An Introduction Into the Theory of Cosmological Structure Formation

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction Into the Theory of Cosmological Structure Formation An Introduction into the Theory of Cosmological Structure Formation Christian Knobel Institute for Astronomy, ETH Zurich, Zurich 8093, Switzerland January 2013 (Second Edition) This text aims to give a pedagogical introduction into the main concepts of the theory of structure formation in the universe. The text is suited for graduate students of astronomy with a moderate background in general relativity. A special focus is laid on deriv- ing the results formally from first principles. In the first chapter we introduce the homogeneous and isotropic universe defining the framework for the theory of structure formation, which is dis- cussed in the three following chapters. In the second chapter we describe the theory in the Newtonian framework and in the third chapter for the general relativistic case. The final chapter dis- cusses the generation of perturbations in the very early universe for the simplest models of inflation. arXiv:1208.5931v2 [astro-ph.CO] 1 Feb 2013 ii Preface This text aims to give a pedagogical introduction into the main concepts of the theory of structure formation in the universe. The text is suited for graduate students of astronomy with a moderate background in general relativity. A special focus is laid on deriving the results formally from first principles. During my PhD studies on high redshift galaxy groups I had the endeavor to understand the theoretical framework on which my research was based. I did not only want to be able to reproduce statements that were made in the books, but to understand where they came from and what their underlying assumptions were. Therefore, I read several books on cosmology and worked out the basic theory the way I found it the most accessible. In the course of time, I filled a couple of notebooks this way, until I finally started to convert part of them into digital form as an introduction for my PhD thesis. But, as the introduction turned out to be way too long, I eventually did not include it into my thesis. However, since I had already spent much work compiling this text and since I was encouraged by the positive feedback of students who had read it, I decided to assemble it into a self-contained introduction on cosmological structure formation in order to make it also available to other graduate students with the same interest as me. I attempted to make a common theme obvious, which is the question of how structures in the universe were created and grew to the present time large-scale structure of galaxies that is observable today. The selected material is supposed to be self-contained, but nevertheless concise. I put a special focus on clarifying how the results are formally derived from underlying fundamental principles and which assumptions were made. This still does not imply every single calculation to be included in detail. For instance, the derivation of the Robertson-Walker metric is not performed specifically, as \maximally symmetric spaces" are a special part of general relativity rather than astrophysical cosmology. However, I show certain conditions to be satisfied so that I can refer to a common theorem of general relativity in the literature that uniquely leads to the Robertson-Walker metric. Besides it is generally only the simplest possible case worked out in a given context, since these cases often allow elegant, rigorous derivations. This approach is motivated by the fact that the simplest cases already allow a sufficient qualitative understanding and that realistic quantitative results in the context of structure formation usually require large numerical computations. Unfortunately, technical texts with a high aspiration for completeness and rigorousness are prone to become longish, while concise texts have the tendency to be incomplete, inaccurate, or ambiguous. For this reason this introduction contains unusually many footnotes compared to other astronomical texts. In order to keep the central theme as straight and concise as possible, I included many minor comments and sometimes also short derivations in the form of footnotes. That is, the basic text (without footnotes) is self-contained, while the footnotes provide additional comments and assistance. iii It is exactly these footnotes, which can be helpful for students to understand certain subtleties. Those readers who are not interested in these details can just omit them whithout losing the thread. There are still many topics that would fit into this introduction, which were omitted, such as the derivation of the cosmic microwave background fluctuations or a more detailed discussion of the nonlinear regime of the large-scale structure (e.g., the Zel'dovich approximation, numerical N- body simulations). So naturally the material selected represents only a tiny fraction of interesting and important topics in the context of structure formation. Also the literature cited is not comprehensive. I mainly included the material which the text is based on and which I find useful for further reading. If I have accidentally omitted an important reference that should definitely be included, please let me know. Since I aim to maintain this text, all sorts of comments are welcome. If you find typos or if you have suggestions on how to improve the content, I would be grateful, if you sent me a message to [email protected], so that I can update it. Structure of the introduction This introduction is divided into four chapters. The first two are easier to understand than the last two and need only little input from general relativity (only for the derivation of the Robertson-Walker metric and the Friedmann equation). The second chapter is even fully based on Newtonian physics and yet contains most of the results that are presented. On the other hand, the last two chapters and the appendix are entirely based on general relativity and are much more technical than the first two chapters. They require a moderate background in general relativity, although we still derive all results starting with the field equations. Readers who are not interested in the theory of general relativistic structure formation can just omit the latter two chapters and focus on the former ones, which are mostly self-contained. In Chapter1 , we discuss the universe in the homogeneous and isotropic limit. Starting with the Robertson-Walker metric, we derive the Friedmann equation and describe the dynamics of the universe for given energy contents. We introduce many basic concepts that will be needed in further chapters, such as redshift, comoving distance, and horizons. Then we give an overview of the current concordance cosmology (i.e., the ΛCDM model) and briefly summarize the history of the universe. Finally, we provide an introduction into the phenomenology of the simplest models of inflation. In Chapter2 , we present the theory of structure formation based on Newtonian physics which is valid well inside the horizon. Interestingly, using Newtonian physics it is possible to derive basically all of the main results for the formation of structures in the universe (except of the form of the primordial power spectrum) and this is the reason why many books entirely omit a treatment of the general relativistic case. We first derive the equations governing the growth of fluctuations at first (linear) order within an expanding universe from the basic hydrodynamical equations and discuss the different possible fluctuation modes. We afterwards introduce the correlation function and the power spectrum to describe the perturbations in statistical terms. In a further step, we leave the linear regime and describe the formation of nonlinear bound structures (\halos") by means of the (simplistic) \spherical top hat model". We motivate approximative formulas for the number density and spatial correlation of dark matter halos in the universe. Finally, we introduce the \halo model", which is the current scheme for analyzing the clustering of galaxies in the universe. In Chapter3 , we give an introduction into the linear theory of hydrodynamic perturbations in the general relativistic regime, which is needed to understand the evolution of structures outside the horizon. Without this theory, it is impossible to understand how structures that were created during inflation evolved until present time. Compared with the Newtonian linear theory, the general relativistic case is much more complicated and also allows perturbations which have no Newtonian iv counterpart (e.g., gravitational waves). We first introduce the Scalar-Vector-Tensor decomposition to simplify the perturbed field equations, since they decouple into independent scalar, vector, and tensor equations. Next, we further simplify the field equations by introducing \gauge transformations" and choosing particular gauges. We compare our results to the Newtonian ones from the previous chapter for the limiting case well inside the horizon and give a sketch for the general treatment which treats the fluctuations by means of the general relativistic Boltzmann equation. Chapter4 , is the most technical chapter of all and basically consists of one single big calculation. The aim is to compute the form of the primordial dark matter power spectrum that results from the generation of fluctuations by the simplest models of inflation. The chapter is divided up into three parts: First, we quantize the perturbations of a scalar field inside the horizon during inflation and compute the power spectrum of the fluctuations in the ground state, second we show that under certain conditions the perturbations remain constant outside the horizon, and finally we compute the spectrum of the perturbations after they have reentered the horizon during the matter dominated era and compute the deviations from scale invariance that are expected from slow-roll inflation. The appendix gives an introduction into the theory of a classical scalar field in the context of general relativity. We derive the equations of motion for the scalar field in a smooth Friedmann- Robertson-Walker universe and then for the general relativistic linear theory of perturbations.
Recommended publications
  • Download This Article in PDF Format
    A&A 561, L12 (2014) Astronomy DOI: 10.1051/0004-6361/201323020 & c ESO 2014 Astrophysics Letter to the Editor Possible structure in the GRB sky distribution at redshift two István Horváth1, Jon Hakkila2, and Zsolt Bagoly1,3 1 National University of Public Service, 1093 Budapest, Hungary e-mail: [email protected] 2 College of Charleston, Charleston, SC, USA 3 Eötvös University, 1056 Budapest, Hungary Received 9 November 2013 / Accepted 24 December 2013 ABSTRACT Context. Research over the past three decades has revolutionized cosmology while supporting the standard cosmological model. However, the cosmological principle of Universal homogeneity and isotropy has always been in question, since structures as large as the survey size have always been found each time the survey size has increased. Until 2013, the largest known structure in our Universe was the Sloan Great Wall, which is more than 400 Mpc long located approximately one billion light years away. Aims. Gamma-ray bursts (GRBs) are the most energetic explosions in the Universe. As they are associated with the stellar endpoints of massive stars and are found in and near distant galaxies, they are viable indicators of the dense part of the Universe containing normal matter. The spatial distribution of GRBs can thus help expose the large scale structure of the Universe. Methods. As of July 2012, 283 GRB redshifts have been measured. Subdividing this sample into nine radial parts, each contain- ing 31 GRBs, indicates that the GRB sample having 1.6 < z < 2.1differs significantly from the others in that 14 of the 31 GRBs are concentrated in roughly 1/8 of the sky.
    [Show full text]
  • The Reionization of Cosmic Hydrogen by the First Galaxies Abstract 1
    David Goodstein’s Cosmology Book The Reionization of Cosmic Hydrogen by the First Galaxies Abraham Loeb Department of Astronomy, Harvard University, 60 Garden St., Cambridge MA, 02138 Abstract Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA’s successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe.
    [Show full text]
  • The High Redshift Universe: Galaxies and the Intergalactic Medium
    The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi M¨unchen2016 The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Koki Kakiichi aus Komono, Mie, Japan M¨unchen, den 15 Juni 2016 Erstgutachter: Prof. Dr. Simon White Zweitgutachter: Prof. Dr. Jochen Weller Tag der m¨undlichen Pr¨ufung:Juli 2016 Contents Summary xiii 1 Extragalactic Astrophysics and Cosmology 1 1.1 Prologue . 1 1.2 Briefly Story about Reionization . 3 1.3 Foundation of Observational Cosmology . 3 1.4 Hierarchical Structure Formation . 5 1.5 Cosmological probes . 8 1.5.1 H0 measurement and the extragalactic distance scale . 8 1.5.2 Cosmic Microwave Background (CMB) . 10 1.5.3 Large-Scale Structure: galaxy surveys and Lyα forests . 11 1.6 Astrophysics of Galaxies and the IGM . 13 1.6.1 Physical processes in galaxies . 14 1.6.2 Physical processes in the IGM . 17 1.6.3 Radiation Hydrodynamics of Galaxies and the IGM . 20 1.7 Bridging theory and observations . 23 1.8 Observations of the High-Redshift Universe . 23 1.8.1 General demographics of galaxies . 23 1.8.2 Lyman-break galaxies, Lyα emitters, Lyα emitting galaxies . 26 1.8.3 Luminosity functions of LBGs and LAEs . 26 1.8.4 Lyα emission and absorption in LBGs: the physical state of high-z star forming galaxies . 27 1.8.5 Clustering properties of LBGs and LAEs: host dark matter haloes and galaxy environment . 30 1.8.6 Circum-/intergalactic gas environment of LBGs and LAEs .
    [Show full text]
  • 19. Big-Bang Cosmology 1 19
    19. Big-Bang cosmology 1 19. BIG-BANG COSMOLOGY Revised September 2009 by K.A. Olive (University of Minnesota) and J.A. Peacock (University of Edinburgh). 19.1. Introduction to Standard Big-Bang Model The observed expansion of the Universe [1,2,3] is a natural (almost inevitable) result of any homogeneous and isotropic cosmological model based on general relativity. However, by itself, the Hubble expansion does not provide sufficient evidence for what we generally refer to as the Big-Bang model of cosmology. While general relativity is in principle capable of describing the cosmology of any given distribution of matter, it is extremely fortunate that our Universe appears to be homogeneous and isotropic on large scales. Together, homogeneity and isotropy allow us to extend the Copernican Principle to the Cosmological Principle, stating that all spatial positions in the Universe are essentially equivalent. The formulation of the Big-Bang model began in the 1940s with the work of George Gamow and his collaborators, Alpher and Herman. In order to account for the possibility that the abundances of the elements had a cosmological origin, they proposed that the early Universe which was once very hot and dense (enough so as to allow for the nucleosynthetic processing of hydrogen), and has expanded and cooled to its present state [4,5]. In 1948, Alpher and Herman predicted that a direct consequence of this model is the presence of a relic background radiation with a temperature of order a few K [6,7]. Of course this radiation was observed 16 years later as the microwave background radiation [8].
    [Show full text]
  • 1.1 Fundamental Observers
    M. Pettini: Introduction to Cosmology | Lecture 1 BASIC CONCEPTS \The history of cosmology shows that in every age devout people believe that they have at last discovered the true nature of the Universe."1 Cosmology aims to determine the contents of the entire Universe, explain its origin and evolution, and thereby obtain a deeper understanding of the laws of physics assumed to hold throughout the Universe.2 This is an ambitious goal for a species of primates on planet Earth, and you may well wonder whether it is indeed possible to know the whole Universe. As a matter of fact, humans have made huge strides in observational and theoretical cosmology over the last twenty-thirty years in particular. We can rightly claim that we have succeeded in measuring the fundamental cosmological parameters that describe the content, and the past, present and future history of our Universe with percent precision|a task that was beyond astronomers' most optimistic expectations only half a century ago. This course will take you through the latest developments in the subject to show you how we have arrived at today's `consensus cosmology'. 1.1 Fundamental Observers Just as we can describe the properties of a gas by macroscopic quantities, such as density, pressure, and temperature|with no need to specify the behaviour of its individual component atoms and molecules, thus cosmol- ogists treat matter in the universe as a smooth, idealised fluid which we call the substratum. An observer at rest with respect to the substratum is a fundamental ob- server. If the substratum is in motion, we say that the class of fundamental observers are comoving with the substratum.
    [Show full text]
  • Cosmology Basic Assumptions of Cosmology
    Cosmology AST2002 Prof. Voss Page 1 Cosmology the study of the universe as a whole Geometry finite or infinite? center? edge? static or dynamic? Olbers' Paradox Why does it get dark at night? If the universe is static, infinite, eternal, uniformly filled with stars, then every line of sight will eventually hit a star. Although light from each star decreases as 1/R2, the number of stars in a given direction increases as 1/R2, so each direction will be as bright as the Sun! Sagittarius star field Olbers assumed dust blocks distant stars but eventually heats to same T, glows like sun. universe not infinitely old Edgar Allen Poe (1848) light from distant stars has not reached us yet universe is expanding 18-01b light from distant stars red-shifted to very low freq. (cold) observable universe - that part that we can see Basic Assumptions of Cosmology Homogeneity matter uniformly spread through space at sufficiently large scales not actually observed Isotropy looks the same in all directions at sufficiently large scales Cosmological Principle any observer in any galaxy sees the same general features Copernican Principle - Earth is not a "special" place 12/3/2001 Cosmology AST2002 Prof. Voss Page 2 no edge or center Universality - physical laws are the same everywhere Newton - gravity the same for apples on Earth and the Moon Fundamental Observations of Cosmology 1. It gets dark at night. 2. The universe is expanding light from distant galaxies has red shifts ∝ distance 18-03a 18-03b no center Hubble constant 70 km/s/Mpc ⇒ age 14 billion year Geometry of Space-Time Einstein's General Relativity matter ⇒ local distortion Black Holes Large Scales ultimate fate determined by closed flat open density or universe universe universe total mass positive zero negative curvature curvature curvature Critical Density 4×10-30gm/cm3 if density is greater ⇒ closed expand then contract equal ⇒ flat expansion slows less than ⇒ open expansion continues Search for Dark Matter to find fate 12/3/2001 Cosmology AST2002 Prof.
    [Show full text]
  • 1 Cosmological Principle
    Notes on Cosmology April 2014 1 Cosmological Principle Now we leave behind galaxies and beginning cosmology. Cosmology is the study of the Universe as a whole. It concerns topics such as the basic content of the universe, the basic parameter such as the density, expansion rate of the universe, and how we measure them, the history of the universe, how it started, how old it is, and the large scale structure of the universe, meaning the large scale distribution of matter in the universe. One of the basic tools in cosmology is to use galaxies as test particles to probe the universe: galaxies give us tools to measure distance, and therefore expansion of the universe, and they are generally under the influence of gravity, so they are excellent probes of how matter distributed and evolve under gravity. So many of the things we learned in the previous part of our class are very useful to cosmology as well. And since galaxies are such excellent probes of cosmology, galaxy formation and evolution are generally viewed as at least part of cosmology as well. In the next 1.5 months, we will first lay down some basic tools of cosmology, then discuss how to test these basic principles, and how to measure basic cosmological parameters, then talk more about dark matter and dark energy, and then spend some time talking about galaxy evolution. The cosmological principle says: We are not located at any special location in the Uni- verse. The other way to put it is that the universe is homogeneous and isotropic.
    [Show full text]
  • On Under-Determination in Cosmology
    On Under-determination in Cosmology Jeremy Butter¯eld Trinity College, Cambridge CB2 1TQ: [email protected] Submitted to Studies in History and Philosophy of Modern Physics Wed 1 February 2012 Abstract I discuss how modern cosmology illustrates under-determination of theoretical hypotheses by data, in ways that are di®erent from most philosophical discussions. I emphasize cosmology's concern with what data could in principle be collected by a single observer (Section 2); and I give a broadly sceptical discussion of cosmology's appeal to the cosmological principle as a way of breaking the under-determination (Section 3). I con¯ne most of the discussion to the history of the observable universe from about one second after the Big Bang, as described by the mainstream cosmological model: in e®ect, what cosmologists in the early 1970s dubbed the `standard model', as elaborated since then. But in the closing Section 4, I broach some questions about times earlier than one second. 1 Contents 1 Introduction 3 1.1 Prospectus: two di®erences . 3 1.2 Setting the scene . 4 2 Observationally indistinguishable spacetimes 6 3 The cosmological principle to the rescue? 9 3.1 A lucky break . 9 3.1.1 Consequences . 11 3.1.2 Reasons . 12 3.1.3 Evidence . 13 3.2 Beyond the evidence: through a glass darkly . 15 3.2.1 Strategies for justifying the CP . 16 3.2.2 Inhomogeneities: doubts about the CP . 19 4 Pressing the question `Why?' 21 4.1 The flatness problem . 22 4.2 The horizon problem . 23 4.3 Questions beyond .
    [Show full text]
  • 22. Big-Bang Cosmology
    1 22. Big-Bang Cosmology 22. Big-Bang Cosmology Revised August 2019 by K.A. Olive (Minnesota U.) and J.A. Peacock (Edinburgh U.). 22.1 Introduction to Standard Big-Bang Model The observed expansion of the Universe [1–3] is a natural (almost inevitable) result of any homogeneous and isotropic cosmological model based on general relativity. However, by itself, the Hubble expansion does not provide sufficient evidence for what we generally refer to as the Big-Bang model of cosmology. While general relativity is in principle capable of describing the cosmology of any given distribution of matter, it is extremely fortunate that our Universe appears to be homogeneous and isotropic on large scales. Together, homogeneity and isotropy allow us to extend the Copernican Principle to the Cosmological Principle, stating that all spatial positions in the Universe are essentially equivalent. The formulation of the Big-Bang model began in the 1940s with the work of George Gamow and his collaborators, Ralph Alpher and Robert Herman. In order to account for the possibility that the abundances of the elements had a cosmological origin, they proposed that the early Universe was once very hot and dense (enough so as to allow for the nucleosynthetic processing of hydrogen), and has subsequently expanded and cooled to its present state [4,5]. In 1948, Alpher and Herman predicted that a direct consequence of this model is the presence of a relic background radiation with a temperature of order a few K [6,7]. Of course this radiation was observed 16 years later as the Cosmic Microwave Background (CMB) [8].
    [Show full text]
  • 2.Homogeneity & Isotropy Fundamental
    11/2/03 Chris Pearson : Fundamental Cosmology 2: Homogeneity and Isotropy ISAS -2003 HOMOGENEITY & ISOTROPY FuFundndaammententaall CCoosmsmoolologygy:: 22..HomHomogeneityogeneity && IsotropyIsotropy “When I trace at my pleasure the windings to and fro of the heavenly bodies, I no longer touch the earth with my feet: I stand in the presence of Zeus himself and take my fill of ambrosia, food of the gods.”!! Ptolemy (90-168(90-168 BC) 1 11/2/03 Chris Pearson : Fundamental Cosmology 2: Homogeneity and Isotropy ISAS -2003 HOMOGENEITY & ISOTROPY 2.2.1:1: AncientAncient CosCosmologymology • Egyptian Cosmology (3000B.C.) Nun Atum Ra 結婚 Shu (地球) Tefnut (座空天国) 双子 Geb Nut 2 11/2/03 Chris Pearson : Fundamental Cosmology 2: Homogeneity and Isotropy ISAS -2003 HOMOGENEITY & ISOTROPY 2.2.1:1: AncientAncient CosCosmologymology • Ancient Greek Cosmology (700B.C.) {from Hesoid’s Theogony} Chaos Gaea (地球) 結婚 Gaea (地球) Uranus (天国) 結婚 Rhea Cronus (天国) The Titans Zeus The Olympians 3 11/2/03 Chris Pearson : Fundamental Cosmology 2: Homogeneity and Isotropy ISAS -2003 HOMOGENEITY & ISOTROPY 2.2.1:1: AncientAncient CosCosmologymology • Aristotle and the Ptolemaic Geocentric Universe • Ancient Greeks : Aristotle (384-322B.C.) - first Cosmological model. • Stars fixed on a celestial sphere which rotated about the spherical Earth every 24 hours • Planets, the Sun and the Moon, moved in the ether between the Earth and stars. • Heavens composed of 55 concentric, crystalline spheres to which the celestial objects were attached and rotated at different velocities (w = constant for a given sphere) • Ptolemy (90-168A.D.) (using work of Hipparchus 2 A.D.) • Ptolemy's great system Almagest.
    [Show full text]
  • Sne Ia Redshift in a Nonadiabatic Universe
    universe Article SNe Ia Redshift in a Nonadiabatic Universe Rajendra P. Gupta † Macronix Research Corporation, 9 Veery Lane, Ottawa, ON K1J 8X4, Canada; [email protected] or [email protected]; Tel.: +1-613-355-3760 † National Research Council, Ottawa, ON K1A 0R6, Canada (retired). Received: 11 September 2018; Accepted: 8 October 2018; Published: 10 October 2018 Abstract: By relaxing the constraint of adiabatic universe used in most cosmological models, we have shown that the new approach provides a better fit to the supernovae Ia redshift data with a single parameter, the Hubble constant H0, than the standard LCDM model with two parameters, H0 and the cosmological constant L related density, WL. The new approach is compliant with the cosmological −1 −1 principle. It yields the H0 = 68.28 (±0.53) km s Mpc with an analytical value of the deceleration parameter q0 = −0.4. The analysis presented is for a matter-only, flat universe. The cosmological constant L may thus be considered as a manifestation of a nonadiabatic universe that is treated as an adiabatic universe. Keywords: galaxies; supernovae; distances and redshifts; cosmic microwave background radiation; distance scale; cosmology theory; cosmological constant; Hubble constant; general relativity PACS: 98.80.-k; 98.80.Es; 98.62.Py 1. Introduction The redshift of the extragalactic objects, such as supernovae Ia (SNe Ia), is arguably the most important of all cosmic observations that are used for modeling the universe. Two major explanations of the redshift are the tired light effect in the steady state theory and the expansion of the universe [1]. However, since the discovery of the microwave background radiation by Penzias and Wilson in 1964 [2], the acceptable explanation for the redshift by mainstream cosmologists has steadily shifted in favor of the big-bang expansion of the universe, and today alternative approaches for explaining the redshift are not acceptable by most cosmologists.
    [Show full text]
  • Astrophysics in a Nutshell, Second Edition
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 10 Tests and Probes of Big Bang Cosmology In this final chapter, we review three experimental predictions of the cosmological model that we developed in chapter 9, and their observational verification. The tests are cosmo- logical redshift (in the context of distances to type-Ia supernovae, and baryon acoustic oscillations), the cosmic microwave background, and nucleosynthesis of the light ele- ments. Each of these tests also provides information on the particular parameters that describe our Universe. We conclude with a brief discussion on the use of quasars and other distant objects as cosmological probes. 10.1 Cosmological Redshift and Hubble's Law Consider light from a galaxy at a comoving radial coordinate re. Two wavefronts, emitted at times te and te + te, arrive at Earth at times t0 and t0 + t0, respectively. As already noted in chapter 4.5 in the context of black holes, the metric of spacetime dictates the trajectories of particles and radiation. Light, in particular, follows a null geodesic with ds = 0. Thus, for a photon propagating in the FLRW metric (see also chapter 9, Problems 1–3), we can write dr2 0 = c2dt2 − R(t)2 . (10.1) 1 − kr2 The first wavefront therefore obeys t0 dt 1 re dr = √ , (10.2) − 2 te R(t) c 0 1 kr and the second wavefront + t0 t0 dt 1 re dr = √ . (10.3) − 2 te+ te R(t) c 0 1 kr For general queries, contact [email protected] © Copyright, Princeton University Press.
    [Show full text]