<<

Where is all the water?

The distribution of water at the Earth's surface % of total 97.25 Ice caps and glaciers 2.05 Groundwater 0.68 Lakes 0.01 Soils 0.005 Atmosphere (as vapour) 0.001 Rivers 0.0001 Biosphere 0.00004 Total 100 %

1 Water flows into the oceans and residence time

Volume of the oceans: 1.37 x 1021 litres.

Annual Volume Residence time Rivers = 3.74 x 1016 litres. 34,000 Rain on surface = 3.8 x 1017 litres. 4,000 Hydrothermal vents = 1.7 x 1014 litres 8x 10^6

Surface waters 9-15 yrs

The oceans are heated from the top, yields stability

Surface layer mixed by wind thickness varies from 50-300 m is a balance between wind energy and heating e.g. tropical surface waters warmer and thinner (less wind)

Polar surface waters are very cold, can get deep mixed layers

2 Density increases with depth, maximum change at the Surface mixed layer is only ~ 2% of ocean volume Pycnocline is ~ 18% of ocean volume Deep waters make up ~80 % of ocean Pycnocline comes to the surface of ocean ~50-60 ˚N, small density differences, place to make deep water Make deep water by cooling surface water but must be high enough

Salinity is affected by precipitation (rain) and evaporation

In places where evaporation exceeds precipitation, salinity and density of surface seawater increases

If precipitation exceeds evaporation, salinity and density decrease

3 Global Evaporation - Precipitation

Data: , http://en.wikipedia.org

4 Combined effect of and salinity

Temperature ranges from -1.8˚C to ~30˚C

As you cool water from 25˚C to 5˚C density increases from ~1.023 to ~1.028, almost dense enough for deep water

Deep water formed by cooling in North Atlantic and Weddell Sea, travels through Atlantic and Indian Ocean to Pacific

5 Animation NOAA http://www.aoml.noaa.gov/phod/soto/animMOC.html

The concentration of tritium (3H) and 90Sr (strontium-90) in rain collected in Valencia, Ireland between 1952 and 1974

Most deposition 2 years after the ban?

6 Tritium Can see penetration of spreading bomb tritium into deep into ocean ocean between 1972 and 1981

Is tracing pathway of deep water formation

Can use tritium to estimate deep water formation rates

Excess heat in equatorial regions requires redistribution toward the poles Surface circulation moves ~50% of this excess heat

7 Surface currents are driven by winds,

Gyres are underneath, and driven by, the bands of Trade Winds and Westerlies

Wind driven currents are moving to the right of the prevailing wind because of

8 Gravity piles water toward the centre of the gyre Force of gravity on the piled up water creates pressure gradient away from centre of the gyre The balance between these forces is known as geostrophic balance

Geostrophic "hill" is closer to the western side of the gyre because of Earth's rotation

In the northern hemisphere Currents on western side of the ocean (western boundary currents) are narrow and fast flowing Currents on the eastern side of the basin are slower and more diffuse Western boundary currents are warm as they come from the Equator Eastern boundary currents are cold

9 Maximum in surface water salinity shows the gyres

excess evaporation over precipitation results in higher surface water salinity

Southern Oscillation Atmospheric pressure differential between Tahiti and Darwin, normally low pressure in Darwin, high in Tahiti Low pressure High pressure Normal

El Nino

El Nino high pressure in Darwin, low in Tahiti Change in pressure differential results in weakening of easterly equatorial winds

10 Normal conditions in the Equatorial Pacific

Strong easterly winds:

Pile up warm water in the western Pacific -- deep in western Pacific,

shallow in eastern Pacific Winds drive equatorial

Satellite image of chlorophyll abundance As thermocline is shallow in eastern Pacific upwelling brings nutrients to surface waters along the equator Nutrients promote growth along equator

11 Strong coastal winds: Cause upwelling of nutrient-rich water along West coast of South America

Upwelled nutrients in coastal and equatorial regions support phytoplankton growth ➔ fisheries

Onset of El Nino and the ocean's response

Pressure at Darwin rises, pressure at Tahiti drops Easterly winds weaken Warm surface water surges back across central Pacific Thermocline drops in the east, rises in the west

12 Normal Satellite image of sea surface temperature

Equatorial upwelling decreases because of lower wind strength and sea surface temperature rises as thermocline deepens in eastern Pacific

El Nino

Coastal upwelling continues but deeper thermocline so only warm, low nutrient water upwells phytoplankton population collapses, fisheries collapse

13 Thermocline moves across Pacific to the east as a sub-surface wave, another wave moves to the west. Waves reflect off Asia and return to central Pacific raising thermocline and bringing cold water near the surface again breaks the feedback loop

Typical amount of salt in seawater is ~35g/litre Major ions (6) make up 99.8 % of all dissolved chemicals

14 Residence time of some ions in the oceans

Sodium 68 million years Chloride 100 million years Magnesium 10 million years Sulphate 10 million years Potassium 7 million years Calcium 1 million years

Aluminium ~200 years Iron ~ 50 years

15 • Cyclic sea salts - Wind blown sea-spray forms aerosols containing seawater ions (Chap. 3) - A significant portion of river-transported Cl derives from these aerosols, returning them to the sea - This process removes ions in proportion to their concentration in seawater

• Ion exchange on river-borne clays entering the ocean - Most of the cation exchange sites on clays are occupied by Ca2+ - Upon exposure to seawater, Ca2+ is released and is replaced by other seawater cations, especially Na+, K+, and Mg2+ - Most deep sea clays have higher Na+, K+, and Mg2+ concentrations than riverine clays -- causes a net loss of these ions - Reverse Weathering, an old idea recently finding renewed interest

• Burial of dissolved ions (particularly Na+ and Cl-) in sediment pore waters

2+ • Deposition of biogenic CaCO3 controls Ca removal from seawater

2- • Biogenic SO4 removal resulting from sulfate reduction and formation of

pyrite (FeS2), a secondary, authigenic mineral

• Evaporite minerals (salt flats, sabkhas) - Periodically in the geologic past, vast deposits of evaporite minerals formed when seawater evaporated from shallow, enclosed basins - Although limited in areal extent, this process has been important for Na + + 2- , Cl and SO4 removal from seawater during such periods

• Removal at hydrothermal vents 2+ 2- - Particularly important for Mg (Mg-silicate formation), but also for SO4

16 • Summary of removal processes for the six major ions:

- Most Na+ and Cl- are removed in pore water burial, sea spray, and evaporites

- Mg2+ is largely removed in hydrothermal exchange

2+ 2- - Ca and SO4 are removed by deposition in biogenic sediments

- K+ is removed by exchange with clay minerals and reverse weathering

• Eventually, over long periods of time, ocean sediments are subducted into the Earth’s mantle

- Non-volatile components are melted under pressure and converted into primary silicate minerals

- Volatiles are released as volcanic gases (H2O, CO2, Cl2, SO4, etc.)

What really controls residence time?

The rate of removal is determined by chemical and biological processes

17