Event Generators

Total Page:16

File Type:pdf, Size:1020Kb

Event Generators Event Generators Conveners Leif Lonnblad Mike Seymour Working group Edouard Boudinov Jon Butterworth Ralph Engel Alex Finch Suen Hou Maria KienzleFo cacci Mark Lehto Ed McKigney David Miller Denis PerretGallix Johannes Ranft Gerhard Schuler Torb jorn Sjostrand Ro d Walker Alison Wright Contents Intro duction General Features Comparisons Description of programs Other generators Conclusions Intro duction At LEP twophoton collisions make up by far the largest class of events These are pro cesses in which the incoming electrons each radiate a photon which collide to pro duce a hadronic or leptonic nal state A photon can obviously interact electromagnetically with any charged ob ject However since it has the same quantum numb ers as a vector meson it can uctuate into one and can therefore also b e considered as an incoming hadron interacting strongly through its partonic constituents The interplay b etween these two ways of interacting is unique to the photon and provides much of the interest in physics The twophoton invariant mass sp ectrum is p eaked at low mass so the bulk of events only pro duce a few particles and resonances and exclusive nal states can b e studied The total crosssection is so large however that there are enough events to study deep inelastic e scattering and highp jets and heavy quark pro duction in collisions ? LEP is the highest energy and luminosity e and collider available and many of the same studies as at electronhadron and hadronhadron colliders can b e made here However one essential dierence is that since the b eam remnants the electrons and p ositrons typically leave the detectors undetected the energies of the incoming photons are not known and must b e reconstructed from the prop erties of the nal state In events in which most of the nalstate particles are visible in the detector this is easily done However at high energies the nalstate distribution b ecomes increasingly forwardp eaked and much of the energy go es into the very forward parts of the detector or is even missed in the b eam pip e It is therefore essential that as much of the nal state as p ossible is measured in particular to detect hadrons in the forward detectors that have hitherto only b een used for electron tagging It is also essential that we are able to understand the details of the multiparticle nal states in these interactions which puts very high demands on the event generators used in the analysis During the course of this workshop some of the standard general purp ose event generator programs on the market have b een develop ed to also handle e and collisions This means that we can use our exp erience from ep and pp collisions to give a more complete description of the hadronic nal state of twophoton collisions These mo dels can now b e tested at LEP and should give reliable extrap olations to LEP energy In section of this rep ort we will describ e briey the mo dels of the generators we have studied during the workshop Then in section some comparisons b etween the programs are presented for dierent classes of events In section the main programs are presented in some detail followed by section where some other generators are presented more briey Finally in section we present our conclusions Related work is presented in the rep orts of the Physics and QCD Event Generator working groups General Features The event generators used for physics can b e divided into two main groups One deals with low multiplicity nal states like resonances exclusive channels and leptonic channels and the other with high mass multiparticle nal states When there are few particles in the nal state the fully dierential crosssection for a given pro cess can usually b e derived directly from a mo del of that pro cess Event generators can then b e viewed as a particularly convenient numerical implementation of that crosssection in which arbitrarily complicated phasespace cuts and detector simulation can b e incorp orated In this group are fourfermion generators which incorp orate the full set of QED matrix elements for e e e e f f and more general programs that use a luminosity function to separate the pro cess e e e e X into two stages e e e e and X The other group of generators describ e multiparticle pro duction for which crosssections cannot b e directly calculated in quantum mechanics They use semiclassical probabilistic mo dels to separate the pro cess into several phases First photons are radiated from the incoming electrons to give b eams of quasireal photons Then a hard subpro cess is generated using partonic matrix elements folded with the parton densities of the photon The emission of additional partons from the incoming partons is generated by evolving them backwards in an initialstate parton shower and from outgoing partons by generating a nalstate parton shower Finally the partons are converted to hadrons which are then allowed to decay Photon generation A twophoton reaction can b e factorized into photon uxes of radiation from incoming e and the nal state of twophoton collisions The decomp osed dierential crosssection for 0 0 0 0 Xq q e p q q e p e p e p e p e p is q q q q d j j cos TT TT q p p m q m 0 0 d p d p j cos j TL LL LT TL 0 0 E E where the s and s are linear combinations of the crosssections for X of transverseT ab and longitudina lL photons the ux factor has photon helicities lab elled by Some i dedicated generators such as Twogam use the full form of Eq while most mo dels simplify further by taking the q approximation At q the photons are quasireal and transversely p olarized and after integration over the angle b etween lepton scattering planes the only remaining term is Expressed in terms of a luminosity function we have TT d L e e e e X TT d d d d 0 where w E E is the photon energy in the lab frame The luminosity function can b e i b i decomp osed as the pro duct of a factor for each of the photons d L d L d L d d d d d d d d where apart from a trivial kinematic factor d L is the Equivalent Photon Approximation EPA ux factor d L p f x P t d d with x the lightcone momentum fraction and P the photon virtuality P jq j As discussed in Ref there are two imp ortant corrections to the usual EPA formula The rst is to include P the subleading term of relative order m e x x f x P m e e xP P which can give corrections of order for untagged and antitagged crosssections At present of the QCD event generators only Phojet includes this correction The second imp ortant correction is to include the correct pro cessdep endent dynamic upp er limit on P However this is only imp ortant for untagged crosssections and when an antitag condition is imp osed as it is throughout this rep ort this corrections b ecome small Photon distribution functions In resolvedphoton pro cesses we need parametrizations of the distribution functions for partons inside the photon These ob ey an inhomogeneous form of the usual evolution equations As discussed in more detail in the rep ort of the Physics working group their solution can b e written as the sum of a hadronic or VMD part which evolves according the usual homogeneous equation and a p ointlike or anomalous part There are a numb er of parametrizations available for the parton distribution functions of on shell photons Most of them are contained in a single package PDFLIB to which most of the event generators are interfaced At present none use the recent mo dels of the structure of virtual photons although HERWIG do es implement a simple P suppression mo del In the following when comparing dierent generators we use the fairly similar SaS D or GRV LO sets direct qq single resolved q qg g qq 0 0 double resolved qq qq gg qq DIS eq eq Table The standard hard subprocesses used by event generators for dierent event classes Hard subpro cesses Having dened the structure functions and parton densities we can now use the same ma chinery as for pp or ep collisions to generate hard subpro cesses with the exception that we here have additional pro cesses where the photon couples directly in the hard interaction In collisions we therefore talk ab out three kinds of events direct singleresolved and double resolved dep ending on whether the photons couple directly or not In Table the standard hard subpro cesses are listed for dierent event classes Some programs like Pythia make a further distinction b etween the anomalous and VMDlike part of the resolved photon and therefore have six dierent event classes In deep inelastic e scattering the exchanged photon is usually more virtual than the struck quark so the EPA is no longer a go o d approximation in other words the pro cessdep endent dynamic upp er limit on P mentioned in Section is exceeded One therefore needs in principle to use the full pro cesses eq eqg eg eqq and e eqq However when the quark line is much less virtual than the photon it can b e approximated by the DGLAP probability distribution to nd the quark inside a higherx quark q qg gluon g qq or photon qq and hence can b e absorb ed into the evolution of the photon distribution functions Thus we are again left with a pro cess eq eq for which one uses the lowestorder matrix element Other pro cesses that are usually treated separately are the ones involving heavy quarks where the
Recommended publications
  • Introduction to Parton-Shower Event Generators
    SLAC-PUB 16160 Introduction to parton-shower event generators Stefan H¨oche1 1 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA Abstract: This lecture discusses the physics implemented by Monte Carlo event genera- tors for hadron colliders. It details the construction of parton showers and the matching of parton showers to fixed-order calculations at higher orders in per- turbative QCD. It also discusses approaches to merge calculations for a varying number of jets, the interface to the underlying event and hadronization. 1 Introduction Hadron colliders are discovery machines. The fact that proton beams can be accelerated to higher kinetic energy than electron beams favors hadron colliders over lepton colliders when it comes to setting the record collision energy. But it comes at a cost: Because of the composite nature of the beam particles, the event structure at hadron colliders is significantly more complex than at lepton colliders, and the description of full final states necessitates involved multi-particle calculations. The high-dimensional phase space leaves Monte-Carlo integration as the only viable option. Over the past three decades, this led to the introduction and development of multi-purpose Monte-Carlo event generators for hadron collider physics [1, 2]. This lecture series discusses some basic aspects in the construction of these computer programs. 1.1 Stating the problem The search for new theories of nature which explain the existence of dark matter and dark energy is the arXiv:1411.4085v2 [hep-ph] 18 Jun 2015 focus of interest of high-energy particle physics today. One possible discovery mode is the creation of dark matter candidates at ground-based collider experiments like the Large Hadron Collider (LHC).
    [Show full text]
  • Monte Carlo Event Generators
    Durham University Monte Carlo Event Generators Lecture 1: Basic Principles of Event Generation Peter Richardson IPPP, Durham University CTEQ School July 06 1 • So the title I was given for these lectures was ‘Event Generator Basics’ • However after talking to some of you yesterday evening I realised it should probably be called ‘Why I Shouldn’t Just Run PYTHIA’ CTEQ School July 06 2 Plan • Lecture 1: Introduction – Basic principles of event generation – Monte Carlo integration techniques – Matrix Elements • Lecture 2: Parton Showers – Parton Shower Approach – Recent advances, CKKW and MC@NLO • Lecture 3: Hadronization and Underlying Event – Hadronization Models – Underlying Event Modelling CTEQ School July 06 3 Plan • I will concentrate on hadron collisions. • There are many things I will not have time to cover – Heavy Ion physics – B Production – BSM Physics – Diffractive Physics • I will concentrate on the basic aspects of Monte Carlo simulations which are essential for the Tevatron and LHC. CTEQ School July 06 4 Plan • However I will try and present the recent progress in a number of areas which are important for the Tevatron and LHC – Matching of matrix elements and parton showers • Traditional Matching Techniques • CKKW approach • MC@NLO – Other recent progress • While I will talk about the physics modelling in the different programs I won’t talk about the technical details of running them. CTEQ School July 06 5 Other Lectures and Information • Unfortunately there are no good books or review papers on Event Generator physics. • However
    [Show full text]
  • Nuwro - Neutrino MC Event Generator
    NuWro - neutrino MC event generator Tomasz Golan 28.04.2017, UW HEP Seminar Outline Neutrino source νe Detector ′ α 1. Motivation να νµ ντ 2. NuWro event generator 3. Final State Interactions 3500 MB data Total 3000 EL on carbon np-nh 2500 EL on hydrogen Irreducible background 2000 Other backgrounds 1500 4. MB NCEL data analysis No. of events 1000 500 0 0 100 200 300 400 500 600 700 Reconstructed kinetic energy (MeV) Tomasz Golan NuWro @ HEP UW 2 / 61 Introduction Basic properties of neutrinos ■ 1 Three generations 2 -spin, no electric charge, small mass Introduction of fermions H Neutrino properties (extremely hard to detect) I II III PMNS matrix Probability of oscillation u c t γ Neutrino oscillation ■ Measurement idea Interactions with elementary particles Example: T2K BOSONS QUARKS s g Energy reconstruction → electroweak theory (Standard Model) d b MC generators ■ ν νµ ν 0 NuWro Interactions with nucleons e τ Z Final state interactions → form factors e µ τ ± MB NCEL analysis → parton distribution functions LEPTONS W Backup slides ■ Interactions with nuclei → nuclear effects ■ The neutrino flavor state is a superposition of the mass states: |ναi = i Uαi |νii νe The neutrino producedP in α state να νβ νµ ντ can be measured in β state. The phenomenon is called neutrino oscillation. Tomasz Golan NuWro @ HEP UW 4 / 61 Pontecorvo-Maki-Nakagawa-Sakata matrix The PMNS matrix defines the mass mixing in the lepton sector: −iδ 1 0 0 c13 0 s13e c12 s12 0 U = 0 c23 s23 0 1 0 −s12 c12 0 iδ 0 −s23 c23 −s13e 0 c13 0 0 1 cij = cos θij sij = sin θij θij - mixing angels δ - CP phase factor Measurements: 2 ■ Solar, reactor and accelerator: sin (2θ12) = 0.846 ± 0.021 2 ■ Atmospheric: sin (2θ23) > 0.92 2 ■ Reactor: sin (2θ13) = 0.093 ± 0.008 δ can be measured if and only if all mixing angles are nonzero.
    [Show full text]
  • Event Generators
    Event Generators XI SERC School on Experimental High-Energy Physics NISER Bhubaneswar, November 07-27, 2017 Event Generators Session 1 Introduction IntroductionIntroduction Typical high energy event (p+p collision) and possible processes: Long Island, New York, USA Typical highTypical energy high event energy ( eventp+p collision)(p+p collision) and and possible possible processes: processes: M. H. Seymour and M. Marx, arXiv:1304.6677 [hep-ph] 1. Hard process 1. Hard process 2. Parton shower 2. Parton shower 3. Hadronization 3. Hadronization 4. Underlying event 4. Underlying event 5. Unstable particle decays 5. Unstable particle decays If we could create a model that rightly incorporates most physics processes and rightly predicts the physics results… Helps Increase the physics understanding of the high energy collisions2 and data results obtained 2 2 Event Generators – In General Long Island, New York, USA ü Computer programs to generate physics events, as realistic as could be using a wide range of physics processes. ü Use Monte Carlo techniques to select all relevant variables according to the desired probability distributions and to ensure randomness in final events. ü Give access to various physics observables ü Different from theoretical calculations which mostly is restricted to one particular physics observable ü The output of event generators could be used to check the behavior of detectors – how particles traverse the detector and what physics processes they undergo -- simulated in programs such as GEANT. 3 Need of Event Generators Long Island, New York, USA ü Interpret the observed phenomena in data in terms of a more fundamental underlying theory; Give physics predictions for experimental data analysis.
    [Show full text]
  • Isolated Electrons and Muons in Events with Missing Transverse Momentum at HERA
    Physics Letters B 561 (2003) 241–257 www.elsevier.com/locate/npe Isolated electrons and muons in events with missing transverse momentum at HERA H1 Collaboration V. Andreev x,B.Andrieuaa, T. Anthonis d,A.Astvatsatourovai,A.Babaevw,J.Bährai, P. Baranov x, E. Barrelet ab, W. Bartel j, S. Baumgartner aj, J. Becker ak, M. Beckingham u, A. Beglarian ah,O.Behnkem,A.Belousovx,Ch.Bergera,T.Berndtn,J.C.Bizotz, J. Böhme j, V. Boudry aa,J.Braciniky, W. Braunschweig a,V.Brissonz, H.-B. Bröker b, D.P. Brown j,D.Brunckop,F.W.Büsserk,A.Bunyatyanl,ah,A.Burrager, G. Buschhorn y, L. Bystritskaya w, A.J. Campbell j,S.Carona, F. Cassol-Brunner v, V. Chekelian y, D. Clarke e,C.Collardd,J.G.Contrerasg,1, Y.R. Coppens c, J.A. Coughlan e, M.-C. Cousinou v,B.E.Coxu,G.Cozzikai, J. Cvach ac, J.B. Dainton r, W.D. Dau o, K. Daum ag,2, M. Davidsson t, B. Delcourt z, N. Delerue v, R. Demirchyan ah, A. De Roeck j,3,E.A.DeWolfd,C.Diaconuv, J. Dingfelder m,P.Dixons, V. Dodonov l, J.D. Dowell c,A.Dubaky,C.Duprelb,G.Eckerlinj,D.Ecksteinai, V. Efremenko w, S. Egli af,R.Eichleraf,F.Eiselem,M.Ellerbrockm,E.Elsenj, M. Erdmann j,4,5, W. Erdmann aj, P.J.W. Faulkner c,L.Favartd,A.Fedotovw,R.Felstj, J. Ferencei j, S. Ferron aa,M.Fleischerj, P. Fleischmann j,Y.H.Flemingc,G.Fluckej, G. Flügge b, A. Fomenko x,I.Forestiak, J.
    [Show full text]
  • Introduction to Monte Carlo for Particle Physics Study
    Introduction to Monte Carlo for Particle Physics Study N. SRIMANOBHAS (Dept. of Physics, Faculty of Science, Chulalongkorn University) 1st CERN School Thailand October 4, 2010 1 วันจันทร์ที่ 4 ตุลาคม 2010 Credit where credit is due I collected (stole) most of my slide from Tomasz Wlodek (Monte Carlo methods in HEP) Concezio Bozzi (Monte Carlo simulation in Particle Physics) P. Richardson CERN-Fermilab school 2009 Geant4 school 2009 2 วันจันทร์ที่ 4 ตุลาคม 2010 Monte Carlo (MC) [From Tomasz Wlodek slides] General idea is “Instread of performing long complex calculations, perform large number of experiments using random number generation and see what happens” Problem: Calculate the area of this shape Any idea? 3 วันจันทร์ที่ 4 ตุลาคม 2010 10x10 40x40 Area = (# Hits)/(# Total) x total area 4 วันจันทร์ที่ 4 ตุลาคม 2010 History Method formally developed by John Neumann during the World War II, but already known before. It was used to study radiation shielding and distance that neutrons would likely travel through material. Von Neumann chose the codename "Monte Carlo". The name is a reference to the Monte Carlo Casino in Monaco where Ulam's uncle would borrow money to gamble. 5 วันจันทร์ที่ 4 ตุลาคม 2010 Why Monte Carlo? Monte Carlo assumes the system is described by probability density functions (PDF) which can be modeled. It does not need to write down and solve equation analytically/numerically. PDF comes from - Data driven - Theory driven - Data + Theory fitting 6 วันจันทร์ที่ 4 ตุลาคม 2010 Particle physics uses MC for (1) Detector design and optimization Complicate and huge detector Very expensive (2) Simulation of particle interactions with detector’s material (3) Physics analysis New predicted physics: SUSY, UED, ..
    [Show full text]
  • A New Monte Carlo Event Generator for High Energy Physics
    Computer Physics Communications 41 (1986) 127—153 127 North-Holland, Amsterdam A NEW MONTE CARLO EVENT GENERATOR FOR HIGH ENERGY PHYSICS S. KAWABATA National Laboratory for High Energy Physics, Tsukuba, Ibaraki, Japan Received 3 August 1985; in revised form 7 December 1985 PROGRAM SUMMARY Title of program: BASES/SPRING No. of lines in combined program and test deck: 2750 Catalogue number: AAFW Keywords: Multidimensional numerical integration, Monte Carlo simulation, event generation and four momentum vector Program obtainable from: CPC Program Library, Queen’s Uni- generation versity of Belfast, N. Ireland (see application form in this issue) Nature of physical problem In high energy physics experiments, it is necessary to generate Computer for which the program is designed and others on which events by the Monte Carlo method for the processes of interest it is operable: FACOM, HITAC, IBM and others with a in order to know the detection efficiencies. It is desirable to FORTRAN77 compiler have such a program that can generate events efficiently once we have the differential cross section of any process. It will be Computer: FACOM-M382, HITAC-M280; Installation: Na- a very powerful tool for the high energy physics experimenta- tional Laboratory for High Energy Physics (KEK), Tsukuba, list. Ibaraki, Japan Method of solution Operating system: OSIV/F4 MSP (FACOM), VOS3 (HITAC) A pair of program packages BASES and SPRING is developed for solving such a problem. By BASES, the differential cross Programming language used: FORTRAN77 section is integrated and a probability distribution is produced. By SPRING, four momentum vectors of events are generated High speed storage required: 145 Kwords each for BASES and according to the probability distribution mad~eby BASES.
    [Show full text]
  • The PYTHIA Event Generator: Past, Present and Future∗
    LU TP 19-31 MCnet-19-16 July 2019 The PYTHIA Event Generator: Past, Present and Future∗ Torbj¨ornSj¨ostrand Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University, S¨olvegatan 14A, SE-223 62 Lund, Sweden Abstract The evolution of the widely-used Pythia particle physics event generator is outlined, from the early days to the current status and plans. The key decisions and the development of the major physics components are put in arXiv:1907.09874v1 [hep-ph] 23 Jul 2019 context. ∗submitted to 50 Years of Computer Physics Communications: a special issue focused on computational science software 1 Introduction The Pythia event generator is one of the most commonly used pieces of software in particle physics and related areas, either on its own or \under the hood" of a multitude of other programs. The program is designed to simulate the physics processes that can occur in collisions between high-energy particles, e.g. at the LHC collider at CERN. Monte Carlo methods are used to represent the quantum mechanical variability that can give rise to wildly different multiparticle final states under fixed simple initial conditions. A combi- nation of perturbative results and models for semihard and soft physics | many of them developed in the Pythia context | are combined to trace the evolution towards complex final states. The program roots stretch back over forty years to the Jetset program, with which it later was fused. Twelve manuals for the two programs have been published in Computer Physics Communications (CPC), Table 1, together collecting over 20 000 citations in the Inspire database.
    [Show full text]
  • Event Generator Physics
    Event Generator Physics Peter Skands (CERN) Joliot Curie School 2013, Frejus, France In these two lectures, we will discuss the physics of Monte Carlo event generators and their mathematical foundations, at an introductory level. We shall attempt to convey the main ideas as clearly as possible without burying them in an avalanche of technical details. References to more detailed discussions are included where applicable. We assume a basic familiarity with QCD, which will also be covered at the school in the lectures by Y. Dokshitzer. The task of a Monte Carlo event generator is to calculate everything that happens in a high-energy collision, starting from the two initial beam particles at t ! −∞ and ending with a complicated multi-particle final state that hits an imagined dector at t ! +1 (which could, e.g., be represented by a detector simulation, such as FLUKA or GEANT, but that goes beyond the scope of these lectures). This requires some compromises to be made. General-purpose generators like Herwig, Pythia, and Sherpa, start from low-order (LO or NLO) matrix-element descriptions of the hard physics and then attempt to include the “most significant” corrections, such as higher- order matrix-element corrections and parton showers, resonance decays, underlying event (via multiple parton interactions), beam remnants, hadronization, etc. Each of the generators had slightly different origins, which carries through to the em- phasis placed on various physics aspects today: • Pythia. Successor to Jetset (begun in 1978). Originated in hadronization studies. Main feature: the Lund string fragmentation model. At the time of writing the most recent version is Pythia 8.175.
    [Show full text]
  • Leptoninjector and Leptonweighter: a Neutrino Event Generator and Weighter for Neutrino Observatories
    LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories R. Abbasiq, M. Ackermannbe, J. Adamsr, J. A. Aguilarl, M. Ahlersv, M. Ahrensav, C. Alispachab, A. A. Alves Jr.ae, N. M. Aminao, R. Ann, K. Andeenam, T. Andersonbb, I. Ansseaul, G. Antonz, C. Argüellesn, S. Axanio, X. Baias, A. Balagopal V.ak, A. Barbanoab, S. W. Barwickad, B. Bastianbe, V. Basuak, V. Baumal, S. Baurl, R. Bayh, J. J. Beattyt,u, K.-H. Beckerbd, J. Becker Tjusk, C. Bellenghiaa, S. BenZviau, D. Berleys, E. Bernardinibe,1, D. Z. Bessonaf,2, G. Binderh,i, D. Bindigbd, E. Blaufusss, S. Blotbe, S. Böseral, O. Botnerbc, J. Böttchera, E. Bourbeauv, J. Bourbeauak, F. Bradasciobe, J. Braunak, S. Bronab, J. Brostean-Kaiserbe, A. Burgmanbc, R. S. Bussean, M. A. Campanaar, C. Chenf, D. Chirkinak, S. Choiax, B. A. Clarkx, K. Clarkag, L. Classenan, A. Colemanao, G. H. Collino, J. M. Conrado, P. Coppinm, P. Corream, D. F. Cowenba,bb, R. Crossau, P. Davef, C. De Clercqm, J. J. DeLaunaybb, H. Dembinskiao, K. Deoskarav, S. De Ridderac, A. Desaiak, P. Desiatiak, K. D. de Vriesm, G. de Wasseigem, M. de Withj, T. DeYoungx, S. Dharania, A. Diazo, J. C. Díaz-Vélezak, H. Dujmovicae, M. Dunkmanbb, M. A. DuVernoisak, E. Dvorakas, T. Ehrhardtal, P. Elleraa, R. Engelae, J. Evanss, P. A. Evensonao, S. Faheyak, A. R. Fazelyg, S. Fiedlschusterz, A.T. Fienbergbb, K. Filimonovh, C. Finleyav, L. Fischerbe, D. Foxba, A. Franckowiakk,be, E. Friedmans, A. Fritzal, P. Fürsta, T. K. Gaisserao, J. Gallagheraj, E. Ganstera, S. Garrappabe, L. Gerhardti, A. Ghadimiaz, C.
    [Show full text]
  • CERN–2005–014 DESY–PROC–2005–001 14 December 2005 Geneva 2005
    CERN–2005–014 DESY–PROC–2005–001 14 December 2005 Geneva 2005 Organizing Committee: G. Altarelli (CERN), J. Blumlein¨ (DESY), M. Botje (NIKHEF), J. Butterworth (UCL), A. De Roeck (CERN) (chair), K. Eggert (CERN), H. Jung (DESY) (chair), M. Mangano (CERN), A. Morsch (CERN), P. Newman (Birmingham), G. Polesello (INFN), O. Schneider (EPFL), R. Yoshida (ANL) Advisory Committee: J. Bartels (Hamburg), M. Della Negra (CERN), J. Ellis (CERN), J. Engelen (CERN), G. Gustafson (Lund), G. Ingelman (Uppsala), P. Jenni (CERN), R. Klanner (DESY), M. Klein (DESY), L. McLerran (BNL), T. Nakada (CERN), D. Schlatter (CERN), F. Schrempp (DESY), J. Schukraft (CERN), J. Stirling (Durham), W.K. Tung (Michigan State), A. Wagner (DESY), R. Yoshida (ANL) Contents VI Working Group 5: Monte Carlo Tools 565 Introduction to Monte Carlo tools 567 V. Lendermann, A. Nikitenko, E. Richter-Was, P. Robbe, M. H. Seymour The Les Houches Accord PDFs (LHAPDF) and LHAGLUE 575 M.R. Whalley, D. Bourilkov, R.C. Group THEPEG: Toolkit for High Energy Physics Event Generation 582 L. Lonnblad¨ PYTHIA 585 T. Sjostrand¨ HERWIG 586 M.H. Seymour Herwig++ 588 S. Gieseke The event generator SHERPA 590 T. Gleisberg, S. Hoche,¨ F. Krauss, A. Schalicke,¨ S. Schumann, J. Winter ARIADNE at HERA and at the LHC 592 L. Lonnblad¨ The Monte Carlo event generator AcerMC and package AcerDET 596 B. Kersevan, E. Richter-Was RAPGAP 601 H. Jung CASCADE 603 H. Jung Leading proton production in ep and pp experiments: how well do high-energy physics Monte Carlo generators reproduce the data? 605 G. Bruni, G. Iacobucci, L. Rinaldi, M.
    [Show full text]
  • Summary of Workshop on Common Neutrino Event Generator Tools
    Summary of Workshop on Common Neutrino Event Generator Tools Josh Barrow1, Minerba Betancourt2, Linda Cremonesi3, Steve Dytman4, Laura Fields2, Hugh Gallagher5, Steven Gardiner2, Walter Giele2, Robert Hatcher2, Joshua Isaacson2, Teppei Katori6, Pedro Machado2, Kendall Mahn7, Kevin McFarland8, Vishvas Pandey9, Afroditi Papadopoulou10, Cheryl Patrick11, Gil Paz12, Luke Pickering7, Noemi Rocco2,13, Jan Sobczyk14, Jeremy Wolcott5, and Clarence Wret8 1University of Tennessee, Knoxville, TN 37996, USA 2Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 3Queen Mary University of London, London E1 4NS, United Kingdom 4 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA 5Tufts University, Medford, Massachusetts 02155, USA 6King's College London, London WC2R 2LS, UK 7Michigan State University, East Lansing, Michigan 48824, USA 8University of Rochester, Rochester, New York 14627 USA 9 University of Florida, Gainesville, FL 32611, USA 10Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 11University College London, Gower Street, London WC1E 6BT, United Kingdom 12Wayne State University, Detroit, Michigan 48201, USA 13Argonne National Lab, Argonne IL 60439, USA 14Wroclaw University, 50-204 Wroclaw, Poland August 18, 2020 arXiv:2008.06566v1 [hep-ex] 14 Aug 2020 1 Introduction Neutrino event generators are a critical component of the simulation chains of many current and planned neutrino experiments, including the Deep Underground Neutrino Experiment (DUNE) [1] and Hyper-Kamiokande (HK) [2]. Simulating neutrino interactions with nuclei is particularly complex for accelerator-based neutrino experiments, which typically use neutrino beams with energy ranging between hundreds of MeV to tens of GeV. The dominant neutrino- nucleus interaction changes across this energy range, from relatively simple quasi-elastic scattering at the lowest energies, to deep inelastic scattering at the highest energies.
    [Show full text]