Evolution of Social Structure of the Ant Genus Myrmecia Fabricus (Hymenoptera: Formicidae

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Social Structure of the Ant Genus Myrmecia Fabricus (Hymenoptera: Formicidae ResearchOnline@JCU This file is part of the following reference: Qian, Zengqiang (2012) Evolution of social structure of the ant genus Myrmecia fabricus (Hymenoptera: Formicidae. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/25180 The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/25180 Evolution of Social Structure in the Ant Genus Myrmecia Fabricius (Hymenoptera: Formicidae) Thesis submitted by Zengqiang QIAN MSc in January 2012 For the degree of Doctor of Philosophy in Tropical Ecology and Zoology within the School of Marine and Tropical Biology James Cook University Townsville, Queensland, Australia TABLE OF CONTENTS LIST OF FIGURES………...…………………………………………………………i LIST OF TABLES……………………………………………………………………ii ACKNOWLEDGEMENTS………………………………………………………iii CONTRIBUTIONS OF OTHERS….………………………………………………iv PUBLICATIONS ARISING FROM THIS THESIS……………………………v ABSTRACT………………………...………………………………………………vi CHAPTER 1: General Introduction………...………………………………………1 Background…………………..……………………………………………………1 Colony structure of eusocial insects……………………………………………………1 The Australian bulldog or jumper ant genus Myrmecia Fabricius…..……………3 Objectives and outline of the thesis………………………………………………4 CHAPTER 2: Polymorphic EST-Derived Microsatellites in the Fire Ant Solenopsis invicta and Their Cross-Taxa Transferability in the Bulldog Ant Myrmecia brevinoda and the Black Tree Ant Tetraponera punctulata……………6 Abstract……………………………………………………………………………6 Introduction……………………..…………………………………………………7 Materials and methods…………….………………………………………………9 Primer design……………..………………………………………………………………9 PCR amplification and genotyping analysis….………………………………………9 Data analysis……………………….……………………………………………………10 Results and discussion……………………………………………………………10 CHAPTER 3: Characterization of Polymorphic Microsatellites in the Giant Bulldog Ant Myrmecia brevinoda and the Jumper Ant M. pilosula……………12 Abstract………………….………………………………………………………12 Introduction………………………………………………………………………13 Materials and methods………...…………………………………………………14 Insect samples and DNA extraction……..……………………………………………14 Microsatellite isolation…………………………………………………………………15 PCR amplification and genotyping analysis…………..……………………………16 Data analysis………………………….…………………………………………………16 Results………………………….………………………………………………19 Discussion…………………………………………………………………………20 CHAPTER 4: Intraspecific Support for the Polygyny-vs.-Polyandry Hypothesis in the Bulldog Ant Myrmecia brevinoda…………………………………………21 Abstract…………………………………………………………………………21 Introduction………………………………………………………………………22 Materials and methods…………...………………………………………………25 Insect samples and DNA extraction…………..………………………………………25 Microsatellite genotyping………………………………………………………………25 Statistical analyses……………….……………………………………………………26 Results……………………………………………………………………………29 Basic population genetics and identification of colony boundaries….….….……29 Queen mating frequency and paternity skew……….…………….…………………31 Intracolonial relatedness………….…….…….….……………………………………31 Number of queens and maternity skew……………….………………………………33 Polygyny vs. polyandry…………………………………………………………………33 Discussion…………………………………………………………………………33 Queen number, mating frequency and dispersal……………………………………33 Polygyny vs. polyandry…………………………………………………………………36 CHAPTER 5: Nestmate Recognition in the Facultatively Polygynous Bulldog Ant Myrmecia brevinoda…………………………………………………………………39 Abstract…………………………………………………………………………39 Introduction………………………………………………………………………40 Materials and methods…………………………………………………………42 Ant sampling……………….….…………………………………………………………42 Behavioural assays……………..………………………………………………………43 Statistical analyses………………….…….….…………………………………………44 Results…………………….………………………………………………………45 Discussion…………………………………………………………………………49 CHAPTER 6: Colony Genetic Structure in the Australian Jumper Ant Myrmecia pilosula…………………………….…………………………………………………52 Abstract…………………….……………………………………………………52 Introduction………………………………………………………………………53 Materials and methods…………………………………………………………55 Field sampling, DNA extraction and microsatellite genotyping…………………55 Marker evaluation and population genetic estimates………………………………57 Estimation of relatedness………………………………………………………………58 Queen numbers, queen-mating frequencies and reproductive skew…….….….…58 Results………………………….………….………………………………………59 Basic population genetics and identification of colony boundaries….…….….…59 Queen mating frequency and paternity skew……….……….………………………61 Intracolonial relatedness………………………………………………………………61 Number of queens and maternity skew……….………………………………………63 Polygyny vs. polyandry…………………………………………………………………63 Discussion…………………………………………………………………………63 Queen-mating frequency and dispersal………………………………………………63 Polygyny vs. polyandry…………………………………………………………………66 CHAPTER 7: General Discussion…………………………………………………68 Summary of key findings……….…….…………………………………………68 Polygyny vs. polyandry…………………………………………………………………68 Queen dispersal and colony foundation….…….……………………………………69 Nestmate recognition…….………….….………………………………………………69 Future directions…………………………………………………………………70 REFERENCES……………………………………………………………………73 APPENDICES………………………………………………………………………94 Appendix I: AI-based internest aggression matrix in M. brevinoda…….……94 Appendix II: MAI-based internest aggression matrix in M. brevinoda………95 Appendix III: MAS-based internest aggression matrix in M. brevinoda….…96 LIST OF FIGURES Chapter 4 Fig. 4.1 Schematic map of Myrmecia brevinoda colonies…………..………………25 Fig. 4.2 Correlation between geographic and genetic distances for pairs of Myrmecia brevinoda nests (r = 0.013, P = 0.420; 9999 permutations) ….….…………28 Fig. 4.3 Estimated (a) and pedigree-effective (b) number of matings per queen in Myrmecia brevinoda…………………………….………….………………30 Fig. 4.4 The relationship across colonies of Myrmecia brevinoda between polygyny, measured as the number of queens per colony, and polyandry, measured as the mean estimated (a) or pedigree-effective (b) number of matings per queen……………………….………….……………………………………32 Chapter 5 Fig. 5.1 Schematic map of Myrmecia brevinoda colonies…….………….….………42 Fig. 5.2 Mantel’s correlations among internest distance and aggression matrices…46 Fig. 5.3 Observed within- (a) and between-nest (b) aggression levels in Myrmecia brevinoda……………………………………………………………………47 Chapter 6 Fig. 6.1 Schematic map of Myrmecia pilosula colonies……….……….……………55 Fig. 6.2 Correlation between geographic and FST genetic distances for pairs of Myrmecia pilosula nests (r = 0.324, P = 0.046; 9999 permutations)………60 Fig. 6.3 Correlation between geographic and FST genetic distances for pairs of Myrmecia pilosula nests (r = 0.403, P = 0.040, 9999 permutations)………60 Fig. 6.4 Estimated (a) and pedigree-effective (b) number of matings per queen in Myrmecia pilosula….……….………….………….………….……………62 i LIST OF TABLES Chapter 2 Table 2.1 Characterization of 12 polymorphic EST-derived microsatellite loci in Solenopsis invicta (n = 24).……..…………….….………………………8 Table 2.2 Cross-taxa amplification of EST-derived microsatellite loci in distantly -related species………….……………………….………………………11 Chapter 3 Table 3.1 Characterization of polymorphic microsatellite loci in M. brevinoda and M. pilosula, and amplifiability in M. pyriformis……………………………17 Table 3.2 Transferability and utility of candidate microsatellite loci in M. brevinoda and M. pilosula…………………..………………………………………19 Chapter 4 Table 4.1 Characteristics of the colonies used to study colony genetic structure in Myrmecia brevinoda…………….….……………………………………24 Table 4.2 Relatedness among workers in the colonies of Myrmecia brevinoda…..…29 Chapter 5 Table 5.1 Aggression scale used to score interactions among workers of Myrmecia brevinoda……………………..……….…………………………………43 Table 5.2 Mantel’s correlations among internest distance and aggression matrices…45 Table 5.3 Pairwise comparisons of internest aggression levels among various social form combinations using two-tailed independent-samples t-tests….……48 Table 5.4 Pairwise comparisons of internest aggression levels among nests with different levels of worker-worker relatedness using two-tailed independent-samples t-tests……………………………………………48 Chapter 6 Table 6.1 Characteristics of the colonies used to study colony genetic structure in Myrmecia pilosula………………….……………………………………56 ii ACKNOWLEDGEMENTS Many people and organizations have provided valuable assistance during my PhD candidature. In particular, I wish to express my sincere gratitude to: My supervisors Prof. Ross H. Crozier, A/Prof. Simon K. A. Robson, Dr. Helge Schlüns, Prof. Birgit C. Schlick-Steiner and Dr. Florian M. Steiner for their continuous guidance, advice and encouragement. Without their patient supervision, the completion of this thesis would have been impossible. Ching Crozier for her assistance in sample collection and her technical guidance in the laboratory. Your rich knowledge of molecular biology has left me a deep impression. All other members of the Crozier lab over the years, especially Ellen Schlüns, Faye Christidis, Itzel Zamora-Vilchis, F. Sara Ceccarelli, Philip S. Newey and Melissa E. Carew, for their valuable help and friendly advice. Working with you has been a pleasant and inspiring experience. The Department of Education, Employment and Workplace Relations (Australia) for financial support to cover tuition fees and living expenses during my PhD candidature. The School of Tropical Biology at James Cook University
Recommended publications
  • The Mesosomal Anatomy of Myrmecia Nigrocincta Workers and Evolutionary Transformations in Formicidae (Hymeno- Ptera)
    7719 (1): – 1 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The mesosomal anatomy of Myrmecia nigrocincta workers and evolutionary transformations in Formicidae (Hymeno- ptera) Si-Pei Liu, Adrian Richter, Alexander Stoessel & Rolf Georg Beutel* Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; Si-Pei Liu [[email protected]]; Adrian Richter [[email protected]]; Alexander Stößel [[email protected]]; Rolf Georg Beutel [[email protected]] — * Corresponding author Accepted on December 07, 2018. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Andy Sombke & Klaus-Dieter Klass. Abstract. The mesosomal skeletomuscular system of workers of Myrmecia nigrocincta was examined. A broad spectrum of methods was used, including micro-computed tomography combined with computer-based 3D reconstruction. An optimized combination of advanced techniques not only accelerates the acquisition of high quality anatomical data, but also facilitates a very detailed documentation and vi- sualization. This includes fne surface details, complex confgurations of sclerites, and also internal soft parts, for instance muscles with their precise insertion sites. Myrmeciinae have arguably retained a number of plesiomorphic mesosomal features, even though recent mo- lecular phylogenies do not place them close to the root of ants. Our mapping analyses based on previous morphological studies and recent phylogenies revealed few mesosomal apomorphies linking formicid subgroups. Only fve apomorphies were retrieved for the family, and interestingly three of them are missing in Myrmeciinae. Nevertheless, it is apparent that profound mesosomal transformations took place in the early evolution of ants, especially in the fightless workers.
    [Show full text]
  • The Ecology of the Gum Tree Scale
    WAITI. INSTII'UTE à1.3. 1b t.IP,RÅRY THE ECoLOGY 0F THE GUM TREE SCALE ( ERI0COCCUS CORIACEUS MASK.), AND ITS NATURAL ENEMIES BY Nei'l Gough , B. Sc. Hons . A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Ag¡icultural Science at the UniversitY of Adelaide. Department of Entomoì ogY' l^laite Agricultural Research Institute' Unj versi ty of Adelaide. .l975 May 't CONTENTS Page SUMMARY viii DECLARATION xii ACKNOl^lLEDGEMENTS xiii 1. INTRODUCTION I l 1 I Introduction I 2 Histori cal information 1 4 1 3 The study area tr I 4 The climate of Ade'laide 6 1 5 A brief description of the biology of E. coriaceus l 6 Initial observations 9 1.64 First generations observed 9 1.68 The measurement of causes of rnortality to the female scale and of the ìengths of the survivors l0 'l .6C Reproduction by the female scale. November 1971 t3 'l .6D The estimation of the number of craw'lers produced '15 in the second generation. November and December l97l l.6E The estimation of the number of nymphs on the tree l6 'l 7 Conc'lus ions f rom the 'i ni ti al observati ons and general p'l an of the study 21 2 ASPECTS OF THE BIOLOGY OF E. CORIACEUS 25 2 .t Biology of the irmature stages 25 2.1A The nymphal stages 25 2.18 The ínfluence of the density of nymphs on their rate of sett'ling 27 2 .2 The adult female 30 2.2A The adul t femal e sett'l i ng patterns 30 2.28 The distribution of the colonies on the twigs 30 2.2C Settl ing on the leaves 33 2.20 Seasona'l variation in the densities of the co'lonies of femal es 33 11.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Mcabee Fossil Site Assessment
    1 McAbee Fossil Site Assessment Final Report July 30, 2007 Revised August 5, 2007 Further revised October 24, 2008 Contract CCLAL08009 by Mark V. H. Wilson, Ph.D. Edmonton, Alberta, Canada Phone 780 435 6501; email [email protected] 2 Table of Contents Executive Summary ..............................................................................................................................................................3 McAbee Fossil Site Assessment ..........................................................................................................................................4 Introduction .......................................................................................................................................................................4 Geological Context ...........................................................................................................................................................8 Claim Use and Impact ....................................................................................................................................................10 Quality, Abundance, and Importance of the Fossils from McAbee ............................................................................11 Sale and Private Use of Fossils from McAbee..............................................................................................................12 Educational Use of Fossils from McAbee.....................................................................................................................13
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • Hymenoptera: Formicidae) Along an Elevational Gradient at Eungella in the Clarke Range, Central Queensland Coast, Australia
    RAINFOREST ANTS (HYMENOPTERA: FORMICIDAE) ALONG AN ELEVATIONAL GRADIENT AT EUNGELLA IN THE CLARKE RANGE, CENTRAL QUEENSLAND COAST, AUSTRALIA BURWELL, C. J.1,2 & NAKAMURA, A.1,3 Here we provide a faunistic overview of the rainforest ant fauna of the Eungella region, located in the southern part of the Clarke Range in the Central Queensland Coast, Australia, based on systematic surveys spanning an elevational gradient from 200 to 1200 m asl. Ants were collected from a total of 34 sites located within bands of elevation of approximately 200, 400, 600, 800, 1000 and 1200 m asl. Surveys were conducted in March 2013 (20 sites), November 2013 and March–April 2014 (24 sites each), and ants were sampled using five methods: pitfall traps, leaf litter extracts, Malaise traps, spray- ing tree trunks with pyrethroid insecticide, and timed bouts of hand collecting during the day. In total we recorded 142 ant species (described species and morphospecies) from our systematic sampling and observed an additional species, the green tree ant Oecophylla smaragdina, at the lowest eleva- tions but not on our survey sites. With the caveat of less sampling intensity at the lowest and highest elevations, species richness peaked at 600 m asl (89 species), declined monotonically with increasing and decreasing elevation, and was lowest at 1200 m asl (33 spp.). Ant species composition progres- sively changed with increasing elevation, but there appeared to be two gradients of change, one from 200–600 m asl and another from 800 to 1200 m asl. Differences between the lowland and upland faunas may be driven in part by a greater representation of tropical and arboreal-nesting sp ecies in the lowlands and a greater representation of subtropical species in the highlands.
    [Show full text]
  • Speciation of Ants in the Tropics of South America
    Ludwig Maximilians Universität Master‘s Program in Evolution, Ecology and Systematics Speciation of Ants in the Tropics of South America Master’s Thesis September 2012 Adrián Troya Supervisors Prof. Dr. Gerhard Haszprunar (Zoologische Staatssammlung München - ZSM) ForDr. Stephan Review Hutter (Ludwig Maximilians Universität Only - LMU) PDF processed with CutePDF evaluation edition www.CutePDF.com 2 …to my dad For Review Only 3 Contents Abstract ............................................................................................................... 4 1. Introduction ..................................................................................................... 5 1.1 Background................................................................................................................................ 6 2. Materials and Methods ................................................................................... 8 2.1 About the Species and the Specimens ...................................................................................... 8 2.2 Molecular Lab Methods .......................................................................................................... 10 2.3 Molecular Analyses and Phylogenetic Inference .................................................................... 13 2.4 Morphological Phylogenetic Inference ................................................................................... 16 2.4.1 Cladistic Analyses ............................................................................................................
    [Show full text]
  • The Cypress Pine Sawfly Subspecies Zenarge Turneri Turneri Rohwer and Zenarge Turneri Rabus Moore
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. FORESTRY COMMISSION OF N.S.W. DIVISION OF FOREST MANAGEMENT RESEARCH NOTE No. 13 Published March, 1963 THE CYPRESS PINE SAWFLY SUBSPECIES ZENARGE TURNER! TURNER! ROHWER and ZENARGE TURNERI RABUS MOORE AUTHOR K.M.MOORE G 16325 FORESTRY COMMISSION OF x.s.w, DIVISION OF FOREST MANAGEMENT RESEARCH NOTE No. 13 Published March, 1963 THE CYPRESS PINE SAWFLY SUBSPECIES ZENARGE TURNERI TURNERI ROHWER AND ZENARGE TURNERI RABUS MOORE AUTHOR K. M. MOORE G 16325-1 The Cypress Pine Sawfly Subspecies Zenarge turneri turneri Rohwer and Zenarge turneri rabus Moore K. M. MooRE SYNOPSIS During investigations into the taxonomy and biology of the cypress pine sawfly, previously known as Zenarge turneri, and which had caused extensive damage to stands of Callitris hugelii (Carr.) Franco on several State Forests in western New South Wales, on experimental plots of that host in highland and coastal districts and on ornamental Cupressus and Callitris spp., the sawflyspecieswas found to consist of two subspecies. The morphology, biology, distribution and hosts by which the sub­ species may be determined, are given, and the revised taxonomic position has been presented previously (Moore 1962)a. INTRODUCTION Numerous species of sawflies occur in New South Wales, but Zenarge turned turneri Rohwer and Zenarge turneri rabus Moore are the only sawflies recorded as attacking Callttris and Cupressus spp., and they are host-specificto these two genera.
    [Show full text]
  • Fossil Ants (Hymenoptera: Formicidae): Ancient Diversity and the Rise of Modern Lineages
    Myrmecological News 24 1-30 Vienna, March 2017 Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages Phillip BARDEN Abstract The ant fossil record is summarized with special reference to the earliest ants, first occurrences of modern lineages, and the utility of paleontological data in reconstructing evolutionary history. During the Cretaceous, from approximately 100 to 78 million years ago, only two species are definitively assignable to extant subfamilies – all putative crown group ants from this period are discussed. Among the earliest ants known are unexpectedly diverse and highly social stem- group lineages, however these stem ants do not persist into the Cenozoic. Following the Cretaceous-Paleogene boun- dary, all well preserved ants are assignable to crown Formicidae; the appearance of crown ants in the fossil record is summarized at the subfamilial and generic level. Generally, the taxonomic composition of Cenozoic ant fossil communi- ties mirrors Recent ecosystems with the "big four" subfamilies Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae comprising most faunal abundance. As reviewed by other authors, ants increase in abundance dramatically from the Eocene through the Miocene. Proximate drivers relating to the "rise of the ants" are discussed, as the majority of this increase is due to a handful of highly dominant species. In addition, instances of congruence and conflict with molecular- based divergence estimates are noted, and distinct "ghost" lineages are interpreted. The ant fossil record is a valuable resource comparable to other groups with extensive fossil species: There are approximately as many described fossil ant species as there are fossil dinosaurs. The incorporation of paleontological data into neontological inquiries can only seek to improve the accuracy and scale of generated hypotheses.
    [Show full text]
  • 'Jack Jumper' Ant Venom by Mass Spectrometry
    Characterisation of Major Peptides in ‘Jack Jumper’ Ant Venom by Mass Spectrometry Noel W. Davies 1* , Michael D.Wiese 2 and Simon G. A. Brown 3 1. Central Science Laboratory University of Tasmania Private Bag 74 Hobart 7001 Tasmania, AUSTRALIA Fax: 61 3 6226 2494 Email: [email protected] 2. Department of Pharmacy Royal Hobart Hospital GPO Box 1061L Hobart, Tasmania 7001 Australia 3 Department of Emergency Medicine Royal Hobart Hospital GPO Box 1061L Hobart, Tasmania 7001 Australia * Corresponding author : Running title: ‘Jack Jumper’ ant venom peptides 1 Abstract: The jack jumper ant, Myrmecia pilosula , is endemic to South-Eastern Australia, where around 2.7% of the population has a history of systemic allergic reactions (anaphylaxis) to its venom. Previous work had indicated that there were several allergenic peptides derived from the cDNA Myr p 1, the major expressed allergenic product being a 56-residue peptide (Myr p 1 57 →112, "pilosulin 1", ~6052 Da). Another major allergen had been described as a 27 residue peptide derived from the cDNA Myr p 2 (Myr p 2 49 →75, "pilosulin 2", ~3212 Da), possibly existing as part of a disulfide complex. As a preliminary step in detailed stability studies of a pharmaceutical product used for venom immunotherapy, LC-MS and Edman sequencing analysis of venom collected from various locations by both electrical stimulation and venom sac dissection was undertaken. More than 50 peptides in the 4kDa to 9kDa range were detected in LC-MS analyses. A subsequence of Myr p 2 was found as part of the major peptide present in all samples; this was a bis- disulphide linked, antiparallel aligned heterodimer consisting of Myr p 2 49 →74, (des-Gly 27 -pilosulin 2, ~3155 Da) and a previously unreported peptide of ~2457 Da.
    [Show full text]
  • Description of the Immature and Adult Stages of Ectatomma Vizottoi (Formicidae: Ectatomminae) by Alexsandro S
    27 Description of the Immature and Adult Stages of Ectatomma vizottoi (Formicidae: Ectatomminae) by Alexsandro S. Vieira1, William F. Antonialli-Junior1,2*, Wedson D. Fernandes1,3, Viviane C. Tofolo4 & Edilberto Giannotti4 ABSTRACT We estimated the number of larval instars of the ant Ectatomma vizottoi (Ectatomminae), by measuring the maximum width of the head capsules of 208 larvae and the morphology of the immature stages (eggs, larvae and pupae) and adults. There are three larval instars during the post-embryonic development. The reproductive eggs are dark brown. Hairs are present beginning with the first instar, are uniformly distributed over the larval body, and do not vary in length in the three instars. Pupae are protected by a light-brown silk cocoon. Adults of the worker and queen castes can be differentiated by size. Keywords: ants, cephalic capsule, Dyar’s rule, larval instars. INTRODUCTION The exoskeleton of insects made possible their evolutionary success in the terrestrial environment. Among many important physical characteristics of the exoskeleton is its rigidity and impermeability. The presence of the exoskeleton determines a different form of growth from vertebrates. The principal growth mechanism of insects is marked by a series of molts or ecdyses, which are preceded by a period of intense growth and subsequently by a period where the insect rarely increases its body size (Wigglesworth 1972). According to Dyar’s rule (Dyar 1890), the cephalic capsule of larvae and caterpillars grow 1Programa de Pós-graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados. 2Laboratório de Ecologia, Centro Integrado de Análise e Monitoramento Ambiental, Universidade Estadual de Mato Grosso do Sul.
    [Show full text]
  • Picture As Pdf Download
    RESEARCH Causes of ant sting anaphylaxis in Australia: the Australian Ant Venom Allergy Study Simon G A Brown, Pauline van Eeden, Michael D Wiese, Raymond J Mullins, Graham O Solley, Robert Puy, Robert W Taylor and Robert J Heddle he prevalence of systemic allergy to ABSTRACT native ant stings in Australia is as high as 3% in areas where these Objective: To determine the Australian native ant species associated with ant sting T anaphylaxis, geographical distribution of allergic reactions, and feasibility of diagnostic insects are commonly encountered, such as Tasmania and regional Victoria.1,2 In one venom-specific IgE (sIgE) testing. large Tasmanian emergency department Design, setting and participants: Descriptive clinical, entomological and study, ant sting allergy was the most com- immunological study of Australians with a history of ant sting anaphylaxis, recruited in mon cause of anaphylaxis (30%), exceeding 2006–2007 through media exposure and referrals from allergy practices and emergency cases attributed to bees, wasps, antibiotics physicians nationwide. We interviewed participants, collected entomological or food.3 specimens, prepared reference venom extracts, and conducted serum sIgE testing Myrmecia pilosula (jack jumper ant [JJA]) against ant venom panels relevant to the species found in each geographical region. is theThe major Medical cause Journal of ant ofsting Australia anaphylaxis ISSN: Main outcome measures: Reaction causation attributed using a combination of ant 2 in Tasmania.0025-729X A 18double-blind, July 2011 195 randomised 2 69-73 identification and sIgE testing. placebo-controlled©The Medical Journaltrial has of Australiademonstrated 2011 Results: 376 participants reported 735 systemic reactions. Of 299 participants for whom the effectivenesswww.mja.com.au of JJA venom immuno- a cause was determined, 265 (89%; 95% CI, 84%–92%) had reacted clinically to Myrmecia therapyResearch (VIT) to reduce the risk of sting species and 34 (11%; 95% CI, 8%–16%) to green-head ant (Rhytidoponera metallica).
    [Show full text]