CLOCK .07/81638 -.01564079 .6233/497 ,43464311 -.41167631 .4E103386 EPF %' .CG745135 .00664792 "- .CDC-751.2 .00008512 ' T-`:00104822 - :000153510 EPH Y .02797069 .JZ588127 .C3oGC041 .001639.1 .CCJ56336 .00c23046 EPN Z.00085215 -.068b7612 .06N7J6ll .JO375412 .00017024 -.00049114 EPH VX' "- '.CO592542 .00548065 .00555210 .00073664 "' @0110493' =:OC1408E5 EPH VY -.0105L319 .41263319 .O12r9845 -.00830982 .01872892 -.41753!10 EPH VZ .CO608808 .011583a9 .01138121 .0141J566 -.73745411 .02603141

` RS 1 .22907834 .00923393 .02299b09 -.03134505 .00080766 .01345223 LOU 1 .151L519S -- .06259355 ---.G4976464 .02747610'- .02363068 -".05167251 Z-hT .5318335C .5719JE14' -.57369864 .00699312 .L6184L81 .11529256 .04563188 •.00261YS3 .627671,11 .024294c1 RS 2 ^....IaE4538a -.04059707 LCN : 2"^`- .09516420'-" .03527598` = .03120186'-^.G32D7205-.02336145' .0020407 1-HT 2 .53363104 -.57104528 .57335660 .01387493 .0610eW -.1.1370275 i RS 3 _,...,__..- 12.00000000 0.00000000 0.30000004 C.000o0000 0.00000000 0.00900060 _.n LON "- ". 11864767_.- .04 82558E = .A3E35255 -""-`:62820704 =.02225441 D44o777 ^- 2-MT 2 0.00000000 4.00000000• 0.30400000 G.0O300030 0.000000"u0 0.0CJ000ia

SOLVE - FOR PARVIETER5

STANOARC _ DEVIATIONS AND COHRELAIION COEFFICIENTS - -`STp"-DE7 `ACCPRO ' ' CCNE- ~-CLOCK-- -EPH_'X- E _ EPH VX EFH YY EPH VZ . I- ACL B FC- .23823747E-02 1.00GULO40 - -- (ACNE' :319.3973E CZ .97714940 i.06000Cu0 CLOCK .79166992E-32 .49757622 .9lebsc/7 1.00003aJ0 " EPi* X .21795953'c*04 .0001731i .0.0[65879 -.10038041 1.00000000 ' T -- • •. EPH V .19c29G49E*04 -.G003UU2E .00088926 .-1005[445 .96692770 1.0000000 0`' EPH Z .112850588.04 .0003541E .00218536 ..10107Cv6 .93956298 .948E 1282 1.00400000

PPM VXY NT .91c12512E-J`3 -.0J029985 -.000i6G31 -.10408422 .23269944 .14934J36.14586115 ^ _^ 1.aaacaGDo EP:f'VY_" -"',929455828= 03 .00034050 ` =.00405765 - =: 10216916 1571d103--'^2528y9S9-74:7 73 .1F473E21 1.00004.70 ^ .. .'10422589 .09214382 .083vo044 `.265748:4 EPH VZ .87434083E-'.3 .GuJO`.441 .HeI6234 - .. ,15/50053 .00232763 1.63030430 -_ Q RS"t- :C019Z747 .LI475G58-"'.LD555587.00174829--=:00283817- :II0089675- .CO20315E .0012Eo4J .00187279- y LOU 1.Golb6298 -.00429347 .LJ144634 .00060414 .00120602 .G071at87 - _ _ ^.- ^._ .00000138' x.00113217 .00?30161.__.. _._._ r -.30097816- .01105443 .LI40lb3d .005lb055, .02098064 .04841572 -.0.426130 .00148296 .0..696973 pS L '.03 3 05732 . GC579875 - . 1.0416946 . 003944J3 " -.SJZ29350 . 07381.127' .01C.r47248 .746124813 -.00142713 LCN 2 ."[[102355 -.04c6L,.03 .1`4229498 .00343952 .0411C810.00474545 .110053298 .G.113B582 .00162403 Z-HT 2 .Ou352500 -.GE74y951 .00993n34 .90517C04 .02097348 .04840955 .03430324 -.00148490 .U0666949 p'- ^-- ps°3^ "- '"0.000OOJaO " ` 0.00000[30 ° O.00000G00 "" O,OOODa00D B.CD000aD-II.0D00C000"' r 0.00000000 0.0000[.130 6.000GJOGO j .Utf4?271 .007tc935 -.[0177227 .OD0589ia .Q.Iko 616 .40561C47 LCN 3 . _.., -- .C2G251ST`"" -.CC115273 .001615951 - Z-MT 3 [.0[3000[0 0.00005[.0 0.0[000000 0.00700000 O.000OJOaO 0.3000[[10 a.oaaeaooD o.oEOaGJ^O o.o^loaaoao

SIC UXCERTAINTY RELATIVE TO EPMCMCOIS '60CY

^. 3

^.MJ4t:^V.^^".• ,!•••.; _.._ 3•x.... e:E+• +t t .a d a-%#, » r,. .'. e. z*;; n v# ..,.e+. N n n :v[i.*e.,. ^:aR`zk-m:. ^°r.t^+l-x++ei+M r+1M'A?'saln^#^n.t^N=ai?" ...i...'.ws u£.ceHsMSNiWe4}t>'vaANit.W. 9b;e6Yi4^+^'+*^.HF#. :list£..=.1^i^"rrvA3E+i3 4.:61:,., _..._.^...... _.-...._....^.^^...a,...-^w_..,...,..,u._.-- ...... ^._._. y. _a 1 ,...,.. =.v,^...-.. _. ,...,..^ T - ARC DEVIATIONS AND CORRELATION COEFFICIENTS q ,. f } p , f _, __ _ _.^...: .STC 0EV - x t Z vx y yL _. ^.,.. x, .._.- .217S51GAE r 74 1.00:000000 _„_' ,. ._ . _._ ^._ Y .19[204%JEr04 .9E957913 1.000O0000 ^^ .lit6G45Etr74 .941341E1 .91394295 1.00000900 Y!C" 94tl.5857E-03 "' °"' .127101:3 ,144191 i7 :14444351 -1.II030GS00 `' YY .93922249E-^3 .IS48E694 .iSifiOW - .13659926 _.13956417 1.00000000 vi .6586551.3E-63 .09J875u3 .07882844 .26566155 .18731137 -.03074761 1.00043CE0

POSITICW SUB-BLOCK fi E-VALS 13GRT1 EIGENVECTORS

".797385Ertl4 .70522544' ­.61748553"'-.34638u11' .207713E-03 -.670827E4 X42213694 .60975057 r .411952E•03 i .US45013 -.E6371462 .71192383

E-VALS l5GRT1 EIGENVECTORS

` :1[25Z6E-02 '".75526045 .48G29324'-:43913776"'°""" ,537761E-03 -,14494765 .78263412 -.60531111 .100745E-03 -.53443985 .39596262 .b6J&k023

CONTRCI CCVAPIANCE AT MANE6VER EXECUTION TIME 570.0000 DAYS k SS-'PO'SITIC^f = .b5917oi5E0.-KN` R55 VELOCITY- .19754l03E#01 M/S

'STAtE' _.._.._ PRAA4i:TEF5 ___...:

'3TA`NCARC"3EVLTTIONS "AflQ"'COZRECATIIIR`COEFFICIEFTS

r STG of x ' Y Z vx VY V2 s ._y.X :T15575O3E•^s 1.99300370 1 .45b15cl%+.' 3 - . 65Ed5587 1.01007600 VX +145030636-72 .84646615 -.05192783 .3'276626 1.000O0000 Ti[9604S3t5E-r3 .04Z52AE5 ` - ".87731729`- -.23654325 - .12272709"-'S.00OOOG;SO"- `' - V2 .93630324E-03 .70910371 -.54EJ6E46 .92693988 .56d224OR -.2245098u 1.00403LCO

- AccPPA .5E5Jb551 - . 42995652 . 65824744 . 282J1679 -.J758u6u6 . 54502558 CCX ^.6o7E7T19 .35:51112".59218841 - .33774931'-=,G3422C46 -.46'03=:b' CLCCX _ -.59099487 .3397[259 -.54441937 -.06541145 .GJ574191 -.4263u8Zo EGN 7 -.4G50S4:7 .5C:d26a5 -.0311.1734 -.60034746 .GUIZ5193 -.G9242t19 " EPN V =. 00601958 QCA94L04 ^-.0.1128483- .90150170 .00165308 -.ODz79120-^' EPN Z .O1°.OEleb - Ci38d50 -.4.1021142 .00437799 -.[0627778 .010917.5 EPN Vx -.00153560 .0027SZ93 -.0037.5569 -.000787E8 000178946 -.00382358 VY - . COZZ5J69-- ; 0 4 454704 =.-3ti744L5-:'00103524" ` = 0056II52 -- EPN V2 .00689955 -.01235279 .01729002 .00336794 -.93946324 .OL?5%045

RS i .02034151 -.6[030005 .uJ407977 -.00629689 .00210294 .00224545 - r LrN is .61623207 .40S39.423 -.0080%37d .60553209 -. Ga68la4 .71297363 A-" Z-MT 1 `^ - ..16556598 .J5rJ937& -.1:975583 -.06617046 -.GJ59793% .0241iuG18 ' RS 2 .01192904 -.AC667556 .01675489 .00953668 .00326377 -.00597213 k LOW-2 .41054210 .00545546 -.03457134 .00462209 -.0138797d .01164ikS "-" 2-NT 1 .05855252'"=.09357152 .1':267245-".',0459764'_'.''0647384 -.i,3i.Z5RC as T 0.00300000 Q.01+C0003o 0.41000400 3.00900090 0.'0000000J O.00Jy2JG0 LON E .01206356 .007005b5 -.01596979 .00366250 -40358144 .01213573 -- Z• .000OObAO 0.0[-0O^GDO x.0,1003330 "0. 00 300000`"' 0.0^70000G+T - O.COG000^

-_, _ .. -,r ,." .. ..- y >-. - - : ,^.s ta^A ...a HV ... 5.1^,a Nk-r ev,..,. . _ . c^?N.MM.rwr.t_sr..-...wy"^::.^u..M+e*aMw .. .. - - - +%AFYPhxY`xv R^.. e'-25e rl ^kf+^. 'M+inf+r'`ns..t ixMw ve-.. x.x. .sr. - _ s ^e

------STANOARC OEDIATTOAS AND CORREL'ATION' COEFFICIEATS °"

SID T)FV ACCPFO ..: CONE, CLOCK EPH % EPH ''I EPN Z EfH VM EFH YY EPH V2

ACCPFO .54452807E-72 I. Coe 09000 CChE _- -.135187 34E-01 -_ .-_ .51387515 1.000OJCjO ---- CLOCK .17501.94L-OS -.98704162 .90!85097 1.00u00000 EFM'%- .2Z41.5o30E#j4 -.00J6970E .00050529 .00021694 1.00000000 EPH T - 1975144AE#0'. "-- ' -.CC222515 .002079.05 .00188894 .90004804 ''1.00000000"^ EPH Z .12370.►46Ew : .00E4.812 -.00575142 -.Ou483992 .8308737b .75000717 1.00060040 --EPK iX' -.,99309687E=93' -CO213510 " -`.001d1508'^:00 14 1889 - :311719ET .Y099a7Z7- :I071II 1.00000000 EPH VV .99237176E-03 -.0O351522 .0GG16229 -.00052618 .06510138 .3i101353 .06970161 :0333749].-"1.00J^'O^SO EPH VZ .9796238te`-03 .00-314543 -.GCJ881E6 -.00186884 .03561637 .03u67114 .3960132S .C2723241 -.90151559 1.00000030

-.. _ RS.. -.1 - ^.. .Oul?0995 .00042472 .00143224 .00251572 ,`0294563 .00143775 -.60025744- .C[020624 ...-... .00029551 -.-_, LON 1 .00265921 -.00260210 .4C246J91 .00067059 .04198088 -.00815548 -.0000318E .000J0924' CuG 27163 _ T-HT'i `" " -.3C221248 00487581 --- -OC7S0155 .00343355 " :02111448' -.--oG75T8F0 - .Oj05oJ53 .00065470 .00070214 RS 2.C304c01.8 .cO0t7767 -.00i84216 .G0679C33.. .. __.. -..00257298 _ 004%4212...., .. _ .0100941:' ` -.14003.5%5"--' -.00018136 LON 2 .00196JE:9 .0O237S1t .40244853 .00410891 .0.186070 -.005b8132 .000[x3597 .00007244 .CO017224 "- `-.00773520 - ' .GC527352 - - .CC182901 -' .00343160 .02108967'- :'44754355 - .004587S8 .CCJ64612 -.G0u82o26 r+ a s 7 _ ... _ ...... ,_ ._ .. -. 0.00000010 O.0000JOu0 0.00000000 0.00000000 0 ,00000040 0.0000OC 60 CTS 0.000OOG00 0.0000000 •- . O:tt0000000 ^ I LCN .9t22G2£9 --OC235553 .06232553 .00036923 .40181970 -.00657322 m .u0G0j194 -.0000 869 .OuQ21026 Z-HT 2 C.:So GC370 O.00003CJd 0.00600400 0.00000000 0.00000000 0.000C9Co0 0.00300000 O.v3000003 0.0000u000

S7C UFCEi7T7lTNTV -RELATIVE-TL"EFHEMERIS 20CT - - -'

"STANQARO DEVIATIONS AND" CORRECATIGN COEFFICIENTS

STO OEY X T 2 V% VY V2

% .22637172E+;4 1.00000000 .20C3ou2RF:434 .8714/50.7 1.0Cu00000- 1 .13j54E,?6E•34 .80972413 .6E750L72 1.00000040 V % .17583795E-2Z .27201403 .04I66E63 .15631582 1. 00000600 "vr ":i^7E17253E=DT"--"":06409753. "-` -:327S58Z7 -'-.p i661964 .^Ga420053'i-L'TiDZD l YZ .134s18E4E-02 .09561015 .04199385 .4U9710b9 .33799681 -.19221181 1.000000c

POSITI07. SUB-ELOCK ..`_ " `E-VAL 5!SCRT1 cTyENVECTOFS"_""...:_

..319799E#04 .71271927 .60781314 .34809194b ..__.595747E+07 -. _.6541.7167. .40:,12693 .641vDi.3 - -" .SI383CE#03 .25032426 .68549323 .68369204 ---:.._..". •.._._ ..... _ _ --'"_"'"'"E-Y8L•='^rSCfTI uGEMVECTOAS .1E6559E-02 .93314;703 .06611262' .%229oC76 .I4#7076-02 .11c42251 .91279708 -.1914bSIZ .114386E-02 .41193095 .4G302b82 .81724065

^+ v -56I.5000-'HEFCFE- M=IZIZ P=" .1732E+05 KH '" STATE .1LJOE+,,5 .100.L+05 .ICLQE+45 .5016:.-U '- .SDG1E-iZ ':SOI' ' E-CZ V= .8711E+01 M/S SOLVE-FOR ..200E-01 .3500E-01 .450uE-01 .JOJGF+04 .3CJ0E+04 .3000E-0i .1000E-02 .ljQGc-u2 .IJGCL-02 °-"- 563.50GD "AFTER 1t=1212" P=°".14O3E +J5 KM STATE .1'49L+J4 .9974L+04 .9632E+C4 .4994E-uZ-.25,76-.2 ':4453_-L2 V= .7163E+01 M/S SOLVE-FOF ,2198E-01 .35C.E-01 .3499E-JS .3000E+Or .3000L+04 .au:Cc.+U4 --- - .l00 0c-G2 .1000t-42_ .I000L-02 _563.5000 EEFCPE M=41333 P= .14GE + 05'KM `_ - STATES .1547E+04 . y 974 F +.:4 .9E32E•J4 :499LE -02-25b7E- CZ^CL53r=CZ -3 V= .716aE+01 M/S SOLVE-FOF .6198E-01 .350.,E-G1 .3499E-01 .3:leGE+04 .3GCGE+34 .3i.LJE+J4 .1CZGE-02 .1000E-u2 .1000E-02 ` 563.5000 AFTER'" M=4123 'F= .5512E#04 KM STATE '.7:45E+03 .4099E+64 .3E41E+04 .4994E-J2 ':2399E-L2" " :4435E-tZ V= .7099E+OS M/S SOLUL-FOR .C19oE-01 ,3500E-01 .5499E-01 .28696+04 .28866+04 .28+2E+C4 .100CE-02 .1000c-02 .lJCOE-02 D000- FEFCRE`K=SZIZ-- P= -- 5539E + 04"KM--`-- ' STAT£ -":7!SCE + J3 ."41 u6E' ► Q4-- .3E40E + 04 ": 5038E-ti1'-'.2532 £- t2"- :L4ctt-t2"^ O V= .719ac+01 M/S SOLVE-FOR .Z198E-J1 .350^E-01 .3459E-01 .2871E+04 .21!,17-6+04 .2E+3E+..4 • .100C"c-02 .100at-u2 .9999E-03 lij V- 564.00-0 AFTE R M=1212 P= .5416E+04 KM STATE ' .72JBE+C3 ..95iL+C4 ..5634E+j .1827E-02' '.24516-.1 --.LcISE -:Z V= ,5292E+01 M/S SCL4t-FOF .2095t-01 3479E-01 .34o5E-01 .283nc+Dr .28%JF.04 .2d42E+44 O d .10GOE-C2 .I000t--2 .9979E-03 0 !+ -'564.JC.'Q"` EEFC PE - M-Z072 P=' - .5416E+04 KM STATE' ° .727BE+03 .3951E+P,4 .3E34E+04 .18276-02 .2453E-tZ :431SE-C2 V= .5292E+01 M/S SOLVE-FOR .ku99E-OS .J^79E-U1 • .3465E-01 .2636E+04 .2643c+04 .2142E+9• .1000E-02 .10L CL- 02 .9999E-03 r^' - '564.0030' AFTEP M t 2UD2 - P=' .326EE+D4 KM " STATES"- .6014E+03 .1553E+54 .2810E+ ^4 .138CE-J2 .2451E-C2 .5315E-02' ^b V= .5151E+01 M/S SOLVE-FOR .2099c-01 .3477E-01 .3465E-01 .Ze63E+J4 ,2499E+04 .2ELZE+24' .10005.-02 .10001-C2 .9999E-G3 Q 564:OcCr--'BEFCRE'-H?Z121" - F= - 32EEE+04 KM -STATE"`-.6G14E+!l3 "'.1553--+84 - .281Gc`+C4 '.138ZL -32 V= .5151e+01 M/S SOLVE-FOR .EC99E-U1 .3477E-01 .3465E-1l .2263E+04 .2499E+04 • .2E cE+J4 .1000E-02 .100CE-02 .7999E-03' `564.00CC -'AFTE'i""N=2121 F_` .1734'6+03 KH STATE - - .6441E+62 .7736E+C2 .1412E+CJ .1631E-12 '.2468_ -02 .4315_-CZ ' V= .509aE+01 M/S SCLVE-FOF ,2099E-01 .3477E-01 . 1 465E-J1 .2261E+04 .21486+04 .157EE+04 ~ Y .1066E-02 .1000E-02 .99791-O3 _5W.000D -'-EEFCPE"'"M=4123' P=" .1734E+03 kM STATE --`.6441E+02 - .7736E+u2' .1412E+03 1231E-32 .2468E-II2 .4315E-VS V= .509?Ei01 MIS SCLVE-FOR .2099E-01 .347/E-01 .J4o9L- Jl .`ZZ61E+Q4 .21481+04 .1576E+C4 Ca .100CF-02 .100it-02 .9949E-J3 `- 564,0000' AFTER M=4123 P= .1733E+03 KM ':TA^lC .L43Ct:.02 .17341 ka .1411E+J3 JC t:-C2 V= .5077E+0i M/S SOLVE-FOR .2^_99E-01 .3^7fE-01 .3•.b5t-ui .2205t+04 .2..141+04 .1356_=+C4 ^• .39SAE-u3 .9598E-03 .5996c-03 564.50GO" EEFCRE "H = 1212 P= .29ld `c+G3 KM STATE --.GC--OE+J2 `:1385caL3 ' -.2453E+03:134 4 --32 -.Z542c-':-:45456-CZ' V= .52liE+01 MIS SOLVE-FOR .2799E-Oi .3477E-01 .3465t-61 .2207L+04 .2C30E63. .1.57E+J4 .7995E-C3 .99,JdE-03 .9995E-03 -"564.56CC AFTER -, W=1212 P = .2864E+03 KM STATE "' .41?8E+.i2 .1364L+v'3 '.248 4E'J3 :iC46F-J2'- .2457E-L2"- V= .50726+01 M/S SOLVE-F R .2517E-01 .3331E-01 .3420E-07 .5!2076+04 .2016E+L4 .1359E+34 .9^;SL-o3 .95986-33 .9995E-G3 -" rE4:5tt "PcFCFc -K=4123' F=`'.2864E +03 KH " STATE ° ' .4126E+C2 2.1369E+J3 - -.24P4E+33 ".7:GJEL-S2 - :.4°7E-t2 - .LSILE-t2 V- .5u/2L+01 M/S SOLVE-FOE .22..17E-01 .3J31E-ui .j42bE-01 .2267_.04 .2-,10E+Jw .1.691+3w .999bL-03 .9998E-C3 .9995E-03 ` -SE4.50 C." - `AFTEF ' `'M=4123"- P='".283EE+02 KM -'° STATE' ­ .4123E+u2 -:5.5511+03 :24--0--+00 .Lws^6E-JZ :2L2+E-T2'- :72575-12 V= .5005E+01 M/S SOLVE-FOF .2J17E-01 .3335E-J1 .w25E-G1 ,2.84E+04 .1:cJE+04 .9992t-03 .,1593E-03 .99.R5L-C3 ^5G5.DOCu BEFCPE-N=125'6 F= .4712E+0 '1CM 'STATE--.-593.3E#02 -.'2317CfV3 .4117E+C3 "".12LSE-32 "'.2515----2 -' :4026_-C2 V= .5167L+01 MIS SOLVE-FOR .2,117E-01 .3331E-01 .3425E-01 .2187E+04 .196cC+04 .I.0 L-C4 .9994E-L.3 ,9994E-63 .99SSE••03 -565.30Cd'-3FTEF-- -K= 1'212 -F￿ `.4656E+ 03'KM -""- STATE -.SGIIG+C2 -- .2274E+,;3* ­ .4112L+43 "'. 1113E-G2 "".2455£-:2'"`aZ^lr-t2 V= .499.E+01 M/S SCLVE-FCF .1347E-01 .2895E-u1 .2_45F-3i .2167E+U4 .1962E+04 .1260E+04 .1994L-.03 .9594E-03 .59ASE-03 - SES.COGG"`EEFCFE'"t1=2'072' P='" .465aE+73 K 11 `' '"STATE'-' - .5501E+02' '_:22/z#L+C3 '-.4CJ2E+C3 -.1113L-02 .2455i-JZ-`^2?1`^-tZ' V= .46 0,16+C1 F/S SLLVE-FCR .13470-01 .285 5L -01 a»St-C1 .2ld7c+04 .1966E+C4 ..Zc5E+t4 5934L-03 . 21774E-u3 .9985E-03 --"5E5.000O'--`AFTE9- K= 2802 ` P=_ . . 24571E+03 KM STATE° .5ii3C+02 , [216E+G3 "'' .3SE6L+03 :1131£-CZ^:t396E-r2'^:LESb'c-.Z^- V= .4873E+01 M/S SOLVE-FOR .1749E-01 .2889E-01 .3080E-01 .2187E+04 .5,162E+04 .UtdE+94 .9994E-03 .9994E-63 .9985E-03 : -5b5:^DDQ -6EFCr7E^i=-L1ZT --:L57SE + 0TKN ' STATE". 5053E + O2 :2216EaN 4.3966E + 03' :Y101E 0Z'-:2396---LT2'-.,4`G9DE=QZ^-- V = .487 jEr01 MIS SOLVE-FOF .1:49E-01 .28096-01 .303OL-C1 .2187LOG4 .1362E+a4 . lzilE40# .4994E-u3 .J gy 4E-J3 .9985t-03 - 565:0000-'6 TEA-' TS=2171 P"='S15bEE + 0`3`XM `"" STATE' "°. 35'i9E + 02 "-:75760 + C2 "".13491 + 03 .2 .5919E-33 .'84176=L3 -:i53I£-72 V- .18EJE+01 M/S SOLVE-. FOR .5683E-02 .2857E-01 .3077E-01 .2137E+04 .1962E+0*' .12EoE+04 .1994E-u3 .9994E-43 .9985E-03 565.0040 = _ . .5919E-Iii c- -1'2!- Vs .1063E+01 M/S SOLVE-FOR .9483E-02 .2857E-01 .3077E-41' .21871+04 .1962E+44 .1266E+0i . 119940-U3 .9994E•U3 .9y6SE-03

V = .407UL, U+ n. /J .)YL.L-f Uw .S4OCf-UC sC.2rc-va .JUI.0-U• .C1/7c.U• .L7QLc•u% .AcAcclvq .947.E-u3 .9983E-03 .9965E-03 565.5000 EFCAEi1=5251-P= ':212)6+J3 KM `_ STATE .5169r_•u2.IuCIUI,•C3 .lt70E#33 .85AOc-C3 -:i213E-L2 .ibCiE- Cc J V= .2184E+01 MIS SOLVE-FOR .S482t-02 .2857E-OS .3077E-u1 .217AE+04 .1935E+J4 .12luE+44. ¢ .5987E-03 .9984t-03 a9b4E-0S_ " 565.5060 %FTE9_ M=1212 "P=` .?Z68„+03 KM STATE"` .3 .1'u 6i +03 .3T68E+C3 :5849E-035849E-31 " 79391E-I3- 1595E-:2 t V= .i94lL+01 MIS SOLVE-FOR .9j341-02 .211joE-01 .7049E-01 .2178E+Ov .1935E+04 .12luE+04 .SSRIE-03 .99841-03 .9964E-03 565:5000"EEFCPE`FP4L23 " P- .2061E+03 K g--'- STATE ^: 375FEt0Z 10abL # 03 .176 31E+43 5849E-33- ` .9391E-:3^f595E-Li ` V= .1941.+01 P/S' SOLVE-FOR .S334F-02 .2198E-01 .3049E-01 .2178E+04 .1935E+04 .1216E+C4 .95tl:E-03 .9984L-03 .9964E-03 -56585000 AFTcIi -"it=Yi3'23''P='^.2:6Sn+03 KM STATE " .3754E- ,,2 .1JG2E+u3 .l2t>lF+C3 .5836E-"03 .9337E-C3 .1515.-.2 - V= .1930E+01 MIS SOLVE-FCF .9129E-02 .2198.-01 .449L-01 .2169E+04 .191-nE444 .IldlE*416 .995E-03 .9907E-u3 .59335-03 566.00M -BUCRE'-A=12l2 P= .Z759E + 07 KM -`"'- " STAT`E 5E84E402 . 138,0. +, 3 .232IE+;3 .7910. - u3 ` .1276E- ?Z `-71696E-u2'- V= .2265E+01 MIS SOLVE-FOF .9329E-02 .2198E-01 .4049E-01 .2174E+u4 .1919E+04 .1ttSE+04 .5956E-u3 ,9968E-03 .9932E-03 566.0090' AFTE4 - 'M=1Z1Z P=' .2712E#03 KM STATE ":4652=+G2 .1337E+C3 .^a13E+03 .5855E-:y' .1014Ei U .16325-0Z V= .2049E+01 P/S . SOLVE-FOP .92C4E-02 .1714E-J1 .3615E-01. .2174.+04 .1919E+04 ..1185E+04 .9955E-03 .9968E-03 .992E-0.3 566.0000 '_EEFCRE'- M=20 145 'P= .2712E+03 KM STATE --'.,*652E4652E+32 " id37E+03 .2313.+03 '.5850E-'u3'-.1314E-Z2 . 1314 -c-J2 '- .i6A2L-C2 -1 V= .Z049E+01 HIS SOLVE-FCR .5204E-u2 .1714E-41 ..015E-61 .2174E+04 .1919.+04 .1^:'^E+2i P .SS5SE-03 .9900[-03 .9902E-03 2 566.&C30'AFTER ' M=2CJ2 F= `" .2692c+u3 KM STATE " .4E:GE+02 .-is^7t+.3- .22S7E+G3 . 431E-03 .9702E-:v . ibJ-z.-uc V= .1951E+01 MIS SOLVE-FOR .6775E-02 .1054E-01 ..103E-ul .2174.+44 .1919L+G4 .1185E?04 .9959.-J3 .996BE-03 .9932E703 5E6".0000"- HEFCPE-`N=ZI21 -' "P kM STATE - .46CCc+02 .1327E+0 .2297E+03 .5431E-03 - .9792E-u3" - ".1603Z-C2 - N , V .1951E+01 P/S SOLVE-FOR .6775E-02 .1654E-01 .2193E-01 .2174E+04 .1919L+04 .*1851+04 p^ .S95SE-33 .95vBL-U3 .9932E-03 t j 566.0040 - AFTER " M=2121 `P=' .1472E+03 KM STATE .3368E ► u2 .7177E+0L .124UE+03 .3586E-73 .5135E-C3 .6594E-C3 "" C7 V= .16Fat+G1 PIS SGL'VE-FOR .6367E-02 .183E-01 .2071E-01 .2174E+04 .1915E+.4 .118bE+44 .9959.-03 .i96dt.-03 .9931.-03 & 5E6.0930 - EEFCFE -- M=4123' P=" .1472E+01 KM STATE .33E8L402 77177E+ 2 .1240E+u3 '.3586E- 03'" `.513SE- C3 --.a59JL-C3 V= .10EJE+01 'MIS SOLVE-FOF .6307E-92 .1583.-01 .2071E-01 .2174E+04 .1918E+J4 .11lSc+G4 +8969:-.3 .4964E-03 .5931E-03 S66.G0 0"'AFTER M=4123 P= `".1471E+G3 KM STATE " .33E8E+72 .7172E+.2 .1239E+J3 .3533E-03 " .5125E-C3` .6575E-03 V.= 1061E.+01:MIS SOLVE-FOE .63746E-u2 .1543E-01 .2[71.-01 .2167.+04 .1946E+Ov .1159E+04 .§921£-03 ,9941.-03 .9883E-03 -`566.SOGL' EEFCRE ' 11=1ZiZ ` P&--.1773E+03 KM `` STATE'-,-' :42E3E + 32 ` .9184E + 92 .1456E+ 33 .5324E- 03"-'.9766E- L3 ' .9b41f=03 V= .1462E+01 MIS SOLVE-FOR .6306E-0G .1583E-01 .2u71E-01 .2172E+04 .1911E+C4 .11b^E'04 .99252-03 .'y943a-OJ .9832E-C3 "566.50GC"AFTER- N=1252 P=-- :17222+03 KM STATE ­.3710E4 12 -`".85S4L+CZ .1451E+C3 .3958E-J3`- .5541E-:3 579114E= L3^ { V= .1129E+01 PIS SOLVE-FOR .5452E-02 .1352E-01 .1751F-31 .2172E+04 .1911E+0• .116E+:4 I .8925_-03 .9943E-.3 .9882E-C3 -566.5000­EEFCFE - )f=41ZT-- P=`'.1722F+03 kM STATE" .371CC+;2 .85u4t+J2 `.1451E., 03 ' .3958E-03 :5541£-£3^ 9ii4'c-C3 V= .3138E+01 MIS' SOLVE-FOR .5452E-02 .1352E-01 .1751E-ul .2172E+04 .1911E+04 .116E+04 .9925..-d3 .9943E-03 .9882.-03 b - 565=.50CQ "AFTER ""M=4123" P-" .1719E+02 KM STATE °" .3708,+'52 .8489L+62 .+4486+u3 - .3951E-03 '__".5523E-C3"- 79085E-C3" Y^ b V= .1144E+01 MIS SOLVE-FOP .54491.02 .1352E-01 .1751L-01 .2i6uE+04 .1901E+04 .1146E+04 V 'C+ .5873;-03 .99u6L-u3 .9815E-03 -S6T.0JOq EEFCPE "M=IZSZ" P= ` .2105E+03 K31 ''o STATE-- :4917[+"I2 :1.b8.5E+,i3 "71735E+03 '- .5243F-03 -':1005E-C2 :1012F-'u2 r^ r V= .2519E+01 MIS SCLVt:-FOF .54413E-Ul 1352E-01 .1751L-u1 .2174EtG4 .1937c+f:4 .115LE434 .9878t.-o3 .99, dE-63 .SB14E-.3 ^y - ;67.00.d `AFTER -'M=1212` P=" - .2051 =_+03 KM STATE -.43ESE+.12 .1024E+a3 .1723F +u3 ".41tl6^ -u3 :59356`%L3-73582E-c3 ^y V= .1202E+01 MIS SOLVE-FOR .4777E-02 .1146E-01 .1504E-d1 .2172E+04 .1907.+., .115.E+04 •Lt . y 878t.-03 .9908E-03 .9814E-03 - 56^.00I'Q^EEFLFE M=2042-Trr-ZC51E +G3 KM'"---STATEi43E1L+::2 71424E+03 ".1723L+ C3 :4188E=03.5935E-.i.95126`• 05 f V= .1202E+01 K/S SOLVE-FOP .4777E-02 .1146E-01 .1504.-01 .2172E+04 .1907E+04 .1154E+04 .96781-63 .8908E-03 .S814E-03 567.000II`"AFTEC''--'Y,=ZCDZ'-Pz -72048E+G3 KM STATE- .4356E+ T,2 --.1022.+43 `.1720E + u3 '".4138L - 113 j; V= .1183.+01 P/S SOLVE-FOF .45371-•32 .1145E-01 .1415E-01 ,2172E+04 .1907E+04 .1152.+04 .98781-03 .9904L-03 .9814.-03 -567:0 u - L4LtE+Ti3-K?f- `S7'ATE :"4356E +t 2' 1OZ2e+'^3- T72CE+ C3^4°1306-^3- 3337+-rt3-9122E=^03 Vs .1184E+01 MIS SCLVE-FOR .45376.02 .1145E-01 .1415E-31 .2172E+44 .1907E+34 .115.E+34 .987eL-03 .99JdE-03 .9814E-03

I'

r y

r! " - 567.00LO""AFTER — M=2121`-P="".1377E+03 K1+ STATE"-- .3407c.+t2 :RK11E+U2 .1147E+03 "':31789-SS`-:3T13E-t3 - .RL94C-CJ -` Y= ,.7812E#OG MIS SOLVE-FOR .418-.#E-92 .1052E-U1 .1360L-01 .2171F+04 .1907E+04 .1152E+0• .987x1-u3 .99081-U3 .9813E-03 -TSb7^0'i100-O'cFCR=43ZT-P 41377E+03 KM - "'STATE .3497E+02 " :b811i+2 :1147E+G3-^1714E=u3-3Tr3b-L3-bD9LF-'CI i V- .7812E+0C MIS SCLVE-FOF .4185E-02 .1082E-JI .1368E-01 .217YE*J• .1907L+04 .115cE+04' .987dr-63 .9938E-03 .9813E-03 •'" 567..000: AFTER­ M-4123' P '.1376E+G: KM STATE .3417E+LZ .6807E+C2 .1146E+03 :s176E-03 - .577119 • ^.3' :oQ85E-C3" [ V= .7801E+00 MIS SCLVE-FOR .4184E-02 .1681E-01 .1368L-01 .2167E+04 .1699E+0• .1136E+04 .9bUSL-U3 ,9859E-03 .9745E-03 _367.Ti0L0- CFFCiPE-'1E=IZiZ' ` P= ';1574E+03 RM "' "' STATE "'. 4809E + C2 47723E + G2 .1^e5E+03 : b4L• 8L-13 " . 3T92E - 03-.b38ZE-t3 V= .98G7L+CC MIS SCLVE-FOR .4184L-02 .1J81L-01 .1368E-01 .2173c*04 .1905E+04 .1143E+04 .5815L-63 .9861L-D3 .9724E-03 567.5000 AFTER M=1212 P= .1539E+02 KM STATE __. .77049+-2.37E5E+L2+ .1276E+03 :.310E-73 -'.3652.. - -°^3'-':58579-C3 V= .7655E+00 MIS ' SOLVE-FOR .379bE-02 .9dd8E-02 .1224E-01 .2173E+04 .1905E+04 .11.5E+G4 .9815E-03 .986lL-03 .9724E-03 56T-53C0 _BEFC9r__W=41Z:T P= 41536E+03 KM " STATE "-. 3765E +t 2 ""47704E + 02 '":12769 + 73 4.310E-GS' 4 3652E-CJl 55^T -Y3 V=- .7E55E+00 MIS SCLVE-FCF .37911E-02 .9d85E-a2 .1224E-01 .2173E+04 .1905E+04 .11r3z+64 .5815E-C3 .9801E-03 :9724E-u3 - 367.50_3""AFTER M=4123 P= .1539E+03 KM STATE. .S7E3E+C2 .fb95L ♦ J? .127,5L+U3 .J30SE-J3`--.B643c-4J - V= , .7639E+00.7639E+00 MIS SCLVE-FOF .3797E-02 .988,E.-02 .1224E-41 .2168L+04 .1994E+04 .1130E+04 .973CE-03 .9799E-0 .9615E-03 568.0000 IIEFT4E - `=iZiZ" P-- ;17579+03 KM `STATE-' .51C2E#U :3725L+02 .1434E+03 .6309E-03" `:33989-L3" .569Yi-LS V= .9156E•00 MIS SCLVE-FOR .3797E-02 .9854E-02 .1224E-01 .2175L+04 .1906E+04 .1138E+04 .973EE-03 .98.1E-03 .9614E-u3 568.CGC0 - AFTER`° M=1212 P= ` .1707E*03 KM STATE" ".4158E+G2 .8662E+'C2 .1411E+03 .3326E-03 ""43392E-u-3'- SZ5 E-'U V= .7G84E+0C M/S SCLVE-FCR .3663E-02 aWd8E-u2 .1183E-01 .2175E+64 .19.16E+04 .I;.;- u4 .9736E-03 .3801E-03 .9614E-C3 568.4DII0"i'cFGAE-Ti=-ZIIuZ `7 :17C7E^Q3 KM" '' STATE ---44158E+02 48662E+02 .1411E+03 ;3326E-03' .3392E-G3"` .S2SSE-03 N V= .70541:*60 MIS SCLVE-FOF .3663E-02 .9[831-J2 .1183E-11 .2175E+04 .196bE+04 .1138E+44 0%r .973EE-03 .9831E-U3 .5614E-03 1 566.3OCi7 AFTER M=2002 P= .161ZE+03 KM STATE .4081E+u2 .8108E+02 .1335E+03 .3301E=03 - 42908E-33 ".4547E-L3 '"- L11 V= ab3Z7E+00 MIS SOLVE-FOR .25b9E-02 .34S6E-02 .9495E-02 .2175E+J4 .140DE+04 .1138E+04 .973bE-03 .S8J1E-03 .9014E-C3 `568.Qu`00 9EFCPE M=ZIZl P= .IEIZE+03 KM SPATE .4Cb1E*C2 .81J8£:+U .1333E+03 .33411E-03 .2520E-03'- .4547E-C3`" V= .6327E+G0 MIS SCLVE-FOE .[56`3E-02 .3436E-02 .849bF-o2 .2175E+04 .1986E+04 .2133E+34 .973EE-u3 .98J1E-03.9614E-03 - Ti63.L000 SFTER M.=21Z1' P= :1282Ef0.3 KM STATE .SSO8C^C2 .6405E+02 .1053E+33 .5053E-03 .ZC33E-CS .3329E-23' V= 44979E+00 MIS 'SCLVE-FOF .254Ec-02 .3414E-OZ .8495E-02 .2175E+G4 .190oE+34 .113CE•C4 .97391-03 .9801-,.-03 .9612E-C3 "Sb3:QpLi ^ EEFTFc-N=4TZ3'-TT=-1282E+03 KM'- STATE'- :35G8EaC2':64i5Ea4 .1 ":10_39+73 - .3053E-03 ''.2093E-C3"' :23292-tJ" V .4979E+00 MIS SOLVE-FOR .2546E-L2 .3412E-02 .8495E-02 .2175E+04 .1906E+04 .1138E+04 .973E-J3 .98u1E-03 :9612E-C3 568.D?2 `AFTER` -M=4323 - P= ,1;N;E 02 KM " STATE" " .3°d7E+J2 - 16404E+C2 .lC53L+03 - .3052E-03"`".20909-T3 43325E-C3'° V= .4ra74F_+OO MIS SCLVE-FOR .2646E-02 .3412E-02 .t494E-02 .2169E+134 .1901E+04 -1127E+04 ' .9E,35E-03 .9725E-03 .94804-03 `569.5TC.- eEFCRE- 'M=121Z "'r'=' .139PE+03 KM '-' STATE" _.484CL+02 "':68749+P2 .1117E+ 3 '.oZ6ZE-03` :232CE-Y3- 35a0E-:3 V= .7577E+CC MIS SOLVE-FOP .254EE-02 .3412E-02 .t494E-J2 .2177L+04 ,1909E+u4 .1135E+04 .9641E-03 .9728E-03 .9476E-03 363.5600 AFTER—- It- UL2 P= .1362E-+G! KM STATE .3747E+02 :6B61L+:2 .1116E ♦,3 .3215E-03 :Z743=-CS' 43352E-t3 V= .5115E+00 MIS SCLVE-FOR .2538E-U2 .3319E-02 .8462E-C2 .2177E*04 .1909E+w4 .1125E+34 .5641E-03 .9718E-u3 .9478E-03 ^6S.SOZJ-EEFCRE-7f'm6Y2T"P= .1362Es03 KM'"' o -` STATE"-:3747cf 32 - :68611+02 _ -'.1110Er03 .3215E-53 "`.2143£-C7 " .335ZE-C3 V=' .5115E+00 MIS SCLVE-FOR .e638E-02 .33191:-JZ .E462L-02 .21771+04 .ISGSL*04 .11:.)E+04 49641E-03 .9723E-03 .9476E-03 "565:50 CD -AkiER H=4123 -P= '.'1362E+02 Krt STATE-"`-.3746E+02 .0858E+C2 :111515+03 ".3Y34E-T- -:'2139E-C3-':33+1E-L3 V=, ,5110E+00 MIS SCLVE-FOEi .Z538i_-02 .3319E-02 .846,2E-o4 .e171E+04 .19052+..g .11ciE+04 i 9524E-03 .9o37E-G3 .9326E-03 E9:Cr0-`BEFCRC R'3ZT2-F=".34919+ C3-K}f'STATE- 26E+OZ ^7421E + 02'^ 47193E + 33 1.63950- Ga'- ^ga3E - C3-'34^Ti5E-7^ V= .7748E + 40 MIS' SCLVE-FOP . k53BE-0T .3319E-J2 .8462E-02 . 218..E + 04 .1914E+ 04 .1.135L+34 .9 ,53GC-03 .9640L-u3 .9344E-03 s - 56%:Q000 --7FtF-M TZ1Z-Pa .1467E#DTXK STATE-44025E+02`-74141:+02-^SI9ZE+C3'334^c c -- -^r-- V= .5283E+00 MIS SCLVE-FOR .2537E-0'2 .3315E-02 .8462E-Jc .2180E+04 . .1914E+04 .1115E+04 .9532E-U3 .91140E-03 .9324E-03 rii 1I:QII00-FEFCP. E-M^ZQ3Z'P s 14oGE + 03'KM'- STATE- . 4025E + 0: 7414E + 02 ".1192E+C3 ' 3466=73 - 1229L`-713-47427E>^5= V= .5283E+00 MIS St1VE-FOR .2537E-02 .3315E-02 .94b2E-02 .2130E*04 .1514E+04 .1135E+C% .9532E-03 . 1*640E-03 .9324E-03

654_ _ s. --".,.^ ^ ...... r.....a....,..,_...... ,... e_ -"I - - - _

"569.00[3- AFTER"' n=zuUT"P=-1.457E#03 KKf `STATE- : 343?F 4UZ "-:7414[ + 02 .1191E + DJ -:23+7E -03-.ZZ29C = Z4 .3nP7, E-LJ '-- V=. .470^E#00 C/S SksLVE-FOR .2524E-02 .3319E-02 .84l3L-02 .218000% .1914E+04 .11M004 .953kE-03 .9640E-UJ .5324E-03

- = 569:T+II F^i►E-M^li£f-P'--I4;7E+03 KM"-` STATE- .3937E+72 .74146+C2 .L19ic+CS ':G307E -u3'-2229E C3-347TH LT V= :47GOE-00 M/S SOLVE-FOR .2524E-J2 .4315E-02 .8413E-OY ,2184E+44 .1914E+04 .1135E+04 .5542E-03 .9646E-03 .9324E-OS

A- 5E9.0900 -AFTER°"M=Z1Z1_ P= .1215E+03 KM STATE-_ .3470E+02 ' .6151t+62 ` :9891L+02" " :2178E-03- .1688E-23-2632E-L3 V= .JbC g E*00 P../S SCLVE-FOB .2516L-02 .3296E-02 .8412E-42 .2180E+04 .1914E+04 .lLl4E+04 .5532E-03 .9640E-03 .93elE-03 "^569.D000""rEFC9E-M= `GiZ3_ - P= .121SE +03 KN' -_" STATE-`":3470E+02 .6151E+02 ` .9891E+32 - ':2178E= 13 1E88T= 3-2637; E7 -- V= .3b09E+CC M/S SOLVE-FOR .ci16E-02 .3296E-02 .841EE-6Z .21833E+04 .1914E+04 .11!.E+04 .9532E-C3 .964CE-03 .9321E-03

- 569.0060"`AFTEW-M=-WZ3-fT=-.1215E+03 KM --- STATE " - :34E9E+02 - .6150E +02 ' .9889E+02 .2178E-J3 - .1686E-C3 - .2627E-I3 V= .3806E+00 M/S SOLVE-FOR .2515:-02 .3696E-0c .8412E-02 .2174E+04 .1910E+04 .1125E+C4 F .9401E-03 .95351-03 .914dE-03

^ - 5E9.5000 "EEFCFE -7i=i21Z-"P='".1304E +G3 KM` -' " STATE ^.4574E+02 " .65...2E+C2 `^:10?3E*[3`:5998E-^3-2[796-C V= .7038c+0u 14 /S SOLVE-FOR .2515'_-02 .3296E-a2 .8412E-02 .2180E+04 .1919E+04 .1125E+04 .9410E-03 .95.19E-03 .5146E-OS "569.SM 'AFTEP' 'M=1ZSZ P= IZ75E+03 KM STATE "" ".3716E/u2 -".6486E+32 :1u32E+33"` :3267E-03-YT95£=.3-:cII^1E=t3 V.= .4663E+00 M/S SOLVE-FOR .2:04:-02 .Jc95L-02 .6373E-02 .2183t+J4 .1919E+04 .11ZiE40,b .541;6-03 .95396-03 .9146E-03

' 569.5000-EEFCRr--- }f=4123 `P= 1275E+03 KM" -°'STATE `-- .3716E +02 `.6480E+72 .iG32L+33 :3267E-33 1796E-[3-2403[=II3-•`- V= .4o63L+00 M/S SOLVE-FOR .2504E-02 .3295E-02 .8373E-02 .2183E+04 .1919E+04 .1135E+04 .9410E-03 .9549E-03 .9146E-03

569.500 - "AFTER-_M=4123' - P=-°.1274E+03 - KM - ' STATE`-"'.3716EtC2 .6484E+u2 .1022'6+33 ".32666-G3 .1T94L-C3`".2797[-i3`^`^, V= .46ECE+CL P/S SOLVL-FOR .2514L-02 .32941-02 .837SE-02 .2177E+04 .191oE+04 .1127E'44 .1268E-03 .9421E-43 .8955E-J3 -57u.-UCZ -EEFCFE - 'M=1ZIZ P=- '; 1387E + 03 KM ' STATE-'- " . 5C y 4 c-?02" " ". 6914E + G2 .1089E + 43 - .6513E-03 - ` :21ED .- '" :3266=-03- ` V= .7559E+0C F/S. SCLVE-FOR .25G4E-02 .3294E-Q2 .8373E-02 .2186E+04 .1926E+(14 .11?7E+04 .9277L-03 .9426E-u3 .895JE-43 rzj

- '57u.G0i.0 AFTER ""M=1212 P= .1348E+03 KM STATE'- .3S87E+U2 '.6905L+02 .1087E+63 `.3393E-03 .1942[-C3 "'.29f7E-C3 '' "^ V- .4SUPE+00 M/S SOLVt-FOR .2502E-J2 .3293E-44 .8365E-02 .218oc+o4 .1b1uc+Jv .1127E+J% .9217E-03 .9426L-03 .8953E-03 4 .2967E-C3 "^- ; 570.0006 EEFCF.E .+=ZOG[ P= .1349E+03 KM STATE ' .34b7c+02 - :69C5E+02" "-.1087E+33 ".3393E-033- :15422-C3 - V= .4^OeE+00 M/S SOLVE-FOR .2502(-02 .3293E-42 .6365E-u2 .2186E+U4 .152bE+S4 .1137+C4 .9?7,L-03 .942EL-63 .8953L-C3 I ` i57J.C^C7 ` AFTER M=2C72 P= .1344E+03 KM STATE .38c5E• U2 .b9Z5L+L2 .IC67E+o3 ' - .2356E-03".IS25E-13"- '.25ELE-C3 "- 1 V= .42E6E+00 M/S SOLVE-FOR .25821-02 .3198E-U2 .7940E-02 .2186E+Ov .1926E+Uv .11.1E+04 .927;2-03 .9426E-03 .8953L-03 i .._ -570.0000-_T'EFCFE --M = ZiZi" -P=' - ,1344E+03 KM! STATE-- :3865E•02 .6905E+02 ''.iC87E +J3 "".2386E-03v19Z9E=C3'.2924E-C3 V= .4ZEEE+00 M/S SCLVE-FOR .2J62E-02 .31986-0c .7940E-02 .2id6E+04 .i92b +04 .1137E+04 j .5277E-03 .94661-03 .6953E-C3

- 570.0«CG AFTER M=Z1Z1"' - P = "- .1157E+08 KM STATE -- .3461L+G2 .5917E+02 - .9319E+u2 .LZ58r-03 -.1537E-[3 -.2425E-T3 V= .3653E+60 M/S SOLVE-FOR .2382E-OZ .3161E-02 .7916E-02 .2186E+04 .1926E+44 .1+'.7E+04 9277E-03 .9415£-63 .2950E-03

-570.00 .0"2 EEFCRE'N=4123- F = SS57F.+i,3 KM `-'STATE-`r34EIE+U2 5917E* C2 .9319E+C2 .2258E-C3 -- '.1537E-C3'-:24Z5E-03'` PRINT V= .3653E+UC M/S SCLVE-FOR .234SZE-02 .3161'6-02 .7916E-02 .2la6E+04 .1526E+04 .1137E+0. .5277E-03 .94256-fi3 .8950E-03 -57G. 00 'u0 GFTER" ` M=41Z3' F= - "-.1157E + 03 KM STATE . 3461E+02 - . 5917E + .2 .9318E+1 2 " .2257E- 03 .036E -C3' PRIMT V- .3651E+00 M/S SOLVE-FOR .2382E-02 .3160E-02 .7916E-02 .2180E+04 .1923E+04 .1129E+04' .9127E-43 .9295°---03 .8743E-03 •.._.-..__._ ..,._...._.. . 3.333.. -' - i_.., _ _

i it

i ...... _ .. .. _ ...... _. ._ .., .. ,. .. .. _. .,. .eiiY^aacSii}fi-MR:61^1v..u a.... _ :'. S •,,_ .. _ . ... et . , +^. 1+y' " . r ^° f 117 , e 3.2.3 SIMSEP

The SIMSEP sample case studies the last 50 days of the 1981 Slow Flyby tMission to comet Encke. The approach trajectory is simulated under the

influence of control errors which directly affect the s/c motion, e.g. PG, e

EPHERR, TVERR, TCERR, etc., and knowledge errors which affect the ability i to control the s/c motion, e.g. P, PS, and CXS. A single guidance correc-

tion has been included to demonstrate the effectiveness of the guidance a r algorithm in reducing target dispersions. Although the scope of this analy-

sis in no way exercises the host of options available in SIMSEP, it does w M

use th e most fundamental computational cycles and displays the basic out-

put format.

Referring to the sample printout ( see pg. 119), the first page shows + 'J U a listing of the $TRAJ namelist as has been presented in previous TOPSEP

and GODSEP sample cases. The trajectory initialization data which follow

define the reference trajectory integrating conditions underlying the SIMSEP

analysis. Next, the first mode peculiar namelist, $SIMSEP, is listed and

is followed by the SIMSEP initialization data on the two succeeding pages.

Among the error sources are the initial s/c state (PG), the Encke ephemeris

Y

(EPHERR), , s/c mass ( SCERR( 1)),-exhaust velocity ( SCERR ( 2)), and electric

power to the thrusters ( SCERR ( 3)). Thrust control biases ( TCERR) in the

reference control profile and thrust processnoise _( TVERR) are also input

as error sources. For this run, NCYCLE is set equal to one, thus 'limiting

the analysis to a single simulated trajectory.

Since only one guidance maneuver has been specified in the $SIMSEP

input, i.e. NGUID = 1, only one $ GUID namelist is read. The resultant

t,

LA 118 -A guidance initialization data are shown on the next three pages where the guidance event times, target times, active thrust control, and targets are identified. Because INREF = 1 in $SIMSEP, the s/c state and mass at the maneuver time, sensitivity matrix of targets with respect to controls, and nominal target conditions are input and printed. If INREF had been zero, trajectory information relevant to the guidance event would not be available at this point in program execution, but would have been computed and printed at a later time.

The trajectory simulation begins when the initial s/c errors and any errors that act as biases for the entire Monte Carlo cycle are sampled.

For example, Encke ephemeris errors, thrust biases and the process noise correlation times are all sampled to form discrete "actual" values for the current cycle. These actual values and the corresponding reference values are printed as part of the actual trajectory initialization data.

The only maneuver in this simulation is -a non-linear guidance correc- tion scheduled to occur 567 days from launch, or just 24 days after the beginning of this Monte Carlo simulation. The active thrust controls are

the cone and clock angles over the last two thrust phases (ten days each).

The designated target time corresponds to the reference time of Encke en-

counter (593.5 from launch); this makes the duration of the guidance event

26.5 days. First, the orbit determination process is simulated to deter-

mine the estimated maneuver state; that is, the knowledge covariance, samples

are added to the actual state. Then the estimated trajectory conditions

are propagated to the target stopping time, and the resultant target condi-

tions (K, Y, Z relative to Encke) are computed. The miss (target variable

I

14 118-B tl;

deviations on Page 130) is approximately 16,000 km and the quadratic error,

Q, which muet be driven to less than one for convergence, is 39.2.

Various trajectory related matrices, , Quand , are printed, along

with the guidance matrix computed from these sensitivities. The first

non-linear guidance correction (printed as "UPDATES" at bottom of Page

130) is estimated (.0593, .0072, -.0774, and .0105) and causes the

estimated trajectory to come within 3000 km of the desired targets. The

quadratic error resulting from these trajectory corrections is 1.4.

Although a maximum of five iterations would be allowed before the mission

would be declared divergent, the next set of thrust control updates brings

the estimated trajectory within the 2500 km target tolerances, and conver-

gence established. The commanded and executed thrust control corrections

are printed, and the actual trajectory is propagated to the final time

(TEND) since there are no more maneuvers. At TEND, a Monte Carlo mission

summary is displayed showing the final trajectory conditions.

If more sample missions had been requested and run, additional output t in the same format would result (if -requested) ar; the computational cycle

proceeded This would, of course, include the sampling of initial errors,

data for the guidance maneuver, and summary print. In the event that

more than one mission simulation had been executed (without guidance diver-

gence), additional output is displayed after all Monte Carlo cycles in the l form of accumulated statistics (means, variances, and correlations). In

particular,_ state error covariances,'s/c mass variation, estimated control a • correction covarances,, etc., would be printed and punched (if requested). ..y

d 4

r

A PRNML=Ts 1-0 L ENG1NE=21.6yf.65.21.65r ENGINE(11)2.64. _-- W NO-3,10 + NLP-3r NTPulOr ISTOP n2. Cf TLNGH-2443956.65478. __.... TSTARTs543.. TEND=593.5. (D STATE=1.9484380956197E8se.408465356318QE7 r3.142154 0207003E7r - --- _--•- :-- C9 -22.4042728704607#8.1888959228917.-.01434033 4_ 129739# - m SC3ASS-1551.35880 4 53. co

_ THRUST (1.1)=9.164.+S^O.rl.r1^0.^ . THNUST(l,2)21..140..1.s69.lo224.6r2*0.r4.r2*0.r THRUST(1#3)-1.s230.r1..7S.r252.r2.0..2..2.0.• THRUST(lr4)=1..310.+1..85.334.269.r29O.r2.r2*0.. THRUST(l.5)s1.x390.01..85.3341269..2*0.r2.r2*0.r -_ THRUST(1r6)-1.x470.r1..8a.3J4.269.s2*0.r3.r2'*0.r _°--- —_. -_ -„»— - - — -^_ - TMAUSTilrT) n 1.r52S.+1..120.50'1+C68.742r2^0.r:f.+2 n0.. -'^""""'^- ! THRUST(ls8)s1.+567.•1.355#129.6743.272.2092 ► 2*O.s6.+2*0.. T^RUST(lr9f^1.r577.r1.r1 y 0.64r80.r2 nO.r7.^2^ 0 .• ._ _..,_. _ __ _,_,_._ -...._. ._,•---- ThRUST(1+10) 81..5(17.rJ.s15Er.6814.78.0227r2*0.r7.r2 nO.• Tr4RUST ( lrll ) 89.r800.tb*C . rl.r2 ► 04•

tp SEND - ii

r J

k: r -w

.D 3rl23O *0 92U xlr►.otry rw,m of/930 17 230 co..oQCOa9QrzJ9i • r-v23 0' 9r/230 •O J3p f0.30L'L'OO0001 +ff • "3UON t4lCnj4St Jr/950 •O a30 2C+33000006G5o1T • t.01,r, J`^I Jr/0 • S •2 LC•'='GGO^^L7C11G• Ali 9r /W51 *31X4 ctr w h-lW- Zu93S/Sf•f•7 B0 -3 GC'JO404o00!+"T' 1tI^15f.U] 17t(OIl^'lIAkc2 • st.7lo V k} RO+30"0JU^740OCT' ac.nc_ 1-1414 Wyt '$O+ w403COC a 00 CS • Sr11G"a a_,rr1r10 OOQQC0000000 • Qi5RRR2 ' • "31V0 Nviinr iv 3Y3A3LLdU3 tvl+OV38 N3=L 3AUr+ 1V1I6tl4,CNV So_+_ ►• vC9d A0OG _^^__ , __ .,_ QQQQCC'T - QO49CQ • 4-- ^ ?CCOQO • C- —sre003't °C4UURU•C `0^OCL'0 'IdO C]'9u6- I C2C33C'1 0^JOOG•C COOCCO'0 u0LZZ0.84 00't128'951 C0^CGO'T L04Jr5'LkS Li C?C^_31 . 1 C'UNoo•C 0001GO°0 0007J0'Dk CBuJ*,9•GSC roa n, T ^^r4^a'Lt5 6 - C00-13.0.9 CC^300'O 0004C3•0- -- 002nCZ • 41i • 4CFIL9'64T CJ335£• I O_1D:J•4dn _ CC33?;19 06"1501C Qolwn C'CoZ47L'P9Z *COTCS•GZT Gl6CCC'T 401 *_?'its c - CC3103^•E OC7900.0 900CCC'J CJ00D3'69Z C4jh££'S6 '4AQ C • T u3..9:3'rAR 9 C^C^CC'2'- 003000'O--OOOU00.0'-^--000070•b9c--- COGoL£ • S? OrLUOU•T-'u-iutCO•C•bk CCD30C'Z OOCOCO.O 000000'0 09000]165Z OOC17kL•5(1 L00000•T' C7C 3C • uiF R 000700'2 OCCO00.0 050000.0 0330GC'252 CC0000'bL' U3GCC0•S D:L•0..7•DaZ £ 0070rr " 000000.0 CO ^_DCC'O --' 0000 1 3 • h2Z U'01401P9 OCUC]('i OLQUOJ`7Ri c' - a ►^ 0:30GC'T CC.IOCO °0 000,16[•0' C ^;,0:3.0 00013•0 C.5>3C'0 ^JC :3' y5 T at31SCb41 (Oa5/9?0) (336/2 01 _ tu3^) fJ`C7 - ( ^ :G) C =n(d. 3L ?175 Y301a --- 317c =N00 `=1JN4 x3010 - 319N7 :I t:OJ- jNll u •13 2' • b3EWnN 3SvHd 1Snbsl 3S7Ho it;ndHl 3SVHd 1SnoHl sS7{td itrm:nl Bsvmo 1NIz!r11as^N-j v.,rara 15Al;h •' - yIuc.1.UJ lGr-hl o ,h5cj33d

yCSC • Gel3vn C-Is hu11C2^3^NL V-4 _-_.'^ ^ •. ..._..., :_ - . __. ._ .. .. _ :. .... _. _. - .-. _ _ °^3N3 S1 [3hLlc 1 °9bT1

S;aUGo 9nZlYiII. : d: d(. 1Sal . ,,,. _ .. __. .. _^ .:....__._. _.__ —,.._: O 04QQ ODrQY•T- ._ ._.. ., iN]LJ11^D(/J ?CIIJ S. Ca n(I11^1J^6 N - Q00000QUh9' A.L I Iaj: ?315(Idhl MA 00GG00o059 • T2 T 19 d.:nuc X10-L!"b _. _.. -_. _ _.__ .__.. _ .. . -- --._ _._^___^^.._.,.935/w*3 00000009TR • 6e _.._ _^_.r_. ..a Ai1J+.L--^ 1$(ltnA3 2*3 OOFSh Q44iL" T55T sa7k ^aaS ZC +3fthQLR£26£S4F2' TQ-36TL62TpfFOh£hT'- T0^3LT62226569f9iB• L0+vT9R0L6212^dRt2'- Ill..0--A 60'+?RT36CL1592SRT2' 4O+3FCOLCZCRST2tiTF°-`-`-- 90+30aTF95i59RfOR9 • - 60+?t6T95E04fRBR6T• hG1:1I5Uc ---•-^ - ' 30r11INJ7W 2 A x • H90d3 30N38333d 3Wl 11a1AV SAVE JUCOGuCOCC'Lh5' 14 oUIT:A z1VIL 1vlilu

SJ3S 0266'ZS AIN 2R dh 5T 9 AON 0961 •••• 51T6 a7LI.0VL, ' ROJC0YtR5T•O55'rhtrl "•' '?LAG 1.71^!4r _. _ _. _. ------• NJOo3 It IlINI 3Hl 6 113V SAVO CuLOL0Cfi 45 • Lo5 NJOo? Lh3 ^a&. r=r tat S035 0266 ` 25 NIW Z1 CH F LT a3S C46T '•'•• 51VC avuprlv^ ROOL481R59'66hvh^^ • "* 3AkC hkiiur - - - H3Od3 1V11INI aHi b51l7 SAVO 046004404,1'£95 n90da ibV15' Acr-la.:rvel S03S 1266 'Z5 t.IW 2 47 bH £L c7b t16T =17U uC^i. 'u^ ROUQCEL455'966z'th2 •••• ! ivC I.:i'iu( — _ .- ^_ 1n17U 33n3a3j3c) N:)UC- 1rI1ihl .

rr•••rfff••rf•1frA••afA^rffrA••f /•♦ r.A:af ff frff•AfrAr +Af•Alraf ff ^Arr rff ••^.f rf•ff f f AffAAf ♦ f•rr•f.ff Alf afff•a•••f•f n f••f ••.f sfw nn •sr H1• NOIJVZIIVI1INI Ad01:i3f Vct ^• n n r••f••a• •••aap••fa•••fir••^•rru•ra•ar•Asr•ArrrrfA A•• ff^•••frsafru•••r^•A•fi•• rfa^^frara•r ► rf••^.•ra•tA^rf^^•ffri• ff••f••f• ffr,nw i

+r fSIMSEP IOUT - 19 IPUNCH=19 IRAN*lr NGUID-19 NCYCLE=1• INREF=1• EPRERR.tl;lalt=1000.9 EPHERRI292.11w1800.. EPMERR(393.1)s1000.9 EPHERR(4,4.1)_7,E-5r EPHERRt5.591) n 7'.E-5• EPMERR(6s6s1)w7.6,Sv NEP2(1)=;109 TEPH(1)=593.br PG(191)=146.39..34449.49029.117579.31099.35379 PG(292)-473.09.31869.37209.86S19.4245e PGt393)=148.09.3426•.3183+.N401+ _.r PGt4.4)=.6069E-3.. 4 30?r.390S• i" `PG(5^5)-.2355E-29.5329• - i PG(6r6)`=.5571E-39 SCERW ( 1):.0J59 SCERR, ( Z)-.0005• SCERR (3)w.005+ . ti TCERRt2.7):.UO2s2•.U29 TtERRl2r8)=.00292 • .02r —^ TCEi+Rt2r9)=.UO2.2 • .OZy ,- TCERa12o10) n .002.2•.02r TVERR(lrl)=.01v.5739.573• T9EkR(192)=2.sa125•.12593•1. ♦ TVERR(1+3)=.2+.71259.0125• AEr+O- 437952007701E•08 .955745797681E*089 .240678S16603E#009 -.399464859389E•029 ► -.671498459983E • Gl• -.437028247409E•01i' MENDs .1"J42538776E.04 SEND

t

•.o 90-:Y too a a atIrs, •o •D •o •o iM •a •c-^0000ae000ce, • •o .o _ __ .^^,. ^_...... ,^.._,... _..^,•^ ..A^:,,._._....,.:. .0 '0 9D-3000GOOQDO06'r • '0 'r •^ AA 'O •0 •0 L0+3000DDOOOOODL • "0 •p _. _. _ ^._., a ;.__ _.. __.: _. •D 2 .o __ . _ . • . O .0 +o ca•aaoorc00000rs •^ A .0 .0 +0 tD•?DDOOu00CJC'sT` ZA AA kA Z A ,._-^-. _ ...... , A _....,^...... _.^..-.,__._,__-__.—^ ^..-- __._". __--.--^—^„^S3'JMrIa7AU^ 4Y.4' S37NCZx.^ _ .».^,._...•„^,^: - 1C-:cooaaccaoDe.• C^OCQCOD70.0 OCCOOaGD00.0 ROJOOCCaDG'0 7J90CQQCGJ•.^ 9LLDDSuDtu'C Yn hQ-?DOC9OCC^00Qt' S^09CO:COQ'J aD9ocoraos•o 0°0.^CO^000'0 7u9^JJ)CCL`v AA h^-?QC 0000D00Q1' OCDOCCCU-0D'O a0000UUJG0''D JCJJSCJCDO'u AA w '° - Y hD +39C[OOuO00DOT", OuQJGGUO"O'0 O000CLU^uC'0 L f h0+B on, 00Lf0 of, OT Ou:3DLuGCC • D A -- A h0*^OSOuOcC'1nb0SX • -^- 9i h Z ^! ZA AA XA SNUI1V^y dbOSr VNV aNvI4VIA3C CcULN11b, TO+3CFZ y E5050T55 • - - ZA TU+3£h[tD65£B95B' Ah Z4+32b2T1e^r6oT1'- Yh Qy FO+-o55995£CP9QhZ' Z PO+^9EZ15TkhL556' A 93+a,914r?'wScLl4' A h0000FLh5T • 655h^hL ++OCd3 LV' bUl'J3A -'1Vla SAC .3edi

OD+?Z6ETOh2L52LF • GO.3C60SEPSF56ZT' D0+3£T6f262F6O1h • S?-326Z9h£T255CZ • 9D-3D516fhE9Z^£5 • 5D-36BC5STT£TTT2 • - TO-319EF •?£L5TZ29 • - GC+3Z'LTh9GCE5F6• 00+=£E9EEU96551•- 93-_FT02LLhE£D5T'- 50-iTLLf£T99o5Zh' 90-3424l--Z6L6`cs`- ' —"- ^' E5+3`6F sceg ^ Ce,cti • - nC;7QCO h «SC6L91T • ^D+?92fbeFhhZA9A • 5^.-=h99GTD^CC^BZ2' yG-=25T''95hEThT^' Su-36ceGsL9cTLet• SC-=iSLS£L• ^ T°Z'- 57-396Dn'9°C6LlTI • - St-^sO'+OtiZSiPFST' 09+=OZZ2BL15nCZL' CD+3rt56cT^1STTTT• LL+^Gf9*T7tt9t:z"- 9^-?TC`9DL^O£.£T• SO-3S2T6iTZ62TZ1•- 9G-3Ebo*^6^9L59h' CC+`hr4CtOTotT°S'- 60+36a5T59E91iEE' Tg- tt •.ho^6EhCt.T'- '^' SC-?TE2?L6^e5CFT • 9".-3£TSTLP6G69^E`- S0-3L?59J1^^Th 0£'--"0J+3Bt6bth52i219 • -" 00+611 +'^h2i16 TT' JG+_.2^:,°hLttFL.4' - -' - N 93-=AS---533A93 h0?A93 £AA9d 203A53 Ta^^:Ss V (SNnf1lLJ :Nc) 410c^ MJB!jl3 dL X1ciVi.

LD-2LOlhO00PS£95' SO-SL2Zh£ZP22ZtT- LO-3PUT992905TV 5743BTZSLLT?L6h4• 90+390£9LZ961622' 50+y1LL65C

90• Cu-£9T!C9£CTE • 9Q-?DSh6LObhTE69' 90-30^CST6£E9TET' TD-3JOFJLT6.99Zb9' 00+305££Lc65?STT' TG-dJTLa^54cZ6bc' Lr' - O 0 = C546LCE!T669" SO 3^CCtOSZD9h55' 90-HOGOT6Eh99hT9 • OD+3O0C2BZOhtOTT• ?L4?OO55°FL'9t96' IG+'3Stt56yTTtDT• AA 9^ 3CC£STPfEFSfT • 59 8;0;6fh99hT9' 9C-3DG33C19E219£ • T6-3:C0B2GTLZLOE'OD+30^LylE6Zb9CT' Tt.3C^9ti5L9LLvLc • XA TC-?tGF:LTE99Z65 • CD+?JOCZbZC<6CTT' TD-3DD 6FCTLZtC£' S0+33CCGJGOhC6TZ • SC+3COLhhL2i1E22• tO.3^DJEtiD62.:9:` n Z D+._°c££LZ65FTST • 00+ ZGGS99.9Lh9i9b* 00+ 3!G009L£b499GT' SC+33CGhhL2 MZZ • 90+3bCG90GEZcL22' 5L+3uLTS9".^1°Ef2` A '- - TQ-?^tOfESf129f2' CO+3OSP16f9TTLOT' 10-3009 175E9LE91L • 470+33GEV'+06Z5b9i• SD + 3UOTy5h.L7k£Z • 90+86CuvLbyLCj Ti' A, 21, AA XA Z A A_ S3JNVICVAUJ UV:V 5.^..VIcVA -3000^.:CC.TL S' @CD._^C.62E5 • 7D09DFS361' DOC.^9GTBh8• 2CG7."fL =...`: 16 29- ^_QC^OOGC55E2 • C[G9rOZ"_£+' OOA_^CLBT£• OOCCCZT59E• JtUGJuFCIL* AA EO-?t^ n ,JGGDG]79E9 • DWI )C9Z9L I GuGOCto2LL' A - EC+ m ?CCu05000911 • 3000Gu5b1£' DCiuJ.Zu"'i'• L' £O+aOLGG[GLOC£L'^' 090G(6bhhE' A — _ .:G• 600uEbh1' A' ZP AA XA L A c w4uIlVlalbu0 QN:V SN4c1V1Az0 ObvCI.V1s ,..___ /BL459'66hhhtiZ - • O'C)SAV0 09080 • i45 3MIl. ACGIJW Vrl it 3,14VInVAUU 1Ud1NU.J 1iILINI ...... •fff....f...... f.♦...... fV.f•f•....f•..ff.f.l..f. ♦...... f•1 ♦...♦...... f...... r ...... ff-.... Vivo indNl d3SwIs • ♦.♦... ff...•.. ♦♦ ♦ f...... ff...f.f... ♦...... • ffff..f.•+.f. ff.lff...fir.....•...... ff^..^... ► ff...lf.f.....f.... •..ff.ff.. ..^f..... *....• EIr c N'/ e L gr S OF TH' CARTESIAN c PHEMERIS ERROR COVARIANCE .10.^790I7333E•^7 .19a3070000GE+07' .1000000^0000E•07 .490003000000E-08 .490000000000E-08 .490000GOOME-08

MATRIX OF -T ,_tiV-C T ORS (IN rOLU"NS) "rV ,:Cl EG,/EC2 EGV5C3 EGVEC4 EGVEC5 EGVEC6 .i40^o70a0ROJt^01 C. 0. _ 0. -,. G• - - a• - 0. . iJJ000a00000E^01 0. 0. 0. J. a. C. ,170QQ00a0J00•O1 0, 0. 0. ;` _:.^^, ._a • ..._.. _..:.._. 4 ,_,-:_ _,_.._.:c._ ----...... ioaoc0000000E•u...-o.. _. :_^ a. ^- 0. .100000GOOME4,01 0. aCO34000034GE•01

UNCEP?A+r4TIES_I4 THE FULLONTNG SE P S PARAMET c RS CONE-SIGMA) NOMINAL VALUE STAN0AR9 OEVTATIQN s N S/L MASS -. '.__ . _-- _ .. T_.__ .1551.3568045300 ----...._ .305JOCOOOa Kf, W SY-9UST.VTLOe TTV 29.4180000000. .33C5000030 KM/SEC ELECT p TC PnUE R AT 1 A.U. 21.6500007030 .0950OGO300 Kw

--IuAr/ST rGPITRCL'cabORcI (ONE-ST,MAi k TMt%UST THRUST PMA' Fc THRUST PHASE THRUST PHASE THRUST PHASE TH°UST PHASE THRUST PHASE H PWA"`->F -t10 11 14c, TM3GTTLItI, CONE ANGLE CLOCK ANGLE CONE PATE CLOCX RASE (n2G) ', ^:__(Oct,Y ^iD_G7SEC) _ III=G/SEC) - 0.003c0 .032CO0 .C2000C .0290Ja 0.030303 0.30039E 3 0.0:CT00 .002^01 .G20903 .020303 C.Cu0503 0.GatolO .: l ._ a.CQnJtQ ,>. .002003 .02G000 .02boac 0.000000 ._ 0.07000a ii o.Olo^Ea G.2000oa 0.000001 a.u0o000 0.000000 4.0000JG

TL M e-IlAPYT'!L T4PQST FPPp'3S ONa-CTGMA %EVEu-_.__-,.-_.-CORRFLATTON TIMEE - .STANAARa DEVIATION IN CORRELATION TIME THQOTTLT •(*. .100000000o09q-01 .Z0000)^]00G4E•O1 .200J0000G003E+00 _...;. GONE ANrL c .. .5a300000J000Es00 «. .i25JOJ770000E^00 .12500oJGu0a0E- Q1 - - ^^__ Cr.O^K APIGL' .$7Tf00ao00^.OE•0o- .1250J90a07QC=+OQ .12500Q000000E-oi TMROFTL*•+F,----}. 0 CO ,J E ANGLE 0. 0• 0'L06K ANGLE 3. .1000OJ0IOOJac+JS 0.

r ._ ax=ii4ir.^w ' an*F^}'i*t^'.-h ixr^^?L+:,wN^{^.a.^Z-3^++• xdr.,-.,rd=+Mm _,o^ao-^,cti .m i.-s,.:. m„rv.: da. -.rri. m4 + . s.;x.^a .wRa^.Faeihteva^..t.xq..`?^.f^++^z.,wrv!xi.p+Rt^larz+t^fn+e. „w im!s ,sMVr;'i+ h

d SGUID T6UIO*567.019 TTAAGsS93.Sr + I6UID=•2r NTP=109 ).EPXIOf ITAFGT = 192.39, N9Ax=59 TAkTOL.3 9 25 0 0. , H(499)=1.9 H(509)-l.9 H(4010) n l.. H(5910)=1.9 KDIMEN=129 P(lr1)a56.739-.7U9.139.59r-.129.029 P 1292) 123.149-.799E-.42r.37r-.509 P(3r3)=37.2Jr.139-.32x.68. P(4.41s2.78E-49.139.030 P(5!95)=2.22E- 49- .419 P16961-1.97E-49, M.^ PS(191)=441.#.619.35..909- .449.02Y PS(2r2?^764.x.529.87+^.e6.-..159 _.. ----._.______P5(393)=363.9.579-.439-.639 -_ PS(4r41-6.91E-59-.67x-.1T. PS(S95)-l.ObE-49. Sr - - PS(696)'S.16E-5t AGREFs .141936714399E-099 .968736907210E908r .301565939457E•08. r+ -.2b8998061950E • 029 .362808335578E•019 -.133021741283E•019 - NGkEFs .1493426471599.049 XTkEF* -.JO2371E30177E9039 -.235964598179E#03r -.184036249666E•039 .20 4 89501693sE • 019 .195337447944E*019 .11406228787 E•O1r NTAEFs .144342538775E-04r TARGET* -.302671830177E•030 -.235964598179E*039 +r184006249666E•039 5s.623954438172E905r -.85265836T394E•069 __._ .415844218605E•059 -.965253665367E-0S9 - .142732346640E • OSr .393442788574E-06r .161764711477E-069 -.b0259604d424E-069 .562322738143E-05• -.578103928192E*059 .399409456366t•049 .20,115929335.7E•069 - ' SENp ------

r k

s!!l...!•ss.l....•s.. ^... •....IlTS+wl. ^y si..ls.^sYla.! ♦ GUIOANCC EVENT NUMBER 1 !.!!.. ►!!!+!!•+l++.+!! •..l.!!! ► !sa!!.l+^^^l+!!! ►!!s!^ ^^ _ ••ss+as...^la^► ^sl.....la.....s sl l..yss •...l.+a+s..+.+ ► !!•. IpPl1T nATq lfls+++.! ♦ t1+!• l l+sl+!!+!!!F{!!N!!!++l+!!!+l.H!•!!++-!V!+!!++ ' T rlJI nA •1r, r Vt NT TT ­- 24.44523. '564 ^ A7 r.6 7.`a1COD 'ndYS FFDM LAUNCH 0--sir "Ai rn rA^r>_ • TT. 244455J.15478 AT 593.90080 DAYS FROM LAUNCH.- 13U o ATI9 14 O r THE G i lT OANCE T-DJ'=CTOPY I4 2=.49000 DAYS

QCFEO N^ c ,To a)rCT MQ Y ST AT E VECTOR AT TH v GUTOANCE EVENT(J.e. n 2444523.66476) - .l L i O3 A 714T99E.19 KM .96o73f917210E+2S KM _ 7 - .301565939457'=+.3 '(4 . - Vx -.286936l:ii950E*02 KM/SCC YY .352PI E' 3 5571 = 431 Km/';EC F VZ -.133C.27?412L3E+01 KMIc-c^

SID S Sass 1493.4:947 Kr, pl: &tovRc4T 4 0 -1ST 0HR5- NU"9ER o -

Scy STTT y1 T v MaTO IX ')F TARGET VA01anLES N.P.T. CONTRIL VARIABL'ES(- 3 X 4 5239544'1 7 ?=+:5 -.'185?35A5367Et35 .161734711477E+06 -.576133928192E+05 . a 52Ec-'S T '^ay. ag .142'373466 1.3 +*05 -.502596046404^,.0 .399449458366E+04 .415o44Z136G57-*4 .333442783574A .G6 .5623227381. 1. "3c•OF .201159293357E+06 <--- r N RFFEP=N',E T 0 A)EOT,)2Y STAT r VECTOR AT THE TA 0 G4T TIME(J.O.= 2444550.154781 Ln -.3C267181.1 177F KM v 735964533179r+73 K4 - 7 18-C?F2L36a6E•73 KM 1 VY 7 489°u1393rt+O1

EFrrCTTVE TA04ST P LANET FOR THIt GlJT05NCE EVENT IS ENCKE

F _GFECTIVe ePH rM EYI c PL A NET FOP THIS-RUIOANC e EVENT IS ENCKE

°<- -^-^• -f ur. FIiI444CE LA W FOP TH IS $ VcNT TS 4.04 TH RUST- NnNLTNEAR WITH. - 5 IT eRATION(S)- - -

SF +I5I T TV2 T Y MATPIC.a'c OF TA RG5T C, HANGr PeR CONTROL CHANGE ARr COMPUTED 4Y INTEGRATING VARIATIONAL EQUATIONS FOR __.. 3ATH T y JL42VF AND LOW THRUST GUIn3,?:CE.

ACTIVE T47UcT r nNTROLS FnR THIS GUTOANCT SVE'1T THR UST Pv&SF' 'NuM9E2 CONTOOL VARTARLES _ - 9 CONr ANGLE 9 CLOCK ANGLr 4 ___1010 —CONE ANGLE—.— ` 10 Ct.00K ANGLE I , 1CTG-4T4 SD _CTFI_ n Fno FAc4 CONTRAL VAyIA%Z. .10Oir]E037000E+I1 .10400000D00QEl01 .10000G0300^10E+T1 .100000000000E+v1

AW _ _ r v n„7ezv _. -

5677^. 71^9!!1G ^ •0?_ -.^*OO1^^^PO'00c+00 .1;]7^.JOJ0170E+J0 .590;000JCJOGE+OG -.12C)GOJ000OJEs G .23JJ^ LJ]JOJE-JS - -.77nnng7rCnJ^c,p .23t40003110"'+12 -.79CG00000JIQEE+0J -.42000OOCGCCOEE+GG .37DOLCOD0003_r3C -.3C17,JGJJJOJE 60 t ► .1?"7 C ng 0 n nq_+CO • ,^ er 7^f!]D000cF-00 .372330000310E+32 .13000]OGOOODE+10 -.32J3GJ000OOJE+JO .63307.^GJ010JE•OJ ° .1591970741090c+0g -.4270111000E 6 E+GO .130]000JOJ7JE;,00 - .278007A00JD0'c-C3 - .13000GGJOOJOc.u'G .33033C0]3]J]E-01 -- -::1207^C1019^)=+00 .'7000077110CE•70 -.3230307CC79 e+OO .1300^.000OODIE+00 .2220J030130Jc-13 -.4S:30G000C0J=+0] .29 700107900=-u1 -.50000900000^?+00 .6800t9JGp^.OG;•+10 .300700000003E-31 -.4100000000C q +JO .147330070;COE-03

PS r8Tp1r

.e^1""?^'^C^03+G3 .517]09^'93)03c.JC .350u93JJJOtiOE+OO .903CO3CJGQStiE•JO -.a40JOJJJJCGuE+7L .2Z2130 . a203E-]1`- .41':"•"37.^.,.:_+r^ .7F.4906?19^00=+^*. .5?J@J37C0)JOErJO .370fOJ01BOJGc+OD -.660JOJJuOJJCs+JO -.15^JJ2L$S;DJE^]J, ` . 5073^G C7 a7CE+0G s5?,OGOC90"!03E+00 .3637J0300JJOE+03 - .57G009000OOGE•00 -.43C003ZC0003E+CG -.633]7 J]]JDSa•OC -- .91^90077^'J1n F +SC .1173130900000stac .577009000370E+3T .691461J000OCE-C4 -.670J000uJOJOc^GO -.17]J]i00JJy]c•0*+ -.44"^7000 g00G'E+CO -.8611^C7003a7E+00 -.430000J70]JuE•D0 -.673000000OJ0c•00 .1G5J000OJ]00=-J3 .15:9JuiJJ3G7E+00 .^?^79]7Q0000c-01 -.i530O0040000 9!+00 • -,6303000000JOE+00- - -.170000000000E+00 - .1593000000002+no .51600000ADJOe-OV•-

CMS yA*PIY H 0. ti. 0. ]. 0. c 0• 7. 0. 0. 0. 0 0. 0. 0. 0. - 0. J. Q. 0. 0. 0.

AUG-* MAV21r 9 .3258?a^ a 0P00E•04 -.91891254;0-0CE.3 1 .2745675277JO'S-03 -•• -- .930 4 85460DOOE-D2 -.151S2S72JG3CE-C2 .2235162J0003E-03 C. 0. J. C. 0. 0. -.9/ • 912540000°-+03 .53545e,5000^3'E ► 03 -.680546738330E+03 -.270192640DOOE-02 .i9JO71963G33Z-.:2 -.227929G04000E-02 0. .? 7 45S752'? 07ZE+03 -.6P758 r, 738000E+03 .138f07200330E+04 .13454922^_GOOE-02 -.2E44d1920003E-02 .4967330333COE-02 ^. a. c 3. J. G. 0. .93"4S54;J77^" -02 -.27ul824 Y000GE-02 .13454922O7G0:-02 _. .772 p bOGO03GOE-G7 .dC2308CLC3aic-08 .16429SGO7OCJE-C8 -- J -.1511?.3 7 200^GE-C> .19017195759717-G2 -.2644d1920100=-02 .802309000000E-08 .492840000QOOE-D7 -.179379437003:-07 9. O. 0. 0. G. .2255167 50 ^ 0^E-C - . 227920000000E - 02 .49d7339dO3J0c-02 .164298006000E - Gd -.17930940dt3O E -07 .38839r035J00 -07 ". 0. 0. 0. 0. 0. 9. 7. p. 0. 0.., p^ .. : 4^197art0E+75 .70557,3640000E+06 .560291S00300E+05 .?74257900000E-01 -.233742030000E-01 .455112006000E-03 0. 0. 0. . 7 Cs 364^CCCE+76 -.506 0 60079POE+36 •----.144212640008E+06 - -.459?9388300CE-01 - r .6898923363aCE-01 4.59133e000O00E-02 ^ ^, 1 .551290571000°_+CS .14421264001^E+06 .531769303030E+06 .1429748130}GE-J1 -.163894500009E-91 -.1180]^tOr0000E-01 j

.274257 a 000OCE-01 .453293893000E-01 .i42974810000E-01 .477461300000E-08 -.48611853;30JE-33 -.6G614520CCO3E-09 i ^• O• 0. J. 0. 0. - +.209Ti?9^90i0F -01 -.649392000000E - 01 -+ .16389500000E•01•--.456118^i00000c' - 08 -.1102S00000GOE-07 .5127 Z:. 0000.1aF'•39 i1J ^• ^. o. a. o. 0. .4S5112004C0-0E-03 -.5913360300'8OE- 32 - .118004040000E-0i -.60614520000CE-09 .812700000000E-09 .266256000000E-05

EIGFN1ffCT'1^e

.i71^06557?71E^40 .221177594637E+00 -.318073861702E+00 - .121.591624321E -0b, -.623273710912E-0S -.6C9579734d01E-0S n. 0. at i7s 0. .!91445+l65^9^E +90 -.1174130075G4E+00 •.379473420730=-04 -.35119dG52095E-0r -.267329714211E-Or - C. j. 0. n. 3. .c13'..2^713^t0^•L0 . Z95r8^1T0759E+000• .93152114977E+00 -.165379039466E-04. -.1223178376+1E°J4 -.136236697463E-04 0. 0,. 1 .'79?14683555=-G5 .328^18i3914?E-D4 -.586209815?.58F--06 .978635497043E-00 -.158777924616E.00 -.52^76d31J327E-01 1. 0. 0. 0. J. -.13556746423$-6R .5E75r8?Q77j76-O4 -.152425413966F-95 .190553556784E+3G .781197704041E+00 .594i90946923E-03 0. G. 0. .555496271345E-06 -.56106793242$8-05 .33161620211.6E-05 -.771753344052E-01 -.591791?55909Ev0Q .602387939306=•00 0. 0. 0. - 0. 0. --- 9. 0. 0. 1. a. 0. :907772 ? 99442=+;0 .37gg19598%42E+00 .178904541876F_+00 -.90?198567522?-07 -.395011,25396E-37 -.1593300462553E-57 0. 0. 0. 0. 1 0. J. .ia453171T+94E^07 .8886461i7872E+70 -.34282322.727E+00 -.503076538999=-07 .126897393347E-36 -.1109&34ovT80=•D7 9. 3. 0. 0. 0. 0. .29339611?52.5=•09 .256995335865E+00 .9223737?l80aE•00 -.163270065817E-07 -.5601.87566279E-:39 .1166479122 MI-06 ^. 0. J. 0. 4. 0. .K?9 7 19723271E-C7 .?598J771T43gF -37 .26114282L4266E - 07 .993938133316E + 00 .692137701738E -01 -.351661680903E-01 o. 0. _ G. 0. J. 0. ... .572532475036'-IT .5515259&34232-J7 -.737783627639E-01 .995936109772E+00 -.516523782706E-01 0. M. 0. 0. 0. 0. -----° .52149glSV 525=-07 -.113771649963E-07 -'--.986297304556E-07 '' .612646903492E-01 .57625694%781E-01 .S953252?%S&9E*32 N t^ _ _ v c•r,SvVatseS _

. 1 63415948999°+3L' .SSISP4286285E.41 .153013u68d?4F*04 .451k'4271583E-07 .305462072357=-07 .149962009465==-07 .19 .719897404E+05 .7112452557A4E+06 - .s69E0i%60i19_*05 .5."922253393E- 10 --.27611820669 I.E-68 .141634493621SE-06

[C^32 0EQ-JI 3T 4E9TS FOR THI 0 J06, 0 77490 OCTAL) t1FNS •M qc 9LANr rgti-nN Fl- TMI- JOP, 00 :713 OCTAL) ♦...... ♦+.+ •s a •sass ^ •7.+....^^.+s..+Y+.s •Y► ^... •...... +^ ► .^^...^.+.. a..^.+rs...,Ha•s..as....^+.^..^.+...a. ►+..+.+..^a N.+ ►^.^..^a..^a _ W) OF SIMSEP -INPUT _. •.f^1..^-.r^^^l....f...^.+1..f.1... ♦..♦^.iY.•^^^^.'.++...^.^..^^...^.^.a^^•.^...... •^{.1.....+f.i.^.Ra..111+l7^.+^.:.V Y..^.1.....^•+^+..+.+•.

.r ...... iir{{:{.{i.. irfl{.. •...... {{.ir•ii.ii•{r.r. ri...... {i}i.i{i{N {{{i{ii.i.{i{ilii i.i.iii.iiii.i^a.iiii\ •. MONTE CARL.O CVCLE NUYDER 1 ♦{{{OUTnUT DATA-F03 ♦ TH= ACTUAL♦ TRAJECTORY AT TRAJECTORY♦ {{.♦ INITIAL17ATION ♦ •i^R}ii..iii• ► ..{{.{^{{{^.{^.i..r i ii{'^{ ► Y ii^i1 i{i!i air{i.{{600.i.i{.iis{ iii ► i µ.ri{{^.ii.li.ii.i(:iliiii{iii...{.^.itii•iili iii - -- S/C STATE V r CTOR AT TRAJ= r:TOw TTH= = 543.67GaJ DA v S(J-).= 24444y4'.55v7a( ArTT fAL REFERENCE DEVIATION .i946439i40?3E•39 .194843609562 c +C9 .199.63di0661E+03 KM .9408498459645+38 .843B4R5?5532=+F8 .3311331c0618F+03 KM 7 .314214644455E.7A .l1421G402m7DZ,(8 -.757614694065E+02 KM _ r . yv -.224036481976E+92 - .-.2240v2728705E+C.2•_ .624662 0 10J29^- 03 KM /SC' VY .81869284458m^+01 .818889592289E+.Oi +325239977315'-04 KM/SEC V7 -.145659749329E-0i -.143403341297E-C1 -.226639953224E-0+3 4M/SEC . SA"PL- n_ S/C-SEP PAaAmETEoS ACT UAL REFERENCE DEVIATION ,v ,; -_ ___. c/C vf..sc 1551.15974 - 1551.35380 -.rG077 KG EX4593T 'f rLOCI T Y 29.41857 29,41800 .33057 KM/SEC ELES T =T^ POMrc 21,65359 21.65000 .00059 KW

DEVIATION Of THE ACTUAL THRUST CONTROLS FROM THE REFERENCE VALUES AFTER5,K?`TN6 THRUST OIASES aHAcc 'Hat)ST THRiIST THRUST PHAS E THRUST PHASE THRUST P HASE TMROST PHASE THRUST PHALSE N EM3 TTAE THROTTLING CON= ANGLF CLOr4 ANGLE CONE RATE CLG`;K RATE -_ _ _ .. _. __._...._ 00 ! NU " N rP (D+.v) (OED) (^°_^1 (AEG/SEC) (OEG/SEC) 7.0".^+r7 -.^7P5D3 .0.9945 .0.2385 0.0°4430 0.303.40 a n',t.yrn:0 -,000282 -.G0236d .006564 J.000000 0.000000 iu O.LCC19a -.OA1014 .OP232+ -.004597 0.00L000 0.900340 11 0.C)90aI 0.3caco0 0.0000c6 -a 0ao00a 0.000000 0+000000,

DEfI P03 0GALS O r DIAGONAL ELE"ENTS O r THr THPUST PROC r.SS TTME CORRELATION MATRIX Fla T Po QrrSc n 7.pZg0508259 .1202974?43 .1202.714190 (GAYS ► - 5=rtl>4.'l PZ 0.^S c: = 1.7^C7^JJCuO I.v7CJ9J3J0J t.lCl00J000if (DAYS) TQ THITTAL VALl1c3 rV T H E THRUST P aOrr ';S NOISE - _ rIQST aa 0^FSS -- SECONO P'OCESS i TH01 IST *!A;NTTU75 0.003^^031311 CG^!5 A IG. = /7=;) .L413 16 19 4 2. C.JQ0llGOJJ01 Ct.O^K "IrM_ (DEG) -.2455751509 - O.G077J07u0J -. r_ _ F TPST rRHEM72 1S PLANET IS r'a ^KC STATE 4ECTOR FO a THE =P4_4ERTS PLANAT=T '93.5000[ DAYS(J.O.= 2444540.15478) ------' ACT1IAL PEFrD N E 3rVIATlnv - Y .:;37955A'4366=-C, .Ad3961;225975c.G3 KM µ _ v .355750-j1:F47Z-06 .95574d1572d6c•Cf. .2658301tiw236Z4C3 KM Z .R42Fd-345794E+99 .2+CBo0356655T+0;' .293912932754E+03 KM .13953 F 6+i12E+;2 -.41d954361292 =+a2 .795979751729',04 KM/SEC ---• VXVY -86683374?451E.^Y..4Ac8T5QC77432rCi- .21652921475:+°-C4 KM/S=C,, 117 -.5F16'd15611.94E+41 • .55109653328C : +01 -.965913633P775-0^ M/S'cC

- - WEPLEPIAN --LEMENTS fOP, THE EP H E H CRIS PLANET EVALUATED AT 593.50000 rlAYS J.O.= 1444550.15478) - - -" --- ACT UAL HEFER--NCE OEVIAVION 3 11) AX'S .31181"435897+19 .1118931257G0E- J9 .461686935A43E.04 KM .3 4 TJ00r" -_-_ :.1.46903:6 11.9503000 .JGGG946 DEG No ne 534.?001899 334.208)076 .3001699 DEG t _- - 1185.9991745 -.0001255 OEG - MEAN 440 391.0950763 351.0949463 .0001301 DEG 930 66920W !)#IL9666 *s9 I ^.)%Taoo "JOT !blSdf 530 Mzacu^_ 1.6ploaz*47LE 691766WtiC B60h !)30 ^t2TCM'- 9176COWIT ZZ900WIT cittl -- - - I

MtST * 0SS f?ht2 =* O'r)SAVC MWE65 IV a --IvnlVA.1 13NVIo SD-3W3hc3 2HI b0j 4INU?l? NVD231d3A

Mc 33S/WY ZA OBS/N)i EC-^6^561616 1MT * - G #?9T6s .) ,WJq6 AA 3jSdWX 110- ; L 0"Ld^*-10 471 U * ^0+z32Ti:G'j5iS6RT; *— 2L-iiC6ili:lS6E TI XA W)l ze4VT p 9ezQLsq 69 l t 0 4 t 9 1 S 17 r f fd 9 3 17 2 9 L, + ;; z 9 E z I c 1119 C, " e WA F C 4 2 6 2 t 9 W t) 9 Z 5 ^ 9 2 1,11"16L','l X lillivu J.Lvwll:^z (91161 * rss"lz Z * o l f)SAVO 0000s l ifs 261.L Ad(Jl031'Vl'i Ui 31VIS f4i c ^I^VJ I -_tJVld SD:3i^?Hc^s QzIVWllSi

tim ZECET * - -- tjZ95S*E6-7T L 19Z i C', T 33S/W)i Lc_9T2Tbz3 f cs99z ,_ 104 :: LA :)3S/W)l 104 :z E6 0)1 a/ ^scl9x 164 149,&bSZdDlL9t* AA 03S/W)i I a4?'?lPk92(lZ6?9Z Z643$j2fy'7f-f46fs92 XA z ^l W) Z0+:ALTZGrtC6G9Z' ^P-=IrT9-n3^P499E' PE;A?G',.STPCC499L' A C14 o WN 6t'-B0liiku"-iiT'W - - X hUIIVlAzO lVillov ^Iv..Ll3j N0lLVNlWb:il3O IIbc0 ri?A.V111WIS w0c.4 OiJ3A 31viS D/S CA^Wll.%B

9> 2forT , l#Y92+,*f6-)T bL9sG*fEtT stblow 3/5 03SIwA f0-39ZR96SGEt9b9*- 33S1600 Z0-=29CS16S9FCS2' AA 33S/WN 2P-3nTL95tlP6L6T l "04 =GG6T90Qb699Z * - Z54 _-'7E6kj2PLoP12- XA W)l ti0+3GSTf?96S6-)Tl'- fjG43Sdlil%-bCT0l' 4 W> 10*3996992690A171 WA 17 0+3WTWF.W6Z6E6T-j ' ob-266L 17 tL liLbIll 60+,,' .1^bu-7601 * x NCliVlA3(1 M_2^:!.j3c lVA13%, 19 t 4799 ' E ES 1 4141? =*b * M^AVU DUDTQ * 19S - ZiNli AbUi4^_fVCi--IV-b0i0-__-A 3 Visr-aAfS SAVO GOC6*1'9? $1 Acujj^rjcj a3NVOIAS BHi aC NQiiVbnL HJNnV' W0,tj SAVU P600S'165 - .LV 90S I ' 095 47t 472 znli 43tobvl u.^lTiquIS5i(i HONSVI W01.4 SAVO 60OWL96 V 61*)99%^ZS 471 #72 ^N?Ai B.f.valn,_

k N* ;A 1. "In T C=UW.9N INIA3 30NVOI(iti b3fiNfIN B l t)At) jl^.vo ZINUW

W``4' • -. *M!9fx1'gp'iY- +:i'i.w.Ta .. ... ,

rjlNnTTInN5 E5TT►94TE1 TRAI cCTORY FOR NINLINEAR TAOGETTNG ITERATTn+1 NI) y9E0 1

_TO AJEC.TnPV STATE AT 593.500.tt, OAVS(J.O.. 2444 50..15478) rc TT4ATI Rd^7OEN^E DEVIATION Y 9o325^0?9912``+d4 -.3J26 7 1834177E+C3 .101352721293E+0S KM Y .113r7n3143?6Ern5 -.235 a 64 EId179E+C3 .115429960308E+05 KM Z .T7479?625?13E.04 -.184006249666=+03 -.39 T,392000246E+04 KM VX .235Zo934955tF+Jt .204895C18934^+01 .37433071702 PE-02 KM/SEC VY .195796943911E+01 .195337447944=+01 .459495966794E-02 KM/SEC YZ .tl4"'64791579E+01 .114062287871E+01 .2502 7 0753455E-04 KM/SEC S/ r mast 1443.4?747 1443,4?5:9 .CG269 KG --

TARMET _..VARTAnLES .,_.. EcTI.HATF PPF-P_NOF ... DEVIATION X .9d326J0.2991?EF34 -.3026 7 18'1 0177 = +YZ ..IaI35?721293ci05 KM Y .tl3L,70li4326E-05 -.235964. 179.8179 7 +03 .115429960308E+05 KM - 7 -.37479'6252137-04 -.164[06?4956Rc•73 -,306392000246E+04 KM

OUADRA T T^ EPdOP FUNrTTON TO MEASURE RATE OF nONVE4SENCE • 4 - - _...q - .39 563355854E+0? FOR ITERATT n N NUM Q ER 1 -

0M T "A.TOIY-OJ=!? T PAJS: T 02Y ARC 567.0100 n TO 59'.507JJ GAYS y Y 7 VX VY YZ Y .17511777 F255E*C1 •14724212535'=+CJ .392303521t7t_°-01 .ZT3257662538E+07 .13C714d3o54CE+`.6 .349349396643E+C5 .1 » %?9t i5? 'OF+CJ .172439:'n3569E+01 .413119213601F•-91 .130136073461E+C6 .23245232CI55E+J7 .3d1o37370293E+05 -Z --•--.422d:^;.?2i31r-r.i 330266979708E--r1 --.934311 z 97>6.E+GJ --.365412239169E+05 .373566163328F.35 .220439365 Z '„-.GT- - yX r ,5337155975'66-C7 .154C62897Y97r-t6 -.41 . 3387225273E-07 .tJ420542750.IE•21 .205450001651+07.543471442 32E-1-1 w Vr .1501411+3777'-C6 .5505534.116115-C7 .473145664482E-07 ..209:15688934E+70e .109288119182E+J1 .651112345273E-01 V7 . 414l A 113 7 29F,-C7 .450J74315d5?E-07 -.45271 4 545161E-u7 ,5598t5718946E-01 +6431041345617`-01 .47163921690SE+G0 - C THSTA mA^ o rx O/=o T P-AJFCTnPY ARC 567,31000 TO 593.51000 0AY3 -- (ALL =L. *.'l'a1T; Anr Ta TI:T ro NFL UP,TT',l ..-_.... _._ CO'I^ Aq^, c CLOry VI PLE CONE ANGLE 'LOCK ANGLE ^^ X .574]A 6'4 y 47E+G^ .9451+7117595°_aG F .1617896,6534?E+06 -.5781-4995?196E+05 _ - ..7. ;^ 1 269o138719G -CS .1427511543$95.05 .50258 n C2693.c+36 - .399'73833626 ­7 04 . .41'°T?1^h.S:E^_5 .397420161753°TG6. . r,62335r5J165°_+G5 .20115575.524E+C6 vY -.+9"10:1°^31°_-1-2 .47683P,1193R5E-C1 .1539541395P 3E+90 -.5F6730 1 76 795c-01 -• w .4^155^T347^^dtG^_ .948045139971E-rl -.50950177t351E+60- .,3303d9125042E-02------V' .5+337?17p^^6c-^Z .198547944772E+0C .51637835081'E-01 .197853332443E+00

ETA MA T-I TY AT TH: T A i^SFT OnTHT (ALL c,-, y'NTS APr TN TNT=RNGL UMTTS) " Y Y Z VX VY YZ 0. Y ^. .10000'+90000nPan1 0. 0. 0. 0. ^ Z 0. 0. x0000"CCO lOuc+01 0. 0. 0. ° J E IACG-T/rO y•P OL c q ' I SITTVTTY 3 A T PIX( 3 V 4) (A^^ 4-9' •1'11 A=c IN It'T°_PNAu UNITS) -' ':()NE A 7^Lc , CL^C< ANGLE w CONE AN SI FCLOCK ANGLE - X .52»7:61724947'1+1-5 .995147117591E+0 F .1517366o534 _+ n.6 l -.578G4d962196E+05 Y -.5C25ou02593,c+06 .39577083362b_+04 Z .415^3712.64E+T5F .39342i16t'53=+G6 .562195050168E-05 .20 11 55750 524E-0(------P:i_ z - - - r,UiOA•fC^ "A'o T Y ( 4 Y 3) FOR NONLIN=AR GUIDANCE CORR4 r TInN `°f ( A LL cL°_•1°NTS Akc IN T .ITcat,nL, UNTTS)

rCNE ANG' .44t9784429^8c-05 -.1548219132117-05 -.11-399:999784=-05 °•- .- rLOCY A"G(_= -.732"13"6599=.-05 s96174835P734F-J7 .19412T412r93E-05-.- CCUF AvSLE .6?9J92605,.22E-06 .19111: 526199E - 05 CLQ''K A4r Li .723551722215=-06 .466453868694E-07 .85185E5543695-05

1 ESTI:MATQ) C7NT 2 06 CO PRF C T ION FOP TTEP,ATTON 1 TN INTERNA, (NITS OLD CONTROLS UPDATES NEW QONTRnLS ♦ - -- - ^•"ONE ANGLE .?62°1639d52Gc+]1 .593?733831'42_ O1 .2688491?0.152E+01-- ^LO^K ANGLE .139626749150Ein1' .7?18957731x435-02 .14034d?35411E+01 i Mn' -.714*948135Vbe-01 .Z6on70T46171E+01 "LOCK d N6+E .136175'300610E+01 .104818591267.-01°•-.137223466542E+01 -• -- e 3 c + ,.., -«+a . .,.^si..+h"+'^`»t K3tirY,'!F bKBk,+a+rs^A' *h31;^1 3 - ^i. "*h '7dS'isW*tsa8 u`fif-"..+.-C ^.,:rr+ ^r e-df•rr,;.r. ,3lli b,w^ riRt 13RrY..i st:h•ui.;•1: . _. ... - .. _. ._ ,. _.__..

W FSTI"4T=0 TOAIECTOPY rOH017I04 q FOR NONLTNEAR TAPGET'INC• ----

TTEoATTON'N9M9E l! 2

TRAl2*TOD V STATE AT 59'.59400 4AY S(J.O.- 2444r50.t54781 g rTTMAT' RE,FE'ENCE 0£VIAT TON - Y .2.??41391974:+Q4 -.I,2671d3n177d+03 .2735 C9474n92E+04 KM Y .5055T671l603E*.3 -.?35QM.599179 _+03E .74151J611782F+03 KM „ 2 .556(42763165--+03 -.184006243666:+03 .741649632831E+03 KM - VX +204146"9434'E-+1 .2a4895at^934E-OY -.746624502415E-02 KM/SEC - - - -- ^- - VY .19697464?572Htll .19 r l37447944?+01 .163699462770:-01 KM/SEC V7 .1T4lt48500QTE+01 .114062287871 2_+01 .725702117826E-03 KM/SEC - r/C MASS 1443.42663 1443.42539 .00124 KG.

T40 GET VA!DIA°LAS ESTTNATE o-r_oENCE OBVIATION X .248Z41A9lu74E+043926718 4177-+03T .278569074092E•04 KM Y .505536011503_+03 -.235964 2 98179E+03 .741500611.78PE+03 KM - 7 .556642783165_+03 -.184005249665E+G3 .742649C.32831E+03 KM - -

#)U&nP• ATTC ERPOR F9-ICTTON 1 0 m -= ASU9E PATE OF rONVE OGENf E fl .337963366354E-02 FOR T TEPATTON NURREP i 7 = .141723293454E+01 FO* I TERATION NUMBE D 2

?M T MAT 21 Y QV EP T?A3rr,TOGY A or 467.41600 TO 593.53600 DAYS -- „ Y Y 2 VX VY VZ X .13637;35r'39ETC1 .145321435 t l8E+0 n :3923675742442-01 .233275943915E-L? .13G816415531E+06 .349367796567E+05 .1< 473554 c .1JP45113174?:+61 .414336854976E-61 - .130307174767E+06 --..2324513856.4Et3? .3d2132d22531-=t35 ---- 7 .472F5'373'3F7E-01 .3971413579824-C1 .9Cv145501432E.09 .365li733350CE+C5 .373263344569_+05 .220442770845E-G7 VY .432346337236E-GT .1E4t729C3513=-G6 .414023046457E-07 .1042'T J54a772E.Cl '.205531d99993.30 .543649725632-01 N -- -• rX .159T707;9546=-G6 .56J27 O0105QOc-07 .47:775043992E-07 .208691806792E+00 -.109283202066Et0i .651339275616E-C1 - W V7 .,4+1415274955'-t7 .459215602682':-[7 -.95'995183397E-07 .SS9907266965E-01 .642984773359E-01 .671922274344E+00 l 9 T4fTA-A4ST2Tx OVER T-tAIE r TOPY Aar, 567.41000 TO 593. rn GCG OAYS - (ALL 4L '^ r i-5 A'r 1'1 ENT 4i(PIFL 1)-IIT ) r^9c G'IGL r rLUCK ANSL r CON= ANNE CLOCK ANGLE -.. ._ - _-- , - • X- -- .11 7 15351 T7 02c+C6 -.16496340110?E+05 ► 12An13G71206F+Go -.656523257663E+CS ---.:- _ Y .13617490S817r ► U5 -.515100614442E+0 T+ .2.31829159102:+04 2 .4177,1675394'rtC5 .35171107953'F.06' .415916?176 77 Et05 .2343269?2739E+C6 -----VY-- .t9397769j7C6--v2 - .41$830777692E-G1 •-•-.118529638005E*Oa-^.646Gd634676b:-G1--•------_-._, VT. -. T2 0 537Qi r A3E•6a .734787117019E-Q2 -.524213312769E+CC .26J413780846E-02 VZ .114'!14821704°-01 .177 4 90758030E+0Q .364194383326E-01 .231465353931E+00

ETA M%T'I y AT T4E TAcrFT enTNT (ALL r L r 4T O.T, Aar IN IF IT FRNAL UNTTSI _ .._ X r -Yl-.- .1^C3'0C?G0Ci E+01 0. 0. 0. 0. 0. Y i. .19ucao7gaG9oE+Ci G. 0. 0. 0. 7 ^. a. .10 a00GD0.3000F,+01 0, 0.-._ u, - i TAvrq-/^') IITPOL 'c-STTTV T TY '"AT P IX( 3 x 4) --. .. TALL c=H 2 --iS !^E Ii+ TNTr_RNA L. ()NTT';) <... -OnE A^IGLS CLO^.K ANrLE CONE AN@LE CLOCK ANGLE M ,.i171'34177322-Co -.8649564411`+?F+GS .12d913J7lZ96Efb 6 -.656523257663E+35 Y -.94754991946 tC5 .t36L74105117 E--S5 -.51513u614442E+06 .241829159102E+44 .- --.•- j .4,373845761947E-C-5.351711079537:-06 .415d16917632c +05 .234326922739E +r6

i _ r UI7Ltir=:'-ATRIX(. 4 X T i 2 nR NONLINFAR GIITnANC^'_ COR4 2CTTON ------__..__ (ALL -L : i r .3Te Gw a I l l I- 1Tr2 'IAL IIt1TTI^3 v Y j - CON 4 ANrL E -.26?3?t40r0S1:-05' -.24237?7197;2E-05 CLOr< A-'-,L 2 .106401923632?-u5 . 7+2451 856824 7 E-06 .223057230509E-07 401E AN>L F .15878872C00^E-04 .2"54 6523740E-05 .I-0i5OFi459?31E-05 .i-OCK°AViLE -.2397298331342-95 --.353464444316E-06 .7112341666392_-06

rSTL-'ATEil r 0-iT2nL rO-RECTION FOR ITE-ATTON 2 IM INTERNAL UNITS - - OL D CnNTROLS --• -• - . UPDATES ---- NEW CONTPOLS Cn-IE A-IrL .76Be491?3152:+0:1 .307620976339E-0i .271925339915E+0i rLOCK ANGL' .11.Q74423i413EL01 -.4857674576832-02 .13946?447975E+01 ' 4nNx ANr,BC vZRtiF7R74Y17AF.+Ot -.4s94404S0A64C^Y1 .261176443669C+01 - - _- CLOCK ANGLE .1372234865425701 .641075755304E-02 .137864522298E+0!

1 R'<

A •'ONV?G-yrc T,: Tuc NnNLT4cA Q GUIDANCE ALGO P ITwN AFTER 3 TTEFATIONS WTTN 00= .2080E+00

SSTT"AT.O TRAXICTORY'*.ONOITTOMS r OR NONLTNCAR TAPGETING

21rRA TION NU4 3 ER 3 T*AIE;Tggy STAT_ AT r4= .5CJC1 ne y ;fJ.O.= 2444550,154781 E-T r -ATE PcFERENCE Oe:VTATION % .5?47228757332+'13 -.30267193017 7 '+C3 .986894666910°_+03 KM Y -• .33;1644.55.14"+C? .235904598179'+'.3 .274581'.43720-- +03 KM 2 .31674o513J09$+Cl .1340762+4656--.03 .53075 1 762675+03 KM VY .7^3--835833?1r-01 .234895418934--.01 -:1122543761?95EKM/SEC• 01 VV .igllt275.?45F+oi .195?37447944g+OL .277530640057:-01 +KM/SEC V2 .114r9529166GSO-11 .114062?3787lE+01 .3301A7892957E-03 KM/SEC S/ r MASS 1443.42522 1441:41539 .PJ083 KG - TA*," VA91A3,ES ESTTMATF PEFcQENC£ DEVIATTON Y .r,9422W67?;F+03 -.302671353177E+0T . ga6894666913 7-*33 KM T :?661644554146:32 .235964598179r*03 .27453104372^.:+03 KM - Z .3157465131'J9E.23 .194905249666cr03 .560752762675_.03 KM

OUA9 2 s+Y r raPno FUNCTIO.1 TO " r 4SU^E 4A T,c OF r ONV= p ,FNCE CA n r .39255?'.E 1, 47402 vO P IT =O ATION NUM°.ER i t.- _ .14172n298g54'.01 FOQ IT =P ATTON NNNBF Q 2 1 O .Zod0l7465996:*00 FO Q ITERATION NUMP = P 3 a .PUT- 44T Q IX OV_= T ?Aj rC'n?Y A P ^ 557.01917 TO 593.500 .30 DAYS y v - v X .l^ai7?c45734r+^1 .149341101°37E+Cv .19236401.539°-G1 .23328760240,3F+07 .136:591377 1: • 36 .3 932ou1^976.+ ES V 7 .14 4e r C72 = r •G9 .1:245664353 ?c+Lt` .4147oA403*66F -01 - .130 81 7 39655:+66 .2324504.5291c.37 .34213]940371_+35 7 .4?7571l51.1i35E-C1 . 7,95946 1 54417E-01 .904132933916E.00 .365272,061225_.05 ..372890121.511EE+C5 .2.234437554u3E•G7 V% .5329-'5557!6E-C7 .150215525317E-06 .414032164953E-07 .104246256484E+01 .2J565139270SE+03 .543577761324E-01 -7Y .- .15 g47^f57490^-v6 .567508!}34040E-C7 .473941913855E-07 -- 20876511028IEtOO .109275311542E.J1 .651263120572E-G.1_^__ V2 .441424954diCL-C7 .45857579 1 308E-P7- -.9527806024751-07 .559874339443E-01 .642803942582:- p 1 .8720J6066172E*OC _ ..^ TWET4 1447R1v nJL P 7 KAJ r CTORV Far 567.31900 TO 693.57700 DAYS (ALL EL r 4=NTS 5P r IN INT4RNAL UMTT'z) ^ nt' P !ML° CL.nrK A" r L° rONL ANGLE CLOCK ANGLE; ._._-__..jl._-_ _.. .13 78 5-3454 219_+C6 - . -.a19 741 4 431 Q 4E+G° .105955773723E+06-•--.7J3C17343834E+05- V?',5193787 7 4 _.00 .1127 i 19'745 Q E+f s -.52149;:807154E+46 .19C8va636135:.C'4 7 ^c.c533g1.53f,5E•G.r .32ys55602939=+k5 .3260 3 1 9213L6£+05 ,.254784562267Et06. -° itY .13=38+376924:-^1.?9QK3407y873E-C6 .955154049472E-01 .682824376515E-01 - - YI -.467=^19251141c+53 .75d3393b.7p52E-C2. .531937947558E ► 00 .165717199865E-02 VT iA'531°55269:-0i .156031893319EtCO .270508064233E-01 .252166435066E+00 i

?TA r To:9 AT T-- TA PG£T POTNT' y.y !!^^ TILL _L° Yr•ITS APE T'i PI T`roM UNTTSI eb F y y Z yX - VY Vj ... - Y .!90C9CCrC*C35+Ll 0. Ot 0. Y . .1100901007C^_E+C1 0. 0. _ Z n. 0. .13000JcGJOp0E+01 -0. _,p..-_ h, l i-.r TA Pr,cTh)YTQ 9L S r NSIT1VTTY rATPIXE 3 X 41 ' lJ tA« E^$MrNTS A Dc IN TNTERNAL UNTT51 -- - - i "4 MML A4rrL c CLOCK ANGLE CONE ANGLE CLOCK ANGLE' ► % .1'_'7S5S454?19Ftto -.614?41441194c ► 45 104955773723E+06 -.703C17348834E+05 Y - -°-•-.63619,s797240E+04 -•.112 791997459:+G5 • -.5?1460607154c^0b---.153QOd63o135E+04- - 7 .585600215305E+C5 .329C59602999E+06 .326737923846E+05 .254784562267E+06

t

- iUT04N^F O AT O IY( 4 X 1 1 F('R 'M014LT-NEAR GUIDANCE rOR2F CTION -- (ALL rL= yFNTS A O r IN INTERNAL 1114TT4)

C"'! A M;t F -.619303241947E-35 -.71452h57234ME-OS ------r7 CLOC-f AmSt F .1347G4ttG960E -04 .273C19312gA^E-35- .53386?430016E-05 CONE ANGLE .454115104413--^4 .827994048695E-15 .115624420496_04 CLn^K eMGLc .16732d871819E-04 -.3t'4 179897596E-05 -.27-34676711715-05 ,.-

ESTIM4T') CCNTOOL COPRFr TIO, FOP ITERATION 3 T4 INTERN46 UNITS OLD /'ONT Q %S' UPDATES NFN CONTROLS CONE ABM .27?52531,4015r+0S .3311!v584272E-01 .2752366e5758_+01 %l r K A^1it r . j 19AK2447975E+01 -.1571192dd234_-0; .13819125'5092E+01 P - C04S ANGLE .261175543659E+01 -.528635892385'-01 .2558891e4746E,01 - -- rL0^K 8 •',Lr .137e64572298E+01 .197729728384E-01 .139741819581E-01

- rOM44411 c'l THR UST "NTROL ^.OROFeTTONS TH R UST CONT OOL TH RUST CONTROL THRUST rONTROL CO-rANQEn CHANGE NUygro PHAS4 04UM9EO Tyrr CFANGE 1 9 COME AtiGL e 7.G59005 DE,S n .._._. ------_ _. • 2 9 CLOCK ANGLr -.822243 OFGS 10 rONE At'GLE iC.267697 DEG$ t _ .. _. 4 10 CLOCK ANGLE 2.043465 OEGS --

ACTUAL T HRUST r ONT POL4 AFTER COQh97CTtON TH0J5T T4-UOT PHe ce TI+O UST PHASE THRUST PHASE THRUST PHASE THPUST PHASE THRUST PHASE -' Pyge_ Ep9 TTIE THROTTLING• CONE ANGLE CLOCK ANGLE CONZ RATE CLOCK PATE f Ntl y4E 2 (OIVS) (DEG) (DEG) (DEG/SEC) (DEG/SEC) t] 4 567.000000 - .._1.154491 129.575246 - ? 1 2.212085 -- 0,.006000 0.000000 q 577. 000: C3 .999718 157.696637 79.186321 0.000000 0.000000 IJ 547.^9000G .491981 14o.636030 80.061165 0.000000 O.00OJJO it 6CO.000000 0.000000 0.600000 0.000000^- 0.000000 0.000000

I

F ,

c ^1

..-..- 3 tn°rv..'-G rM.^' .._ r..-.a. ,. .. n- .... a .'

,Y .. ^.... _ ... T .. ^...^ . _ _...... _. .. .._ ....._ ..-^...... , ,.__ _... .•_ r .....-.-.-.._ ...... _... ^_,._...°. ,.._. ....^ ._. ... ri

r- ^^.1•rf^^1 r• r•^^s r.••r^rr.....•...... rr.rr •r^• ..r1••••.•r...r.•r^r..r r.••1 ► •rrrrr•^^r.•.r•r.r.^^. • rrrrr•rr•rrrr•r•rrrrr^•rrr^rr ♦ MONTE 'ARLO MISSION SUMHARY FOR CrCLE A.. •.•^r^^^^r^rrs^rrsrs^r • sr^ararr^rrrsr^rrrs^s.•r^^•..••s•• 1 •.1a•e..r^f^r.••^^^^. •^.•.a.7^r^f^^^^NHS • ► ..•9 ^r^N^^^fN N••N^1lil r• - 'P TTM' X 34 THIS r'YCLS = 7.34400 SEC -- TOT+t^ r? TIME USED TO THTS POINT IN EYECUTI04 n 8.77004 ;FC --

S'/C STAT c V4CTOR AT TPAiE^TO0 Y TT m ^ = 593.50000 OAYS(J.O.= 2444556.15478) ACTfliL REFERENCE DEVIATION _- X .637093677777E•0-1 .6'1 79523177'1ctJ8 .416700756149E*34 KM Y" .155753uCT992;+08 .955745797661ca18 .421021105?89E+03 KM 7 .?400i1412142E -5 .240S 7 95l66C3E+'18 --.3229553F538"+04 KM YY -.T9of75673'i44E#-0 l -.3984649593897Ki2 -.140814004312E-01 KM/SEC Vr -.56 7 L41291828r+71 -.671498459981:+01 .405716915291E-01 KM/SEC V7 -.43670044S979E+01 -.437026247409e.a1- .32 78014302004-02 KM/SEC - -- -.- -. - e AYPL e D S/C-ScP PARAMETERS ACTUAL -- _ _ .i'-FE OENCE -.- OEVIATTON S/C MASS 1443.65190 1443.425;19 .22652 KG faoS cs V40 TASLEq _-- ACTUAL PEFEREN"E DEVIATION Y 0. -.302671630177E+03 .3026711130177:+03 KM W ,, _ : _ ._ :.^_n .... ^.._ • ^_.^ . p __._^__:^_ , -.235964598179E.j3-.235964598179E+03 0. -.1840062496664.03 .184006249666E+03 KM a TgTAL ()°_LTA-VEu 4CI*r MAGNI T"O' FOR IMPULSIVE MANEUVEr2S- 0. - - - KMISEC I

i

^k 132 -B

- 3.2.4 FSEPRE

The REFSEP sample case provides detailed trajectory print

for the Encke flyby mission. A run such as this is likely to be

made after the reference trajectory has been determined in TOPSEP

and prior to a GODSEP error analysis run. Of particular importance

to the GODSEP user is the tracking information which is available k over any desired trajectory arc and from which a measurement sched-

ule can be made. The remaining output provides a detailed descrip-

tion of the integration process and the changing geometric relation-

ships among the S/C and the bodies considered.

On the first page of output is a listing of the $TRAJ namelist

describing the Encke flyby mission. Except for two of the variables,

KARDS and ELVMIN, the input is standard to all the MAPSEP modes.

(Other REFSEP peculiar input is described in Section 2.1, Page 12-B

of this manual.) The value of KARDS indicates the number of formatted s print schedule cards which are to be read during the execution of the r REFSEP run. Images of cards (KARDS "= 3) may be found im-

mediately after the $TRAJ namelist on the first page. These cards

specify the start times, stop times, and time increments for the

various print codes. Although many print blocks are scheduled and

appear in the sample case output, only cne representative print

block is included here to illustrate REFSEP's output., The scheduled A

time is 580 days, at which time the print block includes all possible

print options (print code = 1123) which are: r 1) nominal trajectory print,

2) primary body data, 132-C

1

3) target data, and i. V 1 4) tracking data.

Most of the output for each of these options is self-explanatory;

however, the tracking calculations deserve additional clarification.

The approximate rise and set times of the S/C with respect to the a

tracking stations (or of the target body with respect to the astro-

nomical observatory) are estimated from the geometry occurring at

the scheduled print time. The underlying assumption for these

calculations_ is that the S/C moves very slowly across the celestial

sphere. (Hence, these calculations are invalid for a S/C in a near- 1 earth trajectory.) The printed rise and set times are always within i one day (+ 24 hours) of the scheduled print time. These times refer

to the time when the S/C rises above or falls below the specified l minimum elevation angle (ELVMIN). If the S/C never rises or never

sets during the 48-hour span at a particular station, the message

"NEVER VISIBLE" or "ALWAYS VISIBLE" is displayed for that station.

y I} 1` } 4'

s

. Y

w

------..

^,.I ••^...•aa^•V•••••••r••^•4•••.,r.1••r•1•••1•^1••^••••r111♦11.11.11 .1•••r ••i ••1•••!I.••••1.1.1,•• ♦••1••1••..Y•1•1 •••1••1••1•••1.••••1 •••• j -' TFAJFCTCFV It•:71ALIZATICI. ♦ ^...^3..••111i•1:11s 11.1^111••^s I11•r •r. +11111 ••1^i•1s.••^.•.•1111••1•••.•1•x•1 ^.^.1•^11N111^11.1H^ N1^^1H^^^11 N 1.1. F.1.1• N 1••••N••11 __" ^ TNTTTAL FcCCH (FEFE c EnrE CATr) - JLLIAR G17f.... 244i45L.P547tcL004 CtLE+CA p rtT^ a... 1579 PA4 24 3 FIR 42 VTN SE.Sc,• 0 eFCS r ti+AJF r T rG Y • TtT: T F FCCP C.CCCC(CO(3C CAYS AFTER 1hF II`TTI A L EFOCH JIITA ► 9AT F .... 244395t.E547lJOu04 CtLE-.CAP r c TF1579. YtF 24' 2 HR 42 1'IN 52.SSr.G SECS LF^.EC1'.'GY 9 N0 c FOCP Sc3.45W G OGa^ CATS AFTER ThE INITIAL EPCCH JLLIAa rATF .... ^k4455G.353475553' _ CCLE t.CtP CATF 1'SP.0 tC4 6 15 HR 41 PIN .67'.4 SECS

ILTII1C S3tTF VECTn r AT C.ACPE000O'CC LAYS AFlEF ThE FEFEcEACE EFCCK } Y 2 PtGNI?COS - F C:T T TCN -.5SZI1r445C000QE+04 .23671LE98C6G00E+G4 .il174047200000E+04. .f56ISZZ92EC34ZE#C&- V$LCCTTY -.d5263C783CW0 GZ.01 93E.t: «F5 PA$ c 1c8f.CCCGCC30Ct KG ExHALCT 4-L r CIT1 2c.43f•3000000 KC/SEC ELECT Z TC PCEF6 AT I A. L. 21.f5C3r[CGOC KW T FGLSi t rfFIC7F'ICY .E4C000OOJC Gt CI A TI(r F E_ELPE F,C_FFICIENT -i.C000000ace

LI 171 rf r°tVIT TMP ECOTES SLR.

Epryc - f.., IG c Cc7 r LAt+ET T; tt ,X C i. ._ ---. ..-_. I :A7Ff a ';T i,G FECT( :TIGY v .C.4:^ C=: . k-- PF 6 E0,rc rrt•T=r.lc TPFUST THAL:10 rPASF -11- Q U51 Ft• ASF TFFUST C HASE' IbRUSI PP I SE THRUST FPASE 11• RUS1 PHASE NumnER FhtS r fn6 TI M - IHPCITLI^G CCNF ANGLE CLCCK ANXF CONE FATE CLCCK FATE OF MAY)' "_ .__: KEG) (GEG) ___(CFG/cFF.1 ---. tCEG/SEC) .THRUS%RC C.(tcccl 0.(30^.CC C,CCO33C 6.C:3_a3 C.CGG:00 J.0;33CC 34=: ^^^t+ i,f,° CC FB.it:'.C{ 2[L.FC:170 G..0{C:CO C.^53i3C C.G:ri[: "^ :..••C'eo 1 t u(Cu' ... i5.(;OCCO 25'.3.CT00..__ C.CGZCC; C.JL^.6J... 0. Z0J 4 - 4^;.r r ^r i.GCJC13 45.214C(C . 2oS.0003OC G-.CCC330 -^ 0.003C00 O.CC994C 5 575.rCCr ..' 1. CLCEOJ 120.531000 2oP.742000 G.0000OO 0.000CGC a.a933GC 5 A 7,vrr.•^g,_ _«w 1.2 rr CG I C: t•S2GCC _272.53 C3C:i 0.GG03C6 -- G.OaJ000 ^_ -.0y0C 7 577.CCZ.3u 1.09CC0^. 150.E49CCC a(.C30uG0 G.CCCCCO C.00i00a O.C'03CO t 5C7." CC'9 1.00_CCC IF5.CG00CC 77.55C)CO 0.0S000O 0.00JJ00 O.GG000C } w - c 0eu.4^PC,^ C.0 C0C0o 0.CG000G 3.006000 - -_. x].000000 0.000C00-

EDGY PA4e+E1 t KC A'C O ^ITAL ELEtFNTS LAVE BCEN FFAC-II. FOR £NCKE AT JULIAN DATE,,.,2444500.00000OOOOCOO _. PLI" I FtCTUS - .9309GGlC000JE.03 xK FLtt,i 5rt•'F r 1 Y.G r ^ CCJCE.04 Kr ^1 :Ld T rc tL('ATTCttL C46;IAKT tOCO090CC9{L-O8 kY.••:/SEC1•; ^` S c tl-t• Ajrr AYTc :alpvd3267CCE.95 KM C. :, _.__. _ KP/JC FCr c ;7 c lt'ITV .e4I09CCC000r,E•^C, .0. i.c/JC IK(LTTATICP .IIgrCC[l0PCCL4r,! DEG Y. LF6/JC .o A5Gfh0I^t tO9E.. 3a.270Cf'J GuE^G? EEG -E..__ _ _. OEG/JC CrFr,A-T .1912CGC(GCCGE.G? CF.G 0. CFG/JC Pf.tf /hC*ILY C. C.LG C. QFG/JC

CETIILFC FFI N ! -VFNI rCHECLL c -

FFCI' 9.C'IOTO LAYS TO 60.03GOO GAYS IN lKRFPERTS OF 5.00000 DAYS -- CCCE N0. 1012 FFCP SC.111,33 JAYS To SS3.4S$70 CAYS IN MA EPENIS CF 50.00000 CAYS -- CGLI NO. 23 k- a - FFCY- 525.td^.00 JAVS 10 553.45870 BAYS IN IFCP0t?A1S OF S.00000 CAYS -- GGOE NO.- 1123 -•----}------^^_--

(COPE 2E'CUTFEn FQ o THIS JCR, C5u"20C CCTOLi' ...... JLLI e 6 CGTc -- 2444436.'f547E.0r CChTcCL FHASE -- f PFIFA4Y SOCY - SLA revS FcCt LOOT CH- 5AG-.O00C(OGC FRESENI SIC FaSS- 14EE.23176727 KG EPHENEFIS PCCY -- FnCKE at VS F c C P CUICFF- 11.4SWI OC FCWEF AVAILAELE-- 23.0000000C KW TARGET 800V -- ENCKE .SIC FELATT ; r '-TAIES- >< -.:.. Y FAGNTTLCE 5LK PC. TT(K :laF7?5f.8756?7EE+C9 .scll2E73,t44tl1E+08 .2FG1535641(-489E+O8 .14P^2:C41t:^?SE+CS VfLCCI T Y -Y2427'c7157HEf64E+91 .34r0^±iSe59C1^E+^i

c.cTp FrElITCN .2631E--S643E489EEC8 .41E9c'f7371;2;1E+C!- VELCCI t Y -.1C12E71ec58327E+C2 -.25462?d12E5E9EE+02 .31Z579CEE45fA-CE+CZ

EACKE GCSTTT r h -. FQ3b5cc2!14C4E+C7 -.2:797tTZ3TS.`'50E+97 .37534E.S'+2EEE2E+C7 F VELC;TIY .25C855EC47E8E3t•.C1 .e'2:08724051^75E+01 .1 E543fE077S914E+03 .:_°E4^^2!Ei^7$5E+01 S/f, Y 2 I-ACNlTvcE r^IYG a 2 r'CrY -.04 08P27E7F277E-05 -.4C307t2E64349EE-05 -.11393475C52436E-85 .EC32217E1.17-'tE-C'_ =o klL2cl$4 i:GCLCS - . .LCo4je(S87S7E1f- CS -• _ . .___-,12577f(e213 L 6SE-u9-- -.15', 9391556 EE1E-OS---_- - .i^C0154131.551E-35 -- - S+ =L'.1 - S2702Ei73?E452E- E -.2e2114E555179'.£-06 -.14E1393E304528E-66 .62t8o754.1S2147E-CE =r2LTICr' F.c4^c C. 0. 0. C. I&CIVIrLAL FF C % 991NC ACCF•LECATICAS Ex c Tf . 1CG91ft587S7r,6E - 05 -.13577ECR213474E - C9 -.1559091556AUF. - 09 .22C0154l!llsc4E-CS £F M^ ...... _ --.4iF K8F4CECE2911-2'c -_ .4?:63S15EG4122E-22 ._._ _ .255530750'0 4 343E-22 -.-.. _..-.GS4463527E257E-2c- l.. rLAnE1tFY En^-EFMfc14F3 N Etcf p FCSTTTCN .iZ7AF?eGFff4(7F•CS .7F396453375E14E+0A 0. .lLf775?F6S224it+GS 1 VE IICC17Y -.15782Er,552tSS5E+C2 .25452816eS5S8?E+02 0. . 554ft;5383E7 E•C^ M ELC.'r FCCTTIfw - -y- . . .IC c 335i8723152Err c ._ ..,.__._ :lC1451776S2.42Z+L9---- .- _ ,ZS4lC7?rt79s195E*C5 VELSCITY -.3f41Y2Z15a21ESE+C2 -.2240e465912!6EE+01 -.37E1637E5EC57bE+C1 .3Fc8:cQ42SsEjE+C2

TPIECFATICF CAIA, FNCVE FCCPLL4T7CD Lr^IC PCSTTirN .lCF173?e79054J7F*C5 .9S11315CEE4t34EY08 .2E01F953888142F.+C8 .l4e328G8CColL4E+CS GCAICAWL"11?- - -•»- - -.o3F6Gl14f2u4ElE+[2 ------• .lUd5C7ESESE Tp E-G1---- -.25134555767493E+J1 .?z4S4 `1?u7125 cE*t •-^- .^ DFLIA Ft TTrt. ..215;45C28E5217E+C4 -.1137Gi5T575!E,4E+G4 -.55745165274051E+33 .?5Zl25f5t<44S.fE+0. -' UELTo: VELCC17Y -.4E510EE ^21CCSE-01 -.251EC2E7J7ka34E-01 -.Sc212GG1917133E-C1 .5E 24`2525522^1E-G1 4 GECT- :(r::L -.?.546?43E51655E-1C -.2f85^7^77440GE-v9 - -•.- -- .iE771240525192E-C4------.s4 E4cd49LEo3FEE-t4---•-- p=CTIFI{F17C+ .. 141 T ►.TFr2e7rra STr'P4'...... 2:13 cT^c 5T7c 1rtY.1 .lt75Z?f32SSO46E+C1

- CSCLLAIT+ t rC+lC GATA CSCLL11P C Gt+TG r FLLTFS9

PEc^-,r1^T 6Et;Tf^ -.4Ec:b<1E2rF242e.C! .1:•^1521c5{7L70F+C9 -.1CC711:2667Tv2c+C7`^ .SCe2"445777rFcE+Cf Pt>E-VI L 1`4TCF -.1E797E531457FEt ♦ C2 -.E4c24SE4?t.4768E+02 -.14254^2963P1'`lE+"_2 .61 ES6411C55.52EK2 L+Ii V =CT C c 3IPFr.TT-NS P-VSC/CC ...... -.SEE17E324744S5E+GC .257113T5527?54E+00 -.iSE95365ldb945E-01 -- r}-V4r7'CF ...... 221;3544Sp24SC3E+.4.- -.945fS8l9A57f4PE+00 -----. 2C9934E5a9p011E+.iL'..__.__-_^_, « M'`VEctCF' ..•••.•... -.709FCCICC227.2c-Cl -.1s7911E8E40fj3E+00 .977512S735E134F+CG nCCF -VECTC c ...... Sc8575 4S27627L+G0 -.3452CS237S2(l?E +00 0. FGSITT CR ...... •• .7d9oG.1445F425E•GG --_._ -EEb204120C'161E+60 -- --- ,leH-377l M1455E+U -= - - - VELCCTTY .....-.... -.GS7234C531lP22E+1C -.2E335tE1854LGEE-G3 -.743241.7824064E=01 x ¢_ .,_ ,._. ...E ._ ..._. _-.._.... C .., r ^ ^^..r1.OpE ._^ _....._...... _..-.. .I+ -..CC ►.TC ZL rt r l'TS,--_ T► -^ . AFS -._ MA. ._..... 5 /r, URI FFIPARY .20S576EFsC4 .7584F35E+CC +121,7:ESE+02 .11-6054E+03 .1854117E+03 .3327652E+03 .1125585E603 -.. --fir.-. ._ _.: ..^. _ _....- ._.,. _ . _.. _ _ _ .._._ _. _, ...._. 104M fATI► ._. ..- -, _, _^ r t;

,Ln-Tcr_Fi-CIC ANCLF 1C.t-3651C412547 LEG cx ^-L^T'LI } c Cc 97 r. HT _ -_jc.Scn5C5i7co4C rEG `/C-iAFCCT Lt IT vFE .6fC41721880S72E+tt .Ei731ES55S7(35E+00 .3E78387422f665E40G Cr, GSGbIaTT► 4 ► JC DATA 69T T404ET FOGY 9SC.LL/TIt. 0 rC%lr, r HYPEPFoLA

ECT F - , cnc iE7:'14739e-Sc-C1 4CA = .871765E846.1ECIL4C5 ^,^ _ '.ti=^'CSlr12x47 5 •^5 T-ATM = .E64E401939S7SIE +]2 VCA = .3584G3e862275xt+C1 7ir > .3'.t4 ^iKci27,SF•CS TSCI = .5S22471E64S084Ei93 _ ICA = .5922471668S0d3E*C3

Vli-VEC ter ...... Z5C8SSE0 L 7ttE2F.+C1 .22308734011478E+01 .12543EE0779913E+G1 .35 E4^22be2275SE+O1 ,4 rTrc ... I ... .51:07Ec53A50E4F+LS - - -.19093CC47E0i62E+O5 -•- -.o8G69346280064F+QS -- -- .e?1765k6561iSic+05----^ . P c -IP47T;* VF f:Tr° .51C07f 530ECE0C+C5 -.lS093Ct4?f3i6!F+05 -.68C6934E280064E+05 .E7476SEME 12ilE*05 FEPl-4K % r C TtF'_ .25G8SSfG'47EPE3E+C1 .22308124C11479E+01 .l2S43EEG?79914E+C1 .2,E4t32A62i755Et01 _ .- --_ - C0.1C ELE ► T ta.0 A F INC ROLE. 4P5 NA TA 33 L w=T Tt r C=T -.77E4154E -1C .11lS23SE+If .5883256E+0n .285e209E ♦ C2 .2S414P2E+G3 -.4P7152SE+17 .27121E8E+G3

^Slh-rAF I'F - c /C at.ctE F4.491PelS52770 PEG 0 91GE-V r L ltfr,LLD°r ANGLE 101.SIG62E74ogE9 CFr, rrLCENIFIC ErLtTOPIAL CEC 5E.414721E8f3EO OFG A5CE1!^TCA, 165.141311179695 CFG ELg7 L{ o-CT ? LCF 6F.7111SM 1647 PEG GGEE 1,UICK NCLF r-K LE Pt.4241EA4EE048 CFG {

NZhInLr ELEVATTiN 41:r; LE...... , ... 15.CC0 C_GE ?

W STATIr,T,,_. Pirc EFT _ FLEVAITCA A;IPLTH PANGF -..._- cApGF FtTE --^- 1 57x.17454 575.842P6 1.84457 35f.G3624 .41E98E67914532E+08 -.f4571C7s4541S3E+C1 2 S7c.42954 58T.SEQ42 42.5'967 -- 45.2S343 - .__,_. ..^43E94527677929E +:8 - .. -- . -.EEr297Cf749t95E+01 -- .._ ___ a LE/5^ VIrTnLE -24.4ES11 32?.70856 .417C15E54032E7z+08 -.EiEtlucEC]°4 EEE+01 ` 65iV.:ntrTCeL CATA FQz iF•E TAPG E T frOY _ - _. __....._... r-- ESGF.hTST( ELLCTC.IAL CEC 5S.7715CEE417P1 rEG 3 ISt T iEoF ► c Tr1 142.283 47[65i%1 CEG

STATTC. PISr SET ELEVATIC6 A"TPUTH RANGE PAAGc FtTc

5 eLWAYS VISIFLE 19 ut 5 96 r,.38194 427822E184f846E+Q8 SC(3Q71G5E8CE8E+02 ------_ -_. - .. ------• ------• ------c

a, i. for MAPSEP. It is assumed that the user has (1) some knowledge of

the methods (Volume I, Analytical 'Manual), input variables (Volume II,

Chapter 2) and output (Volume II, Chapters 3 and S), and (2) a particular

3 j analysis application. Among the latter possibilities, for example are: f o time history relationships of the spacecraft, Earth and

target body; j

o generation of an integrated trajectory meeting mission

t requirements;

` o trajectory sensitivity to selected parameters;

o trajectory dispersions and their propagation effects;

o, ground based and on-board navigation requirements;

o thrvst control authority and thrust accuracy requirements.;

o trajectory and system estimation accuracies;

o evaluation of dynamic and measurement error sources;

o mission strategy evaluation;

o probabilities of mission success or science return.

Many of these applications in terms of MAPSEP operation will be dis-

cussed in the following sections.

It is clear that MAPSEP has a sizeable amount of input in order

to be flexible in its analysis capability. However, only a small

' segment of input is often used at any one time. The question of

where these input values come from is problem dependent. For example,

I to _

F 134

if MAPSEP is used as partof a Phase B system design process, then

TOPSEP would be operated first to generate one or more integrated

reference trajectories for the baseline configuration(s), GODSEP

would be used parametrically to examine the effects of various levels

of error sources on the system and trajectory, and SIMSEP would be

operated sparingly to evaluate specific error values. The initial

trajectory values, e.g., specific impulse, launch velocity and mass,

power levels, etc. would be obtained from the mission analysts who

performed mission opportunity searches. Earth based navigation

characteristics (including their respective error sources) would be

obtained from operational tracking networks. Thrust performance and

other on-board characteristics, and uncertainty levels, would be r obtained from the respective subsystem areas. Guidance success

zones and mission strategy would depend primarily on science or

other mission objectives. Unfortunately, many of the input values

are not received in forms that are directly usable. A small amount

of preparatory analysis and supplementary software is often needed.

This requires knowledge both of the subsystem where the data origi-

nated and of MAPSEP. A reverse problem also exists, namely, how to

translate MAPSEP results into information needed by other subsystems.

Thus,-operating MAPSEP effectively is considerably more involved

than just being familiar with the input and output.

The common element of all mode usage is the $TRAJ namelist which

describes the nominal trajectory. The required input of $TRAJ con E y tains as a minimum the variables j 135

TLNCH,.TEND, STATE, SCMASS, THRUST, ENGINE, STEP, ICOORD, f IST¢P, NTP, NB, MODE,

with other parameters being optional. In the following sections,

-ft is assumed that the basic • $TRAJ has been input, except as noted. I x 3 Each mode is then treated as a separate program, which is true for

most MAPSEP applications.

G 4.1 Trajectory Generation - TOPSEP

There are four basic applications of the TOPSEP mode: (1)

trajectory propagation, (2) trajectory grids, that is, a matrix of

trajectories corresponding to different control parameter steps (3)

trajectory targeting to meet mission objectives, and (4) trajectory s

targeting and optimization. These submodes are often used in

sequence to eventually obtain an optimal low thrust trajectory. They s y

• can also be_ used independently,for examexample, le to ggenerate a time his

tort' of Earth-Sun-vehicle-target body relative geometries for a base-

Line mission. Each submode or TOPSEP option is defined by parameters

is the namelist $TOFSEP which-is input directly after-$TRAJ.

- The most coimion usage of TOPSEP is in generating a targeted 3 trajectory with system constraints reflecting a proposed spacecraft

and mission. Final mass optimization is generally not used because

most low thrust trajectories have relatively flat performance curves

In the local area of interest.

The targeting (and optimization) procedure begins with an initial a, initial state and mass, thrust . guess of-the trajectory controls: 3

1 ' 1 ^ 136

segments including duration, thrust magnitude and pointing, and

vehicle characteristics including s pecific impulse, base power level,

-thruster efficiency, etc. These inputs are put in %TRAJ. The ini-

z 9 `tial guess is often a combination of engineering intuition and results

from a mission opportunity search program, for example, QUICKTOP

(Ref. 8) for interplanetary missions and POST (Ref. 9) for near-Earth E missions. The value of a reasonably accurate initial guess cannot

be overemphasized. The targeting process for low thrust trajectories i is often so non-linear that many iterations are spent just to bring s an initial guess into the "ball park".

Assuming that a bad initial guess occurs, which is generally

the case, then many single trajectories are computed for various Ir values of initial coast time, thrust direction and magnitude in

dominant thrust phases, power level, etc. Dne or more trajectories

are- selected from this semi-random collection to start the targeting

submode. An alternate, or supplementary, technique is to apply the

grid submode. This permits a somewhat more organized search for

acceptable trajectories and also reveals the extent of nonlinearity

fa-the control vs. target error hyperspace. In any case, the inte-

gration step size factor should be set to a large value, e.g.,

STET' _ 1., to minimize run time and cost because many trajectories

may have to be examined before a satisfactory one is reached.

The initial guess selection represents the zeroth level of a

targeting strategy. Thereafter, the targeting submode is entered

Li

I i 137

+

1 and the strategy is to stabilize the tart g process and prevent m divergence. An example of a targeting si gy for an:interplanetary

mission is Table 4-1 (specific numerical ples can be found in the r.

sample case of Section 3.2.1). The sirs el varies initial condi- ]yy C tions, segment times and control parameo n the early thrust (and i

coast) phases such that the spacecraft ri s the general vicinity r` of the target body with not unreasonable et conditions. The

second and third levels then succes'sivel, ine the control para-

are met within tolerance. Thereafter, optimization with respect to

final mass may be performed if desired.

CONTROL- PARAMETERS TARGET PARAMETERS LEVEL STEP SIZE SENSITIVITY (STEP) TYPE TO TARGETS TYPE TOLERANCES

r 0 Large Initial High All Very Loose Conditions, Early Segments

I Medium Initial High Helio- Loose i Conditions, Centric Early Segments

2 Medium Early and High- Target Loose Intermediate Medium- Centered

3 Small Intermediate Medium- Target Tight and Late Low Centered It is apparent that every mission will have a different effec-

tive targeting strategy depending upon the initial guess and mission

type (interplanetary vs. near-Earth, flyby vs. rendezvous, inbound

to the sun vs. outbound, etc.). Furthermore, there is a consider-

able amount of user decision making and intuitive reasoning that is

required. The unfortunate result is that the targeting process

becomes less mechanical and more subjective.

4.1.1 TrajectoryPropagation

The simplest TOPSEP application is propagation of a single

trajectory for spacecraft ephemeris information. In addition to the

trajectory parameters in MAJ with MODE = 1 (See Section 4.0), the

required $TOPSEP parameters are IMODE = 1 and MPRINT(1) equal to the

appropriate print option.

4.1.2 Traiectory Grid

As mentioned earlier, the uses of a trajectory grid can be (1)

searching for a reasonable initial trajectory to start the targeting

submode, (2) investigating the non-linearity of the hyperspace $

containing control and target parameters, (3) determining appropriate i perturbing step sizes in control parameters for numerical differenc-

ing, or (4) any combination of these. j

.( The grid submode in TOPSEP requires only a few more parameters j in.$TOPSEP than the simple trajectory propagation. These are IMODE r(_ r{I 3,'H(I,J) = perturbation from the nominal for the I, J control para i meter, HKnT = scale factor of perturbations for second step, and

MPRINT(1) equal to the appropriate print option. r t a L i 139

For example, an input of H (2, 2) = 2., H (8, 21) =•.011

HMULT = 2., -.5, would result in the display of five-trajectories:

(1) the nominal, (2) nominal with duration of second thrust phase

extended by two days, (3) nominal with duration of second thrust

4 r phase extended by four days, (4) nominal with initial velocity

magnitude increased by•.01 Km/sec, and (5) nominal with initial

velocity magnitude decreased by .005 Km/sec.

If more than two steps in each control direction are desired,

it is a simple matter to stack cases. The organization of the

Input deck is as follows. After the first case (%TRAJ and $TOPSEP

namelists) each succeeding case requires only a $TOPSEP namelist

with the appropriate changes to H and HMULT. To cycle back to lei the TOPSEP data overlay the parameter MODE must be set to -1 in

the %TRAJ namelist. The main overlay will not be re-entered; thus,

the run will be terminated after the last $TOPSEP namelist. Any f

additional %TRAJ namelists will be skipped in the search for

$TOPSEP namelists. If the user wishes to adjust the nominal tra-

Jectory for any of the subsequent stacked cases (i.e., add thrust

phases, extend or reduce phase durations, change cone and clock

angles, etc.) MODE must be set to 1 in the first $TRAJ. Each of

the following sacked cases consists of pairs of $TRAJ and $TOPSEP

namelists. The user should realize, of course, that any inputs,

which are not explicitly reset, maintain their last value in

succeeding cases. - a .. 4.1.3 Traiectory Targeting

The primary purpose of the TOPSEP mode is to generate an

f

G, 140

^ rz

integrated trajectory which fulfills a given set of mission constraints

while minimizing fuel expenditure (or maximizing deliverable payload).

By far the most difficult part of trajectory generation is the target-

ing process. Non-linearities in trajectory dynamics often wreak havoc

with the linear methods used in both targeting and optimization,. This

is especially true for interplanetary low thrust trajectories with an

inaccurate initial guess. It is highly recommendedthat the user famil-

iarize himself with Chapter 5 of the MAPSEP Analytic Manual, and con-

tinually refine his targeting strategy depending upon the results of

each iteration.

' Input for a TOPSEP targeting run consists of the namelists $TRAJ t and $TOPSEP. The $TRAJ variables define the reference trajectory and

serve as the initial guess (zeroth iterate) for the run. The $TOPSEP

namelist defines the targeting strategy. Those parameters which are

used to alter the initial trajectory in the TOPSEP mode are described

below.

o IMODE = 2 specifies the targeting (and optimization) submode.

o IASTM = 1 refers to the augmented state transition method of

targeting. The sensitivity matrix, which is necessary to • com-

pute the control correction, is calculated from the integrated

STMs. Selection of this option precludes the optimization

process and also requires that the _trajectory be terminated on

final time (ISTOP = 1 in $TRAJ). The set of controls is re-

stricted when STM targeting is used. The controls which may be x

selected are: 1) the initial state (x, y, z, x, y, z) 2) thrust

phase end time; 3) throttling; 4) cone angle; and 5) clock

angle. If IASTM = 0 numerical differencing techniques are applied 141 -A El: to compute the sensitivity matrix. This targeting procedure

requires more computation time; however, there is no restric-

tion on the set of controls which may be selected.

o Non-zero values in the H array denote active control parameters.

In addition, when IASTM = 0 the values of H represent the con-

trol perturbations to be used in constructing the sensitivity

matrix. For example, if H(4, 21) = 10., H (2, 1) = .1,

H (4, 5) = .5 are input, then there will be three active con-

trol parameters: initial position magnitude, phase end time

of the first thrust phase and thrust cone angle of the fifth

phase. The perturbations used to construct sensitivity matrices

will be 10 Km., .1 days and .5 degrees, respectively.

o ULIMIT are the minimum and maximum bounds, if any, on the con-

trol parameters. ULIMIT can be used not only to impose hard-

ware related constraints, but also to modulate the targeting

process. Used in conjunction with PCT., ULIMIT insures that

control corrections will not be unacceptably large. Also,

proper usage of ULIMIT will restrict controls such as phase

end times from drifting through any other set phases.

o IWATE determines the type of weighting scheme to be applied

to the control parameters. The most frequently used values

of IWATE in order are:

oo IWATE = 2 for normalized control weighting when

very little or no information about the target-

ing problem is present and when controls with .^......

k

k 141''-B

P

h different units are used simultaneously.

This is also valid when all the controls

are thrust phase times, and normalization E.

is still according to the magnitude of

the controls,

oo IWATE = 1 when the user has gained expel-

^ rience with the specific targeting problem

and can select his own weights.

o UWATE are control weightings which scale the basic weighting

scheme specified by IWATE. The relative weights among the

control parameters impact the targeting process.

}

f

t F-7i

. A'.1" In general, weights should be smaller for controls earlier

In this mission than for similar control parameters in later

mission phases to account for diminishing target sensitivities

to controls in these latter phases.

o Non-zero values in the TARTOL array denote active target

parameters and their tolerances, analgous to the H array for

control parameters.

• TARGET contains the desired values of the active target parameters*

• JWATE is used to "normalize" the target variables by dividing

by their respective tolerances; this is especially helpful in

determining linear control dependency (See STOL) when different

types of target variables are used, e.g., position and velocity

or time of flight and closest approach distance.

o STOL is used in linear dependency tests, that is, if two (or

more) control parameters have the same effect on the target

parameters, as measured by a vector inner product test Of

the appropriate columns of the sensitivity matrix, then at

least one of the dependent control parameters is deactivated

for the current iteration. STOL is the sine of the minimum

acceptable "angle" between the column vectors of the sensitiv-

ity matrix and is highly sensitive to the control weights 4

and target tolerances. If no target weighting is employed

(JWATE 0), then STOL should. be quite small, for example

STOL l.E-6; otherwise, STOL should be about .001. STOL

can also be used to terminate a targeting run after the 143

sensitivity matrix has been computed and before any trial

trajectories are taken (STOL=1).

o PCT determines what fraction of the target error should be

eliminated for the current iteration and scales the control

correction accordingly; if the targeting porcess is very

non-linear, then the sensitivity matrix (used to compute

control corrections) is valid only over small regions around

the nominal, and PCT should be set to a small level, e.g.,

PCT = .1; on the other hand, a full control step (PCT = 1.)

will attempt to remove all the target error at once which.

is effective only for relatively well-behaved (linear)

problems,

o NMAX is the maximum number of iterations which is typically

set to less than 3 so that the targeting process can be

continually monitored and the targeting strategy can be

changed accordingly. t The parameters H, ULIMIT, IWATE, UWATE, TARTOL, TARGET, JWATE, STOL,

PCT and NMAX generally provide the most significant effects and are

the most often used parameters in the adaptive targeting process.

However, there are also a number of options which are very helpful

in stabilizing or accelerating convergence of the targeting process

under certain conditions. s o BT¢L is used in conjunction with the control constraints t i (ULIMIT) to define a marginal area near control boundaries. 4 If a control lies in this area and a control correction is

jj

L ^^ Ir made to the ULIMIT boundary, a modification is made to the

iteration process. The control onthe bound is made -,

inactive and a control step using the remaining controls

is computed from the modified performance gradient and

sensitivity matrix without incrementing the iteration

counter. If the control is in the feasible region but not

In the tolerance region and a control correction is made to

the boundary, the control is also made inactive.; however, a - i new performance gradient and sensitivity matrix are computed_ x

for the next step.

o EPSON determines what action is to be taken if all the trial

trajectories are worse than the reference in terms of the

let quadratic target error index. If EPSON is zero, the run

is terminated; if EPSON is non-zero, it is assumed that

the sensitivity matrix is invalid and a new sensitivity

matrix is computed using the reference trajectory and new

^ control perturbations (the old values (H) scaled by EPSON),

The trial trajectory process is then repeated. EPSON is

used to compute a more well-behaved sensitivity matrix by

changing secant partials to tangent partials, or vice

versa, depending upon the strategy.

o GTRIAL are the one-dimensional search constants, which are

used to find the minimum target error (or cost index) in

S

' the 4& U direction. They are useful tools to restrict the

direction depending upon the level of ; i search in the A the targeting search (refer to Table 4-1). 1 14 S

f

oo GTRIAL(1) is most useful in restricting the per-

centage decrease in the size of the"control scale a factor from the preceding estimate.

oo GTRIAL(2) restricts the scale factor estimate to l " a maximum allowable value.

oo GTRIAL(3) is a minimization tolerance on the control

scale factor. A "loose" tolerance value of .1 will

F cause the search to terminate if the estimated

control scale factor is within 10% of the preceding

value. A "tight" tolerance of .01 or less may

result in the use of all of the possible polynominal

curve fits in the U direction since convergence

is based upon a 1% difference in two successive

scale factor estimates. 3

oo GTRIAL(4) has a similar control on the search as

GTRIAL(3).' The factors which are compared are the

estimate and actual values of the index to be

minimized. If GTRIAL(4) is relatively small .01)

it is likely that more trial steps will be taken per 9

iteration than if the tolerance is "loose" ( > .1). i oo GTRIAL(S) restricts the extent of the search in the

A U direction. The maximum value is 4 which indicates

that all four curve fitting techniques be used if may A

,. convergence is not realized up to the fourth fit

(e.g., two- point-one- slope fit, three-point-one-

slope fit, three.-point fit, four- point fit),.

146

o An option that can save significant computer time is the t1 ability to input the target sensitivity matrix S and per- formance gradient G, by setting INSG = l in VTOPSEP, instead

of computing S and G internally. This might be done, for

example, if (1) a previous run computed a sensitivity matrix,

but neither the trial trajectories nor a control correction

were implemented, or, (2) the nuirber of controls and/or tar-

gets were to be changed (the input G and S would be composed

of elements from previous G and S matrices) a.;suming the refer-

ence trajectory has not been changed (much), or (3) a sensi-

tivity matrix is available from some other program or method.

o DFMAX is used to restrict increases in the cost index (nega-

tive of payload) associated with a targeting step. For ex-

ample, if a targeting control correction reduces the target

error but also reduces the SEP payload more than the DFMfAX speci-

fication the control correction will be appropriately scaled.

I The targeting process can best be illustrated by a simple example. Figure 4-1 is a diagram of control parameter space (U l , U 2) with con

tours of constant target error (T5 T4 ... To). Target contours

are a strong function of the particular types of target and control i parameters, and are often very non-linear. The outer dashed lines f represent control constraints (ULIMIT) and the region between the inner and outer dashed lines represent the "marginal" area. The

starting point or initial guess lies at U2 = 0 and the boundary U 1 = 1 ULIMIT(1, 2). The eventual point of convergence is near one of two

possible minima, and on the boundary U2 ULIMIT(2, 2). Convergence

s to a local minimum and not to a point of zero target error is gener- ally the case rather than the exception even though there are more

{ ^^ xa

i r^ 148

4 controls than target parameters. The control. correction steps x

e U(1n, ..., 1(5) represent the results of five corresponding;

iterations of TOPSEP, each one of which includes computation of the

sensitivity matrix and trial trajectories. Note that U(3) resulted

in controls which; lie in the feasible region but outside: the marginal

area, and the next iteration ,U(4) resulted in contact with the U2

boundary. The next iteration U(5) moved along the U Z boundary

If & U(3) had ended up within to the point of minimum target error. x y the marginal area, but not necessarily on the U 2 boundary itself, then

the BTOL logic discussed above would be exercised. x Although the control corrections appear to be orthogonal to the

target error contours, this is not always the case (except in a small

region near the reference control point of each iteration). The con- j

+trol parameter weights (UWATE) and basic weighting scheme (IWATE) are

used to alter the shape of the general contours such that the control

corrections is applicable over a wider control area, rather than the

localized area near the reference point. Indeed, a more accurate

representation of the contours and targeting process would be in

"weighte_'" space, that is, control and target parameters divided by

` their respective weights. In weighted space, wherein the control

corrections are actually computed, contours might look completely

different. Furthermore, the test of linear dependency (STOL) between

control parameters takes on a more obvious geometrical significance

because the weighted control and target parameters are not so depen-

dent upon units (seconds vs. days, radians vs. degrees, etc.) or

^ti mission segment (early vs. late). i

149

r

The targeting strategy can be reduced to choosing appropriate

control and target parameters and their weights. Because of this,

targeting is more an art than science. Furthermore, a good initial

guess is required to minimize computer time and "artistic" effort.

4.1.4 Traiectory Optimization

When a trajectory has been found which meets, or nearly meets,

desired targeting conditions, TOPSEP can be used to refine the tra-

jectory and maximize payload. However, this option is rarely used

because by the time a targeted trajectory has been computed which

also meets the varied constraints of the mission and S/C system,

there is little per* ,mane left to optimize. It is probable of

course that only a local optimum has been reached, but to find f another local optimum (much less the global optimum) requires

>>ntargeting the trajectory, at least temporarily, to reach a signif-

'•aly different point in control vs. performance space.

The optimization problem is similar to that illustrated previ-

ously in Figure 4-1 where target error contours are replaced by

performance contours. A significant difference, however, is that y, the starting point is already very close to the (local) optimum.

The inputs to $TOPSE p for optimization include all of those t:

- required for targeting, in addition to g

o ¢SCALE, used to establish the relative weighting between

net cost (See Analytic Manual) and target error for

f k' simultaneous optimization and targeting; that is, the

parameter to be minimized is the sum of net cost, 4

k - -.. A .k

f

150

multiplied by OSCALE, plus the quadratic target error;

note that the quadratic target error depends upon both

the actual target error and their tolerances, and it is

close to or less than one for a reasonably targeted

trajectory.

o TUP is the boundary of quadratic target error above which

targeting only is performed and below which simultaneous

targeting and optimization occurs.

o TIOW is the boundary of 4uadratic target error above

which simultaneous targeting and optimization occurs and

below which optimization only is performed.

o DP2 is a constant which is used to scale the optimization I correction relative to the constraint correction. Thus,

the user is capable of restricting optimization control

corrections which introduce large target errors. (Analytic

discussion in Reference 1, page 50.)

Previous experience has shown that optimization of low thrust inter-

planetary trajectories is generally futile, once targeted conditions

have been reached. I^

151

w P I 4.2 Linear Error Analvsis_ GODSEP i The linear error analysis mode provides a relatively quick : w

evaluation of trajectory errors due to anticipated system and envi-

ronmental uncertainties. There are several analysis techniques

available within GODSEP depending upon the mission segment, affected

systems and desired analysis depth. The most common options are (1)

generation of trajectory and state transition matrix data related to

a selected reference trajectory and storing the data on disc and/or

tape, the Sni file, (2) a covariance analysis about soi+4e portion or

all of the reference_ trajectory using data on the STM file, (3) a

combined STM file generation and covariance analysis in a single

4 run, (4) an evaluation of error source mismodeling effects (gener-

alized covariance) based upon a previous covariance analysis (which

assumed perfect modeling), and (5) a covariance analysis of the

reference trajectory using integrated covariances (PDOT) instead of

the transitionmatrix methods.

Whatever option is chosen, the namelist $GODSEP must be input

directly after fTRAJ to specify necessary parameter values. Other

input features are optional, for example, specification of STM and/or

GAIN files, input of namelist $GEVENT for guidance events, and input

of fixed field cards containing measurement event and propagation

event data.

A typical error analysis needs as input (1) an integrated ref-

erence trajectory, (2) expected dynamic and navigation error sources,

(3) a-guidance and navigation strategy, and (4) system constraints,,

I

`7 f E;

152 f

tolerances and evaluation criteria. The reference trajectory is

obtained from TOPSEP as . discussed in the previous section. Both

expected error source levels and the guidance and navigation strategy

are related to mission objectives and subsystem characteristics.

Strategy includes the type and density of observations used in navi-

gation, both on-board and ground based, orbit determination (OD)

method, and the type and frequency of guidance updates.

System constraints and tolerances can be defined a-priori or

can be determined as part of the error analysis. Generally, some

baseline requirements are established and the error analysis either

confirms them or points out needed changes. Another criterion for

evaluation of trajectcry errors is the guidance success zone. This

is the region of acceptable terminal error as determined by minimum

science return and/or by post encounter requirements.

In terms of MA.PSEP and GODSEP operation, once a trajectory has

been defined by TOPSEP, that is, initial state vector, thrust/coast

segment times, thrust controls, etc,, then the linear error analysis

begins with generation of an STM file. The STM file is created by

propagating the reference trajectory and writing, on disc, state

transition matrix and trajectory related data at specified epochs.

The STM file can be saved on Cape for permanent storage such that

subsequent analyses do not need to regenerate the reference data. 3

This is often the case for a parametric examination of error sources

and mission strategies. s

6 Once an STM file is created, GODSEP can be operated in the T r

ILL 153

standard covariance mode. That is, a-priori covariances (control

and knowledge) are propagated using transition matrices, off the

STM file, from one event to the next. At each event the control

and/or knowledge covariance is modified. For example, at a meas-

urement event, observation matrices and a filter gain are computed, X

then the knowledge covariance is updated to reflect the new trajec- ^y

tory estimate (non-deterministically). The only exceptions where x

a. covariance is not modified at an event are eigenvector (for

instantaneous covariance display) and prediction (for display of a

future covariance assuming no further measurements or guidance).

Thus,. a time history of expected uncertainties in actual (control)

and estimated (knowledge) parameters is computed as the sequence of

mission events unfolds.

In the course of a system design, the standard covariance

analysis is run many times with varying levels of error sources,

measurement schedules, guidance policies, etc. At some time, how-

ever, certain key assumptions should be evaluated. One of these

assumptions is the effective process noise model which js an integral

part of covariance propagation using transition matrices. The PDOT

option in CODSEP permits a more realistic (in a mathematical sense)'

evaluation of thrust process noise by integrating a state covariance

explicitly. The state is augmented by parameters which characterize

the noise process. Correlations between thrust noise and other para- s, meters, dynamic and measurement, are computed as part of the PDOT

covariance propagation. This is in direct contrast to the standard

1 is ' ... ^.^... ' covariance a analysis where these correlations are assumed ' to be zero,

In 'many cases, these correlations will be small, but' in some missi:)n b

phases they may contribute significantly to the error analysis results.

9 The PDOT option does not use the STM file, but is more costly 7

to run than STM file generation and a standard covariance analysis r fi combined, primarily because of the augmented state. Furthermore, V

because of its support role, no guidance or prediction events are

allowed in PDOT. I

A second assumption in the standard covariance analysis is that

all process characteristics and expected, performance deviations are

known. That is, the OD algorithm assumes that uncertainties in

dynamic and measurement parameters are perfectly described by input

levels. If the true uncertainty in any parameter is different from

that assumed by the OD process, the error analysis results may be

invalid. Verifying error analysis results can be done by simulation i

(See SIMSEP description) but this can be expensive. So, an alterna-

tive verification technique is provided in the error analysis mode,

called generalized covariance. b

The importance of parameter mismodeling is not just knowing

'that it exists -- it will always be impossible to model the real

I world exactly -- but also knowing what its impact is on the error J^

analyiA.s. To determine this, generalized covariance first requires

running of a standard covariance analysis utth the filter gains at

each measurement beingS writ-ten on the GAIN file. The GAIN file

should be created in the course of any standard covariance analysis

3 155

L if it is apticipated that a generalized covariance will be run later

to evaluate suspected mismodeling.

In execution, generalized covariance operates on a set of "true"

covariances, propagating them by using the STM file and updating them

at a measurement with the assumed filter gain from the GAIN file.

The "true" covariances may have different a-priori levels on some

parameters and may even include parameters not appearing in the ori,g

final error analysis. The resulting output may then be compared to

the original results to determine the sensitivity of the OD process

to the mismodeling.

Note that generalized convariance handles, in effect, two types

of mismodeling': differences in the level of process uncertainty and

mismodeling of the process itself.- Obviously, a more rigorous analysis

would apply the trajectory simulation mode, SIMSEP. However, running r-"

SIMSEP would be very costly to produce the studies that generalized

covariance can perform in one short run. This assumes of course

that linearity is valid which is the key assumption in GODSEP. By

Using generalized covariance in GODSEP, SIMSEP can be used primarily

for testing linearity assumptions and not mismodeling.

4,2.1 STM File Generation

A basic requirement for the standard covariance analysisis a

reference trajectory with associated transition matrix information.

The trajectory data is first created by GODSEP and stored on a disc

file (STM). The STM file can then be usedand reused for any number,

of linear error analyses related to the reference mission.

} 156 r r

In addition to the standard trajectory variables (Section 4.0),

the $TRAJ namelist requires

of I ST14F = 1

o MODE = 2

o IAUGDC to designate which dynamic parameters are

augmented to the basic spacecraft state of position

and velocity

o NEP to designate the ephemeris body if IAUGDC has

activated any ephemeris body elements.

Since the STM file is intended for many applications, it is recom-

mended that IAUGDC activate all parameters that the analyst thinks

might be needed in subsequent error analyses.

The next namelist, %GODSEP,_is required to establish the grid

of trajectory points at which spacecraft state and mass, thrust

acceleration and other trajectory data are computed, and between

which transition matrices for the augmented state are computed. i The grid of time points need not correspond either one to one or to ,a an exact time of events of a following error analysis but should be

set up to cover approximately the expected events. For example, a

greater intensity of time points should be inserted where Earth-

based tracking arcs are anticipated whereas only a few points should

be placed between tracking arcs. It is very important that the time 9 grid on the STM File cover the maximum conceivable event schedule to

avoid regeneration of an STM file.

Time points can be established in many ways. The simplest

157

• E

method is to set NSCHED equal to the number of scheduling cards and

then follow the %GODSEP namelist (which would contain only NSCHED)

with scheduling cards corresponding to a desired trajectory grid.

Either arbitrary measurements or propagation events can be used.

An alternate scheme is to use an anticipated error analysis

event schedule. That is, specify appropriate eigenvector events

(NEIGEN and TEIGEN), prediction events (NPRED, TPRED and TPRED2),

guidance events (NGUID ) TGUID, TCUTOF and TDELAY) and NSCHED. Then

follow with scheduling cards corresponding to a desired measurement i schedule. Of course, the composite event schedule should be set up

to cover all possible future analyses.

Whatever the method of establishing time points for the STM µ. file, a number of additional time points will be inserted automat-

ically. These correspond to thrust policy changes, that is, thrust

reorientation and thrust/coast switching, and to changes in the

number of operating thrusters. 4 3 4-.2.2 Standard Covariance Analysis

Once an STM file is generated, the standard covariance analysis

can be run either as a stacked case or as a separate run. The only

variables required in $T.RAJ are IS11V 2 and MODE = 2 Inputs to 1 $GODSEP are much more involved and depend upon the particular anal-

ysis in mind.

The easiest GODSEP application is 'propagating a covariance from

f one time point to another. This may be desired, for example, to

look at effects of thrust_ or other dynamic uncertainties on the

r L11 ;,..Aw growth of trajectory errors. In this case %G¢DSEP requires:

o TCURR = input epoch of the a- priori covariance;

! o TFINAL = GODSEP termination time; this is required I - only if it is different from the final time on the

STM file;

E o P is the a-priori covariance (in standard devia-

tions) and associated dynamic and/or;measurement

covariances: CXS, CXU, CXV, PS, CSU, CSV, PU,

CUV, PV. Note that the augmented parameters for

a simple covariance propagation may be input as

either solve-for or consider parameters;

o IAUG denotes the augmented parameters which

correspond to the input covariances and IEPHEM

to the form of ephemeris uncertainty input (if

any);

o NEIGEN the number of time points at which the

covariance is printed and TEIGEN is the array _ i of time points; the exact times will correspond

to whatever is available can the STM file, near

the desired times, within the forward and back-

ward time tolerances, TOLFOR and TOLBAK,

respectively; the user shall keep in mind that T1-

thrust control events (switching of thrust ' r } policy or number of operating thrusters) are

automatically .printed at the exact times of occur-

rence;

l r a k 159

o EPTAU and EPSIG are required if thrust noise

is present, otherwise DYNOIS .FALSE. must i 9

be Set;

o JOBLAB is used for a job heading to describe

this run.

No other input needs to be included in $GODSEP, nor are scheduling

or any other cards required.

The most common GODSEP usage is the evaluation of a naviga-

tion strategy and a set of error sources for the reference mission.

This includes tracking, orbit determination (OD), guidance and,

possibly, prediction, propagation and eigenvector events for addi-

tional data display. In this case, $GODSEP requires all of the 1 inputs needed for the simple covariance propagation plus i

o C¢NRD = .TRUE., and PG, CXSG, PVG, for k

the a-priori control covariance if it is 3

different from the input knowledge covariance,

and TG, XG, GMASS to define the trajectory

epoch;

o Guidance event parameters: >NGUID, TGUID, TCUTOF,

TDELAY, CONWT, IGPOL, IGREAD to denote 160

ti: characteristics of the thrust update process; if IGPOL is zero for any guidance event (that is, an artifical guidance event whose sole

function is to print the control covariance,

analgous to an eigenvector event), then the

corresponding event values in TCUTOF, TDEIAY,

CONWT, and IGREAD are ignored;

o Other non-measurement events: NETGEN and

TEIGEN for eigenvector; NPRED, TPRED and

TPRED2 for prediction; i o IGAIN for the type of OD filter;

o SIGMES, SIGIZS, SIGION, SIGZ, CORLON for track-

ing measurement noise standard deviations;

o PUNCHE to denote at which event types punched

card output is obtained (covariance and

state);

o NSCHED

There are of course many optional parameters which may be input

depending upon the particular GODSEP application, For example, if

the number of 2-way doppler measurements per day is different than

12, then DOPCNT should be changed, or, if the error analysis event

schedule must be meshed with a fairly different STM,grid, then the

tolerances T¢LF$R and TOLBAK might be altered.

With regard to schedule tolerances, the user should keep in

mind the process of which events are chosen to be executed at which

_ AV &_

161

P STM time points. For example, in Figure 4-2, Event E 1 will be per-

formed at the STM time point STM(I). Event E x will not be processed '« s

$TM (1 )

STM (1) jE E Ems" 00000*voor000000^ 4 OLFOR -' T(DLE3AK

Figure 4 .1. Event grad STM Meshing

at all; if SCHFTL = ,TRUE., then the run will be terminated immedi-

ately. Events E3 and E4 will both occur at STM(I+1). In Figure 4-3,

where TOLBAK is so large that it overlaps a previous STM point, El

3.s still executed at STM(I) because an earlier STM point and its

tolerances take precedence over subsequent STM points. Events E2,

E3 and E4 are all executed at STM(I+1). Thus, it is very important

that some foresight be applied to creation of the STM file and some

consideration be applied to the use of the STM file in event schedul-

ing of a covariance analysis. -

STM (I+1) d

STM (1) • E2 E 3 4

TOLFOR { T¢LBAK

` Figure 4-3._ Event and STM. Meshing

1

p ' F

p4F F; 162 t

A number pf print and input/output options also exist in %GODSEP.

One of the more important output controls is GAINCR which determines

whether or not a GAIN file is to be created fora subsequent general-

ized covariance analysis (Section 4.2.4). Another option is the

punch flag, PUNCHE, which produces punched cards of state and cov-

ariance for selected event types. This option is quite useful in

subsequent error analyses to eliminate unnecessary repetition of

mission segments, especially tracking arcs. 1

P Following the $GODSEP namelist are fixed field schedule cards

which determine the type, density and span of measurements used for,

t F navigation and the spacing of propagation events. Propagation

events are used primarily to condition the process noise terms, in

- particular, to break up long propagation intervals, for example k those greater than 50 days, wherein there are no other events and

in which the effective process noise model breaks down.

An option which can be used-to facilitate parametric operation

of GODSEP is storing the $GODSEP namelist on the GAIN file (GAINCR

.TRUE.) even if no subsequent generalized covariance analysis is i 1 intended. In any following error analysis run, setting ISTMF 3

in STRAJ will cause the $GODSEP namelist to be read off the GAIN

file and the user need only input those parameters in %GODSEP which a are different from the run that created the GAIN file. The user will

still, however, be required to input NSCHED and follow the $GODSEP

namelist with the appropriate measurement and propagation event y

scheduling cards.

j

3 t 8 • 163

tl ti After the scheduling cards there exists the possibility of one more set of cards, the namelist ^GEVENT. If guidance events are

requested and if any of the entries in IGREAD ( in $GODSEP) are non-

zero, then the $GEVENT namelist must be input immediately after the

scheduling cards. If IGREAD = 2, $GEVENT allows input of VMAT, the s

variation matrix of target - parameters with re.,pect to guidance start

state, SMAT, the sensitivity matrix of target with respect to guidance

thrust controls and BURNP, guidance burn parameters. If IGREAD = 1 or

2, $GEVENT also allows updating of values in CONWT, NCON, TARWT-and UMAX.

One $GEVENT namelist is required for each non - zero entry in IGREAD up

to the number of guidance events ( NGUID). Using $GEVENT increases the

speed of a GODSEP run by eliminating guidance related computations

- already performed by earlier runs. A standard output at all guidance

events are punched cards for VMAT, SMAT and BURNP whenever these

matrices are computed and not already input. j It is apparent that GODSEP input (Figure 4-4) is complicated _; t x because of the requirement for extensive analysis capability,

$GEVENTr

$GEVENT STM i Schedule Cards

$G^DSEP

_e $TRAJ I ;

r

Figure 4-4. Standard Covariance Analysis Input {

. t, ; r

options are chosen and what sequence of GODSEP runs - should be made

for a specific mission or problem.

4.2.3 Combined STM File Generation and Error Analysis - i In general, it is not recommended that GODSEP cases be stacked

in a single run because of the amount of output which the user i E should look at before submitting the next case. There i-s-one recog-

nized a.ception -- combining the STM file generation with a standard i • covariance analysis. However, even this stacked case;is not without-

peril because of the danger of miscreating the STM file with subse-

quent operation by an unsuspecting covariance analysis. The combined

STM generation and analysis run may be used for two reasons: (1) the

covariance analysis is a simple check case to verify the adequacy of

the STM file, or (2) the reference mission is relatively unique and

no further analysis is anticipated.

4 The inputs to MAPSEP are straightforward (Figure 4 -5) and

F Schedule Cards $GODSEP

%TRAJ

ScheduleCards_ \ ^, ii. Covariance

.^' Analysis $GODSEP I} a ;t t € STRAJ

I STM File }( Generation

Figure 4-5. Combined STM Generation and Error Analysis Input

„l I I I I I !;

f^ 165

follow the detailed "descriptions contained in Sections 4;2.1 and

4 6 2.2 for generation of the STM file and covariance =analysis, respec- r w^

tively. Since GODSEP does not retain event information from one run

to the next, the event and scheduling cards used to generate the STM

file must be repeated for the error analysis (assuming the STM file

is to be applied. only for that error analysis).

;;. 4. 2.4 Generalized Covariance

_ A standard covariance analysis (SCOV) assumes the OD filter

knows percisely the form, behavior and initial levelof any process

uncertainties and can estimate and/or consider their appropriate

effects. Generalized covariance (GCOV) is used to examine differ-'

ences between the assumed and real-world uncertainties as they

.- interact with the OD process. Thus, an explicit requirement for

exercising the GCOV option is a previous SCOV run which has written

Its filter gains on a GAIN file (GAINCR _ . TRUE. in $GODSEP). The

GCOV run(s) can be stacked behind the SCOV, although this is generally

not recommended.

Exercising GCOV requires two tapes or files, STM and GAIN. The

SrTRAJ namelist requires only MODE = 2 and ISTMF 3. The $GODSEP

namelist also requires only a few inputs because the measurement,

` propagation, and print schedule, a-priori covariance, noise levels,

etc, are all obtained from the GAIN file. Thus, $GODSEP `input is

o GENC$V = . TRUE. and GAINCR = . FALSE.;

o ` IAUG to activate ignore parameters, that is,

those parameters known to the real-world (GCOV) but not by the assumed world (SCOV);'

note that only those parameters not already

activated as solve-for or consider in the

SCOV are available to be used as ignore f 1 parameters;.

o CXW, CSW, CUW, CVW, PW (covariance terms) for a the ignore parameters;

o Any parameters to be mismodeled, for example,

covariance P, CXS, 0001 PV, measurement i noise SIGMES, thrust noise EPTAU and EPSIG,

etc.;

o Changes in events, although this is not

recommended because it may alter the cov-

ariances even without mismodeling.

If the user is confident of his input, then several cases of

GCOV can be stacked (by repeating the %TRAJ and %GODSEP input q described above). Such a run might include, for example, comparison

of different thrust noise levels and correlation times.from those

E r assumed by the OD filter. The sensitivity to mismodeling of thrust

errors can be a very important criteria in the choice of an OD filter

for low thrust missions.

4.2.5 PDOT

One of the key assumptions in a standard covariance analysis is

the effective thrust noise model. A means of evaluating this model,

j as well as other dynamic modeling assumptions is the exPl+cit

T

{

167 i r

integration of the covariance matrix differential equations (PDOT).

This is in contrast to the transition matrix methods used in the g

standard covariance analysis. ~`

Since no transition matrices are required, the STM file is not 5

needed except in the possible case where a default ` $TRAJ namelist is v desired which contains reference trajectory parameters. In this

case, MODE ,_ 2 and ISTMF 2 are the only inputs required in '$TRAJ.

Otherwise, the normal $ TRAJ inputs are required: TLNCH, ..., NB,'

along with MODE 2 and ISTMF 0.

The $G ¢DSEP namelist and scheduling cards are identical to that F

- used in the standard covariance run (Section` 4.2.2) except for

PDOT = .TRUE. Most of the options are also available, for example,

m generalized covariance.

There are a number of restrictions on PDOT capability because 3

of its function as a support option intended to check on covariance .; 3

propagation modeling. In particular, no prediction or ,guidance events

can be performed. Furthermore, if the input covariance epoch, TCURR,

is not equal to the trajectory epoch, TSTART ( in $TRAJ), then STATE i and SCMASS in $TRAJ must be altered and correspond to TCURR.

u

u^

qq

S - A cj-4), . 4.3 Trajectory Simulation - SIMSEP

The two main purposes of trajectory simulation are to examine

(1) deterministic trajectories, especially the effects of dynamic

nonlinearities, and (2) the impact of process mismodeling on

trajectory errors. Each trajectory is simulated in an operational

environment with a parallel set of "real world" and "assumed world"

conditions. The real world conditions are randomly selected from a

set of uncertainties associated with the dynamic, environmental, and

systems models. The assumed world conditions represent a best

estimate of what the real world is like. It is obtained by direct

(but corrupted) and indirect observations of the real world processes.

" The trajectory or mission is carried through a set of trajectory

yJ. related events, e.g., orbit determination and guidance, until a

stopping condition is reached, usually target encounter.

Once a mission has been completed, the trajectory is character-

fze,d by fuel expenditure, terminal error, magnitude of thrust control

updates, etc. In line with the main objectives, a comparison can

then be made between real and estimated world terminal conditions. -

furthermore, it will also be possible to make a comparison between y

real (and estimated) terminal conditions computed in SIMSEP and

results computed in an equivalent linear error analysis run. Based

upon these comparisons many actions may be taken, the most obvious

being an update of assumed world processes and models to reflect the

real world more accurat?,lyy•

SIMSEP has been designed to run a sequence of trajectory simu-

lations in order to-generate statistics on the terminal conditions. , 4 I

^; 4 Clearly, the confidence attached to these statistics is largely

dependent on the number of samples taken. As a consequence, this

Monte Carlo approach is, generally, very expensive in terms of

computer processing time. This often restricts SIMSEP operation

to a support role or to analysis of specific processes, e.g., ter-

minal guidance algorithms or thrust noise effects.

Because SIMSEP can have a complicated input, and is expensive

to run, it is recommended that a zero-error case be made first to y

prevent undue expense as a result of input mistakes. This involves

running a single cycle of the reference mission, including, all guidance

events and related inputs, but with zero-values input for dynamic errors

or knowledge uncertainties. The results from one mission cycle with no

errors should compare favorably with the targeted reference trajec-

tory obtained from TOPSEP, except for small differences due to

numerical integration noise. After a successful zero-error case,

SIMSEP can be executed to examine any desired problem. a

4.3.1 Single Cycle - No Error 3 The zero-error case is a means of verifying the basic mission

input andis one of the easiest SIMSEP runs to make (Figure 4-6). y — ^i $GUID f

$GUID

$SIMSEP `^Y

$TRAJ

L . ► L n ► t

r t Figure 4-6. SIMSEP Mode Input 170

lop i

After the standard $TRAJ namelist containing TLNCH, ..... NB,

and MODE = 3, the input to $SIMSEP is NGUID for the number of

maneuvers or guidance events and INREF 0, forcing SIMSEP to

compute reference trajectory conditions at each event and at the 1

final time. For each guidance event, there must be a corresponding

$GUID namelist containing

o KTER to determine whether or not target conditions are to

be computed after this guidance event in order to evaluate

its success; i .o TGUID for the maneuver epoch; o ITARGT and IGUID for the guidance philosophy;

o H array to define the active low thrust control parameters x

for this guidance event; note that controls can be either iv an impulsive delta-velocity or low thrust parameters and

if they are impulsive no entries are necessary in H; j o NTP for the target body code; i I ;; o TTARG for the target time; r f I i

ir ,

a r

HF F - Lk E

171

o UWATE for control parameter weights;

o TARTOL for allowable tolerances on the target errors; and

o NMAX for the maximum allowable number of iterations if non-

linear guidance is specified.

The zero-error case should result in extremely small guidance

corrections and target errors. Besides confirming the mission and

guidance input, a zero error case will generate punched card output

(independent of IPUNCH) which will greatly facilitate subsequent SIMSEP

runs. Assuming INREF = 0, the punched cards will include at each guid-

ance event, the reference state, mass, target variables and either a

sensitivity matrix of target parameters w.r.t. control parameters (for

-, the nonlinear guidance case) or a guidance matrix of control correc-

tions w.r.t. state errors at the guidance time (for linear guidance).

The reference state and mass at the trajectory end ;(TEND) time will i also be punched,

4.3.2 Single Cycle Forced Monte Carlo

A very useful method of evaluating either specific errors or worst

case missions is a "forced" Monte Carlo run. With the random number

seed, IRAN, set to zero, all error sources are set at their one sigma - a levels. Thus, discrete known levels of errors can be studied, instead

of randomly sampled._ of 'course, if all the error levels are one-sigma, -

the mission itself may represent a very improbable case, possibly as ?

high as 100

3 f Input for a forced Monte Carlo run is the same as for the k

's

T 172

fprevious zero-error case with the obvious exception of non-zero

errors, The $TRAJ namelist is the some, and the $SIMSEP namelist

contains

o IRAN _ 0;

o Ephemeris and gravitational errors: EPHERR, GMERR;

NEP2 try .identify the ephemeris body(s); TEPH for the

epoch(s) at which ephemeris uncertainties are

evaluated;

o Spacecraft and thrust related errors: SCERR, TCERR,

TVERR;

o AV execution errors: EXVERR, if there are impulsive

maneuvers; the chemical_ propulsion specific impulse SPFIMP;

o The control covariance, PG, representing the initial

position and velocity uncertainties; a forced Monte i Carlo state error consists of a vector containing

_ the square root of each eigenvalue rotated back into

state space;

o A¢K, the upper bound of acceptable quadratic target

error for non-linear guidance events (total convergence - _

o INREF = 0, or if reference conditions are available,

then INREF = 1, and the reference state and mass at -

the final time (REND and MEND, respectively) must .T c be input;

2 k r ^^

I 173

.+P o NGUID for the number of maneuvers.

Each $GUID namelist must contain

o KTER, TGUID, o.., NMAX, the guidance characteristics

as in the zero error case;

o If INREF = 1 in XSIMSEP, then the reference state

(XGREF and mass MGREF) at the maneuver epoch, target conditions

(TARGET, XTREF, MTREF) and either the sensitivity matrix

for nonlin,:ar guidance or the guidance matrix for

linear guidance (S) must all be input;

o KDIWN to denote the augmented parameters to the space-

craft state which have been estimated for this maneuvt,r

NEP identifies the ephemerisp bodyy if the augmented state

includes ephemeris or gravitational parameters;

o 'P, PS, CXS are estimation uncertainties corresponding A

to the spacecraft state, augmented parameters and

correlations, respectively.

The forced Monte Carlo option is often used in parametric fashion

to study, specified levels of a particular error source, for example,

thrust noise. Stacked cases can tit. used to perform the parametric

study by repeating the namelist sequence TRAJ, %SIMSEP and the

appropriate number of P"GUID's.- An alternate, and more efficient,

method is to set MODE -3 in the first case $TRAJ namelist and

make use of the fact that the initial $SIMSEP and AGUID namelists r

are saved on _disc. After the 'fist case, the'$SIMSEP and OGUID

z namelists are repeated for each subsequent case. If this 174

I operational procedure is used, those variables that are different

from the first case need to be redefined during input after the vari-

ables read during the previous analysis are set to zero. In addition,

the user must be careful to read zero-length namelists, i.e. $SIMSEP

or $GUID card followed by a $END card, for all namelists nominally

requested even if the original is unchanged.

4.3.3 Monte Carlo

The most often used application of SIMSEP is in the Monte Carlo

mode where all mission uncertainties are sampled and the trajectory

is simulated accordingly. By looking at a number of typical missions,

each with varying degrees of expected errors, an idea of the trajec-

tory errors and required control corrections can be obtained. Sta-

tistical analysis of key parameters, such as final target error and

mass, total required thrust control correction, etc. should evaluate

or define realistic system constraints and probability of mission

success. Obviously, a large number of missions, on the order of j hundreds, are needed to have reliable statistical data, but even a few

sample missions will reveal the scope of trajectory non- linearities

and mis-modeling effects.

Input to a full Monte Carlo simulation is basically the same

as that for the forced Monte Carlo. The namelists $TRAJ, $SIMSEP,

and $GUTD are all needed with parameters as specified in the previous

section. Additional variables to be considered in $SIMSEP are ,•

3

o LOUT to specify which sample missions are..to be

printed in detail; if only a few missions are k 175

generated then all of them should be printed;

o IPUNCH = 1 to provide punched cards of all the cumula-

tive statistics at the end of the run; this will allow

a subsequent run to continue the statistical analysis

rather than starting anew;

o IRAN is the random number seed, typically set to unity

= for the first Monte Carlo run; k r o NCYCLE for the number of missions to be simulated;

° o- CPMAX is an optional parameter for maximum computer

processing time; if the actual processing time

approaches CPMAX and it is 'estimated that the desired

number of missions (NCYCLE) cannot be completed, then

the current mission is completed and final output is

generated. This includes punched cards for restarting another run.

The cost of simulating one sample mission with a number of guid-

ance events can be quite- high, especially if nonlinear guidance is

use,',-.- Therefore, it is recommended that considerable planning be

made before a full Monte Carlo :study is run. Some of the possible M short cuts are increasing the trajectory integration step size (STEP

in $TRAJ), using linear guidance wherever possible, minimizing the x ma:imum number of iterations ( NMAX in $GUID) for nonlinear guidance, F and eliminating unnecessary computations (for example, KTER = 0 in

M $GUID). Another possibility is simulating only key mission segments, s in particular the terminal approach phase, and studying other segments

with a few simulations and/or with the forced Monte Carlo option. 176

4.3.4 Monte Carlo Continuation

It is often wise to divide a Monte Carlo analysis into smaller 4 sample sizes then one large run. This serves two purposes: (1) the

early detection of input errors before sizable computer time is spent,

The latter rea- F. and (2) examination of missions as they are generated.

son could conceivably result in a change in guidance strategy which

would cause the Monte Carlo study to begin again. t

A prerequisite to the Monte Carlo continuation are punched cards

containing statistical results of all previous runs (IPUNCH 1 in

$SIMSEP). The input to a Monte Carlo continuation is the same as in

the previous section except for inclusion of the cumulative statistics.

In $SIMSEP these include the total thrust: control correction` covari-

ance (only of the active controls used in guidance events) ATHCOV,

total QV variance, ADVT, state covariance at the final time ENDCOV,

final spacecraft mass variance AMASS, and the number of Monte Carlo

cycles used to generate these statistics, MC. In each $GUID namelist s `;

the parameters to be included are: state control covariance CCOVG,

AV covariance DVMCOV,AN magnitude variance DVMAG, spacecraft mass 0 variance GMSCOV, thrust control correction matrix CNTCOV, state error ^°

covariance at the target time CCOVT, spacecraft mass variance at the

target time TMSCOV, target error covariance TARCOV. CCOVT, TMSCOV,

and TARCOV are computed only if KTER = 1., The number of maneuvers

used in computing these statistics is specified by the variable MSAMP.

All of the matricesnoted above containnot only variances and covari- r

` t.. ances but also the cumulative mean values. r r

f 177

Q

_ M

Note that the number of samples used to generate each maneuver

may be different from each other and from the number of samples

used to generate the total mission statistics. This results from

I' maneuvers which do not converge or fail to achieve the weak con-

vergence criteria (A¢K) and are not included in the cumulative

statistics. A divergent maneuver is taken to be "catastrophic" and

the current Monte Carlo mission cycle is terminated with no further

guidance events or statistics being computed until the next cycle, s: =n

Additional input for the Monte Carlo continuation run is the x random number seed ( IRAN in $ SIMSEP) which is typically set to the

number of the next cumulative Monte Carlo cycle to be run. No sF changes in the reference trajectory, guidance strategy or error f

>._ sources should be made between runs, otherwise the statistical

results will be invalidated,

`i

;' a

s _ ^ FC ^ t ^

z

LAI 178

^f 4.4 Case Stack in^g and Mixed Mode O peration r Case stacking is generally not recommended within modes and P definitely not recommended for mixed mode operation. There is too

much room for error, even for the experienced user, to assume the t input and operation of one case will successfully provide the

required data for the next case. There are a few exceptions which

might warrent case stacking, and some of these conditions have been

discussed in previous sections.

The MODE flag in namelist MAJ-controls not only the mode

(TOPSEP, GODSEP or SIMSEP), but also the point to which program

logic will cycle back. A positive MODE will return to MAPSEP main

x and will expect a $TRAJ namelist for the next case. A negative

: MODE will return to the mode main and expect a mode namelist. Note It that once recycling is done within the mode, logic will never return

to MAPSEP main, therefore, (1) any subsequent cases must apply only

to that mode and (2) no changes to the reference mission are allowed.

Some of the possible conditions under which case stacking might

be_ performed are:

_ MODE Mode Flag Function Conditions

TOPSEP +1 Trajectory Generating time histories for Propagation different missions.

TOPSEP '+1 or -1 Initial Generating more than one ini- Guess tial guess for subsequent targeting by applying different sets of initial conditions, thrust parameters, and/or mission constraints for each ! case. r.

r; ^ 1 I I 1 f^ ^l I f F

179 F

MODE Mode iFlag Function Conditions

TOPSEP -1 Grid Extending the scope of the tra- Generation jectory grid.

TOPSEP -1 Targeting Examining various targeting strategies for a given mission.

GODSEP +2 STM Generating a STM file with Generation verification by a simple error analysis check case.

GODSEP +2 Covariance Generating a STM file for a Analysis unique mission with a subsequent ' error analysis. x

GODSEP +2 Covariance Analyzing different navigation Analysis strategies and/or error sources for the same mission.

GODSEP +2 Generalized Performing a standard error Covariance analysis to generate a GAIN' file and using generalized cov- ariance to evaluate suspected mis:modeling effects.

GODSEP +2 Generalized Analyzing different mismodeling Covariance assumptions with generalized covariance runs.

GODSEP +2 PDOT Performing parametric variations of dynamic error sources and evaluating their covariance prop- agation effects with the PDOT option.

SIMSEP +3 Missions Simulating several different missions for comparison.

SIMSEP +3 Errors Examining different sets of error, sources on the same mission (forced Monte Carlo).

SIMSEP -3 Guidance Examining different guidance strategies for a given mission.

y^ ' 5.0 REFERENCES

1. "MAPSEP, Volume I - Analytical Manual," P. Hong, et al, Final Report for NAS8-29666, December, 1973.

2. "Low Thrust Orbit Determination Program - Final Report, Contract NN S1-11686," P. Hong, et al, NASA CR-112256, December, 1972.

3.- "MAPSEP, Volume III - Programmer's Manual," K. Huling, et al, Final Report for NAS8- 29666, December, 1973.

4. "System Design Impact of Guidance and Navigation Analysis for a SEP 1979 Encke Flyby," P. Hong, G. Shults, R. Boain, Presented at AIAA 10th Electric Propulsion Conference, October 31, 1973.

5. "Guidance and Navigation Analysis for Solar Electric 1979 Encke Flyby and 1981 Encke Rendezvous Missions," P. Hong and G. Shults, MCR -73-182, July, 1973.

6. "Extended Definition Feasibility Study for a Solar Electric Propulsion StageConcept Selection-- Midterm Briefing," Rockwell Corporation, SD73 -SA-0081-1, June 20, 1973.

7. "Guidance and Navigation Techniques for a Solar Electric Mercury Orbiter," P. Hong and G. Shults, AIAA Paper 72-917 Presented at AIAA/AAS Astrodynamics Conference, September 11, 1972.

$. "QUICKTOP III - A-Computer Program for Low-Thrust Trajectory and Mass Optimization," A. Mascy, R. Schaupp and S. Hayes, NASA TMX-62305, September, 1973.

9. "POST - Program to Optimize Shuttle Trajectories," D. Cornick, et al, MCR-71-287, 1971.

k

}

t i 4.