Lesson 4.5 Workbook

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 4.5 Workbook 1. Mutations can have one of all of LESSON 4.5 WORKBOOK the following effects EXCEPT: a. The mutation may have no How do viruses adapt — Antigenic effect on the virus’s ability to survive or become virulent. shift and drift and the flu pandemic b. The mutation may produce a virus that is defective in some way. As discussed in the last lesson, mutations are c. The mutation can create a DEFINITIONS OF TERMS made randomly. If you take a test and randomly virus that is more virulent. fill in the answers, do you think you will get them d. none of the above all right? No, but if you repeat your random ______________________________ Gene — a particular sequence answering thousands of times you might, and this ______________________________ of DNA or RNA that contains ______________________________ information for the synthesis of is how mutations work. Many mutations are silent a protien or RNA molecule. or harmful to the pathogen but the few that are ______________________________ helpful make the wait worth the waste. ______________________________ ______________________________ For a complete list of defined ______________________________ terms, see the Glossary. ______________________________ In this lesson we will further explore how viruses change and adapt. In particular, this lesson describes ______________________________ how the processes of antigenic drift (random mutation), and antigenic shift (swapping viral genes) lead to ______________________________ adaptations that keep viruses one step ahead of the immune system. ______________________________ ______________________________ Mutations in viruses can have one of three ______________________________ outcomes: ______________________________ ______________________________ 1. A mutation may have no effect on the virus ______________________________ structure and function. ______________________________ ______________________________ 2. A mutation may be unfavorable to the virus. ______________________________ A mutation may be favorable to the virus. 3. ______________________________ ______________________________ A mutation in a gene may Even though we are talking about viruses here it Figure 1: ______________________________ not affect a protein (left panel) or can is important to note that mutations also happen lead to changes in a protein (right panel) ______________________________ Workbook in the bacterial and parasitic pathogens we have that may be favorable or unfavorable. ______________________________ Lesson 4.5 discussed. This is an important process contribut- ______________________________ ing to drug resistance and immune evasion! 176 LESSON READINGS Viruses mutate via antigenic drift and antigenic shift 2. Antigenic shift is to ____ as antigenic drift is to ____. Antigenic drift is the name given to the random a. swapping viral genes; random mutations that accumulate during replication mutation b. swapping genomes; random As we saw in the last lesson, mutations in viral mutation genomes, either DNA or RNA, can accumulate quickly c. random mutation; swapping because viruses often lack proofreading enzymes. genomes This is why there is a high likelihood that new virus d. random mutation; swapping DEFINITIONS OF TERMS particles will have genomes coding for altered proteins. Such changes, may be detrimental or beneficial to the viral genes virus. For example, if the mutation leads to a change ______________________________ ______________________________ Antigenic — having the ability in the entry receptor protein of the virus, and it no Figure 2: Comparison of antigenic drift and shift: minor vs. major changes. ______________________________ to be recognized by the immune longer binds to the host cell, oops, that virus is dead. However, if a mutation leads to change in a protein on ______________________________ system as foreign, and provoke ______________________________ the production of antibodies. the surface of the virus, it may make it unrecognizable to the host immune system, even if the host was exposed to a different version of the virus in the past. ______________________________ ______________________________ Segmented genome — a In fact, this is how viruses replicate successfully in a host — they randomly guess on the test and then repeat this process enough times to ensure that one of them gets a perfect score. ______________________________ genome that is fragmented into ______________________________ multiple pieces instead of con- ______________________________ tained in one large molecule. We have all felt the consequences of this process; antigenic drift is the major reason why we need a new flu vaccine every year. The flu virus is an RNA virus, and as we learned in lesson 4.4, RNA viruses can’t ______________________________ proofread when copying their genomes. For this reason, RNA viruses are prone to high levels of muta- ______________________________ tions via antigenic drift. Hence, every year ______________________________ For a complete list of defined ______________________________ terms, see the Glossary. when the flu comes back around, it has drifted away from its previous form. ______________________________ ______________________________ Antigenic shift or how one virus can ______________________________ exchange genes with another ______________________________ ______________________________ Unlike the process of accumulating single ______________________________ mutations through antigenic drift, anti- ______________________________ genic shifts are much larger changes in the ______________________________ genome, and hence viral properties, that ______________________________ happen suddenly. However, only viruses with ______________________________ Workbook Figure 3: Two strains of the same flu virus ______________________________ infect different cells in the respiratory tract. segmented genomes, like influenza, can do Lesson 4.5 this. ______________________________ 177 LESSON READINGS As shown in the above picture, the influenza viral strain, H1N1, generally infects the mucosa of the upper 3. Antigenic shift allows one virus respiratory tract, whereas a different strain, H5N1 (also known as bird flu), infects the mucosa of the lower to exchange genes with another respiratory tract. Infecting the lower respiratory tract causes a severe immune reaction, leading to the virus. accumulation of fluid in the lungs, causing severe symptoms mimicking drowning. This ability to infect the a. True mucosa of the lower respiratory tract is thought to be why H5N1 is more deadly than H1N1. b. False ______________________________ On the other hand, the inability to infect the upper respiratory tract makes it harder for H5N1 to spread ______________________________ from person to person. But what if H1N1 and H5N1 could trade genes via antigenic shift? This could ______________________________ potentially make a virus that infects both the upper and lower respiratory tracts. This is why many scien- DEFINITIONS OF TERMS ______________________________ tists fear the flu over all other pathogens! ______________________________ ______________________________ Viruses with nonsegmented genomes can’t undergo antigenic shift Viral strain — genetic variant of ______________________________ ______________________________ the same virus. Now, let's answer the question: why viruses with ______________________________ nonsegmented genomes cannot undergo antigenic ______________________________ shift? In figure 4, the tan shape in the middle repre- ______________________________ sents a host cell. Each blue pentagon depicts a virus. For a complete list of defined ______________________________ The blue, yellow, red and green stars on the blue terms, see the Glossary. ______________________________ pentagons represent viral surface proteins or recep- ______________________________ tors. The colored lines within each virus represent the ______________________________ viral genomes. Here, the genomes are in one piece, ______________________________ hence nonsegmented, and each color represents a ______________________________ different gene within the genome. ______________________________ ______________________________ In this case, when a host cell is infected by two ______________________________ strains of a viruses (A and B) at the same time, the Figure 4: Nonsegmented viruses can't ______________________________ genomes of both viruses will replicate in the cell. exchange genes even when they infect the same host cell. ______________________________ When the new viruses are assembled, each virus will ______________________________ have a genome identical to one of the parent viruses ______________________________ with the exception of any mutations that occurred by ______________________________ antigenic drift during replication. ______________________________ ______________________________ Viruses with segmented genomes can exchange genes by antigenic shift ______________________________ ______________________________ Now, let's see how segmented genomes can undergo antigenic shift. In figure 5, the shapes represent ______________________________ Workbook the same structures as above. This time though, the two viruses (C and D) have segmented genomes: _____________________________ Lesson 4.5 composed of multiple pieces. When a host cell is infected with viruses C and D at the same time, the genomes of both viruses will replicate in the cell, but when the new viruses start to assemble the gene 178 LESSON READINGS segments can get mixed up. Each
Recommended publications
  • Dissecting Human Antibody Responses Against Influenza a Viruses and Antigenic Changes That Facilitate Immune Escape
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Dissecting Human Antibody Responses Against Influenza A Viruses And Antigenic Changes That Facilitate Immune Escape Seth J. Zost University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Virology Commons Recommended Citation Zost, Seth J., "Dissecting Human Antibody Responses Against Influenza A Viruses And Antigenic Changes That Facilitate Immune Escape" (2018). Publicly Accessible Penn Dissertations. 3211. https://repository.upenn.edu/edissertations/3211 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3211 For more information, please contact [email protected]. Dissecting Human Antibody Responses Against Influenza A Viruses And Antigenic Changes That Facilitate Immune Escape Abstract Influenza A viruses pose a serious threat to public health, and seasonal circulation of influenza viruses causes substantial morbidity and mortality. Influenza viruses continuously acquire substitutions in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). These substitutions prevent the binding of pre-existing antibodies, allowing the virus to escape population immunity in a process known as antigenic drift. Due to antigenic drift, individuals can be repeatedly infected by antigenically distinct influenza strains over the course of their life. Antigenic drift undermines the effectiveness of our seasonal influenza accinesv and our vaccine strains must be updated on an annual basis due to antigenic changes. In order to understand antigenic drift it is essential to know the sites of antibody binding as well as the substitutions that facilitate viral escape from immunity.
    [Show full text]
  • Through a Combination of Continual Antigenic Drift of Surface Proteins and High Transmission Rates the Identity of Circulating I
    Title: Computer-assisted vaccine design Hao Zhou, Ramdas S. Pophale, and Michael W. Deem Departments of Bioengineering and Physics & Astronomy Rice University Houston, TX, USA Abstract We define a new parameter to quantify the antigenic distance between two H3N2 influenza strains: we use this parameter to measure antigenic distance between circulating H3N2 strains and the closest vaccine component of the influenza vaccine. For the data between 1971 and 2004, the measure of antigenic distance correlates better with efficacy in humans of the H3N2 influenza A annual vaccine than do current state of the art measures of antigenic distance such as phylogenetic sequence analysis or ferret antisera inhibition assays. We suggest that this measure of antigenic distance could be used to guide the design of the annual flu vaccine. We combine the measure of antigenic distance with a multiple-strain avian influenza transmission model to study the threat of simultaneous introduction of multiple avian influenza strains. For H3N2 influenza, the model is validated against observed viral fixation rates and epidemic progression rates from the World Health Organization FluNet – Global Influenza Surveillance Network. We find that a multiple-component avian influenza vaccine is helpful to control a simultaneous multiple introduction of bird-flu strains. We introduce Population at Risk (PaR) to quantify the risk of a flu pandemic, and calculate by this metric the improvement that a multiple vaccine offers. Computer-assisted vaccine design Introduction Circulating influenza virus uses the ability to change its surface proteins, along with its high transmission rate, to flummox the adaptive immune response of the host. The random accumulation of mutations in the hemagglutinin (HA) and neuraminidase (NA) epitopes, the regions on surface of the viral proteins that are recognized by host antibodies, pose a formidable challenge to the design of an effective annual flu vaccine.
    [Show full text]
  • Antigenic Variation in Vector-Borne Pathogens
    Synopsis Antigenic Variation in Vector-Borne Pathogens Alan G. Barbour* and Blanca I. Restrepo† *University of California Irvine, Irvine, California; and †Corporación para Investigaciones Biológicas, Medellín, Colombia Several pathogens of humans and domestic animals depend on hematophagous arthropods to transmit them from one vertebrate reservoir host to another and maintain them in an environment. These pathogens use antigenic variation to prolong their circulation in the blood and thus increase the likelihood of transmission. By convergent evolution, bacterial and protozoal vector-borne pathogens have acquired similar genetic mechanisms for successful antigenic variation. Borrelia spp. and Anaplasma marginale (among bacteria) and African trypanosomes, Plasmodium falciparum, and Babesia bovis (among parasites) are examples of pathogens using these mechanisms. Antigenic variation poses a challenge in the development of vaccines against vector- borne pathogens. What Is Antigenic Variation? original antigen is archived in the cell and can be Immunodominant antigens are commonly used in the future. The adaptive immune system used to distinguish strains of a species of of an infected vertebrate selects against the pathogens. These antigens can vary from strain original infecting serotype, but that specific to strain to the extent that the strain-specific response is ineffective against new variants. One immune responses of vertebrate reservoirs example of antigenic variation occurs in determine the population structure of the B. hermsii, a cause of tickborne relapsing fever pathogen. One such strain-defining antigen is (4), which has a protein homologous to the OspC the OspC outer membrane protein of the Lyme protein of B. burgdorferi. However, instead of a disease spirochete Borrelia burgdorferi in the single version of this gene, each cell of B.
    [Show full text]
  • Evolution and Adaptation of the Avian H7N9 Virus Into the Human Host
    microorganisms Review Evolution and Adaptation of the Avian H7N9 Virus into the Human Host Andrew T. Bisset 1,* and Gerard F. Hoyne 1,2,3,4 1 School of Health Sciences, University of Notre Dame Australia, Fremantle WA 6160, Australia; [email protected] 2 Institute for Health Research, University of Notre Dame Australia, Fremantle WA 6160, Australia 3 Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands WA 6009, Australia 4 School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia * Correspondence: [email protected] Received: 19 April 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: Influenza viruses arise from animal reservoirs, and have the potential to cause pandemics. In 2013, low pathogenic novel avian influenza A(H7N9) viruses emerged in China, resulting from the reassortment of avian-origin viruses. Following evolutionary changes, highly pathogenic strains of avian influenza A(H7N9) viruses emerged in late 2016. Changes in pathogenicity and virulence of H7N9 viruses have been linked to potential mutations in the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), as well as the viral polymerase basic protein 2 (PB2). Recognizing that effective viral transmission of the influenza A virus (IAV) between humans requires efficient attachment to the upper respiratory tract and replication through the viral polymerase complex, experimental evidence demonstrates the potential H7N9 has for increased binding affinity and replication, following specific amino acid substitutions in HA and PB2. Additionally, the deletion of extended amino acid sequences in the NA stalk length was shown to produce a significant increase in pathogenicity in mice.
    [Show full text]
  • Recitation 21 – Fall 2018 (Note: the Recitation Summary Should NOT Be Regarded As the Substitute for Lectures) (This Material Is COPYRIGHT Protected.)
    7.016: Fall 2018: MIT 7.016 Recitation 21 – Fall 2018 (Note: The recitation summary should NOT be regarded as the substitute for lectures) (This material is COPYRIGHT protected.) Summary of Lectures 32 (12/3) & 33 (12/5): Viruses: Viruses are obligate intracellular parasites. They consist of a protein coat (capsid) surrounding a genome, which encodes for proteins. These may include structural or coat proteins, other proteins necessary to get inside the host cell and make copies of the viral genome and the proteins that provide the virus with the anti–host defense system. Non-enveloped/ naked viruses do not have a lipid bilayer surrounding their capsid. They typically dock onto a protein on the surface of the target cells and inject their genomes into the host. Enveloped viruses have a lipid bilayer. They fuse their own membrane with the host membrane, such that the entire viral particle is endocytosed into the host cell. Once a virus is inside its host, it takes over the host machinery and uses it to make coat proteins and viral genomes. The genomes are then packaged into the coats and the new viral particles escape from the host cell either by lysing the cell or budding off from the cell. Viral genomes can be composed of either DNA or RNA. They can be single-stranded or double- stranded. There are two types of single stranded RNA viruses: plus (+) stranded or minus (-) stranded. The plus (+) stranded RNA genome can be directly read and translated by the host cell translation machinery. So these viruses bring only their genome, with no additional proteins, into the host cells at the time of infection.
    [Show full text]
  • Antigenic Drift in Type a Influenza Virus
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 3, pp. 1425-1429, March 1979 Immunology Antigenic drift in type A influenza virus: Peptide mapping and antigenic analysis of A/PR/8/34 (HONI) variants selected with monoclonal antibodies (antigenic variants/hemagglutinin/peptide maps/amino acid changes) W. G. LAVER*, W. GERHARDt, R. G. WEBSTERf, M. E. FRANKELO, AND G. M. AIR* *Department of Microbiology, John Curtin School of Medical Research, Australian National University, Canberra, Australia; tThe Wistar Institute of Anatomy and Biology, 36th Street at Spruce, Philadelphia, Pennsylvania 19104; and tDivision of Virology, St Jude Children's Research Hospital, P.O. Box 318, Memphis, Tennessee 38101 Communicated by Robert M. Chanock, December 11, 1978 ABSTRACT Variants of A/PR/8/34 (HONI) influenza virus, quence (7, 8). It is likely that many of these changes are unre- having hemagglutinin molecules with probably a single altered lated to the antigenic differences between the HAs, so that antigenic determinant, were isolated by growing the virus in analysis of natural variants may not reflect the differences in the presence of the monoclonal hybridoma antibody PEG-1. The variants were analyzed by peptide mapping and characterized antigenic determinants. By using monoclonal antibodies, we antigenically by using PEG-i and four other monoclonal hy- have been able to select variant viruses in which the changes bridoma antibodies to PR8 hemagglutinin. Peptide maps of the in sequence of the HA polypeptides have a better chance of large hemagglutinin polypeptide, HAI, from 8 out of 10 variants being restricted to those affecting the determinant recognized showed a single changed peptide.
    [Show full text]
  • The Development and Use of a Poxvirus Vector System to Protect Pigs Against Swine Influenza Virus Patricia Louise White Foley Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 The development and use of a poxvirus vector system to protect pigs against swine influenza virus Patricia Louise White Foley Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Animal Sciences Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, Microbiology Commons, and the Veterinary Pathology and Pathobiology Commons Recommended Citation Foley, Patricia Louise White, "The development and use of a poxvirus vector system to protect pigs against swine influenza virus " (1998). Retrospective Theses and Dissertations. 12192. https://lib.dr.iastate.edu/rtd/12192 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. tNFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly firom the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Evolution and Ecology of Influenza a Viruses ROBERT G
    MICROBIOLOGICAL REVIEWS, Mar. 1992, p. 152-179 Vol. 56, No. 1 0146-0749/92/010152-28$02.00/0 Copyright © 1992, American Society for Microbiology Evolution and Ecology of Influenza A Viruses ROBERT G. WEBSTER,* WILLIAM J. BEAN, OWEN T. GORMAN, THOMAS M. CHAMBERS,t AND YOSHIHIRO KAWAOKA Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, 332 North Lauderdale, P.O. Box 318, Memphis, Tennessee 38101 INTRODUCTION ............ 153 STRUCTURE AND FUNCTION OF THE INFLUENZA VIRUS VIRION .153 Components of the Virion.153 PB2 polymerase.154 PB1 polymerase.154 PA polymerase ........... 154 Hemagglutinin.154 Nucleoprotein .155 Neuraminidase.155 Ml protein ............................................... 155 M2 protein .155 Nonstructural NS1 and NS2 proteins.155 Influenza Virus Replication Cycle.156 RESERVOIRS OF INFLUENZA A VIRUSES IN NATURE.156 Influenza Viruses in Birds: Wild Ducks, Shorebirds, Gulls, Poultry, and Passerine Birds.156 Influenza Viruses in Pigs.158 Influenza Viruses in Horses ....................P 159 Influenza Viruses in Other Species: Seals, Mink, and Whales.159 Molecular Determinants of Host Range Restriction.160 Mechanism for Perpetuating Influenza Viruses in Avian Species.161 Continuous circulation in aquatic bird species.161 Circulation between different avian species.161 Persistence in water or ice.161 Persistence in individual animals .161 Continuous circulation in subtropical and tropical regions .161 EVOLUTIONARY PATHWAYS.161 Evolutionary Patterns among Influenza A Viruses.161 Selection Pressures
    [Show full text]
  • Exploiting Pan Influenza a and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection
    Article Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection Joanne Marie M. Del Rosario 1,2,3,†, Kelly A. S. da Costa 1,† , Benedikt Asbach 4 , Francesca Ferrara 1,5 , Matteo Ferrari 3,6, David A. Wells 3,6, Gurdip Singh Mann 1, Veronica O. Ameh 7,8, Claude T. Sabeta 8,9, Ashley C. Banyard 10 , Rebecca Kinsley 3,6, Simon D. Scott 1 , Ralf Wagner 4,11, Jonathan L. Heeney 3,6, George W. Carnell 3,6 and Nigel J. Temperton 1,3,* 1 Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; [email protected] (J.M.M.D.R.); [email protected] (K.A.S.d.C.); [email protected] (F.F.); [email protected] (G.S.M.); [email protected] (S.D.S.) 2 Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines 3 DIOSynVax, Cambridge CB3 0ES, UK; [email protected] (M.F.); [email protected] (D.A.W.); [email protected] (R.K.); [email protected] (J.L.H.); [email protected] (G.W.C.) 4 Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; [email protected] (B.A.); [email protected] (R.W.) 5 Vector Development and Production Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA 6 Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK 7 Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi P.M.B.
    [Show full text]
  • The Search for Protective Host Responses
    AIDS Viruses of Animals and Man ow does a host usually develop nately, appear to be resistant to destruc- The Search a state of protection against an tion by complement. H invading virus? Three major Studies performed in my laboratory host responses to invading viruses in- in 1987 showed no evidence of ACC clude activation of complement, produc- activity in humans at various stages tion of neutralizing and complement- of AIDS despite the presence of large Protective fixing antibodies, and cell-mediated im- amounts of antibody directed against mune responses. Traditionally, when both HIV and HIV-infected cells. The Host a new viral disease is recognized in a absence of ACC is also documented in species, efforts to understand the pro- visna-maedi. No ACC activity has been Responses tective immune states are derived from reported for the other animal-lentivirus its surviving members. These individ- systems mentioned here. Both my lab uals serve as immune benchmarks, and and others have shown that human com- subsequent studies often reveal impor- plement is incapable of inactivating HIV tant clues to the eventual production of either directly or in the presence of neu- a vaccine. Here we will review studies tralizing antibody. Recently, we have of the major antiviral immune responses discovered a heat-sensitive serum factor to HIV and see that none of them are in various laboratory and wild animal completely effective, although some av- species that does inactivate the human enues of developing traditional vaccines AIDS virus in vitro. Further studies are for AIDS are still open. underway to characterize this factor, or factors, and to understand how to recruit Complement.
    [Show full text]
  • Can We Predict the Limits of SARS-Cov-2 Variants and Their Phenotypic Consequences?
    Can we predict the limits of SARS-CoV-2 variants and their phenotypic consequences? As eradication of SARS-CoV-2 will be unlikely, we have high confidence in stating that there will always be variants. The number of variants will depend on control measures. We describe hypothetical scenarios by which SARS-CoV-2 could further evolve and acquire, through mutation, phenotypes of concern, which we assess according to possibility. For this purpose, we consider mutations in the ‘body’ of the virus (the viral genes that are expressed in infected cells and control replication and cell response), that might affect virus fitness and disease severity, separately from mutations in the spike glycoprotein that might affect virus transmission and antibody escape. We assess which scenarios are the most likely and what impact they might have and consider how these scenarios might be mitigated. We provide supporting information based on the evolution of SARS-CoV-2, human and animal coronaviruses as well as drawing parallels with other viruses. Scenario One: A variant that causes severe disease in a greater proportion of the population than has occurred to date. For example, with similar morbidity/mortality to other zoonotic coronaviruses such as SARS-CoV (~10% case fatality) or MERS-CoV (~35% case fatality). This could be caused by: 1. Point mutations or recombination with other host or viral genes. This might occur through a change in SARS-CoV-2 internal genes such as the polymerase proteins or accessory proteins. These genes determine the outcome of infection by affecting the way the virus is sensed by the cell, the speed at which the virus replicates and the anti-viral response of the cell to infection.
    [Show full text]
  • The Influenza Virus: Antigenic Composition and Immune Response
    Postgrad Med J: first published as 10.1136/pgmj.55.640.87 on 1 February 1979. Downloaded from Postgraduate Medical Journal (February 1979) 55, 87-97. The influenza virus: antigenic composition and immune response G. C. SCHILD B.Sc., Ph.D., F.I.Biol. Division of Viral Products, National Institute for Biological Standards and Control, Holly Hill, Hampstead, London NW3 6RB Summary capricious epidemiological behaviour of the The architecture and chemical composition of the causative virus and perhaps also the nature of the influenza virus particle is described with particular immune response in man to influenza antigens. reference to the protein constituents and their genetic control. The dominant role in infection of the surface Antigenic composition of the virus proteins - haemagglutinins and neuraminidases - Studies of the single-stranded, negative-strand, acting as antigens and undergoing variation in time RNA genome of the influenza A virus have revealed known as antigenic drift and shift is explained. The the existence of 8 species of RNA molecules (gene immuno-diffusion technique has illuminated the inter- segments) in the virus (McGeoch, Fellner and relationships of the haemagglutinins of influenza A Newton, 1976; Palese and Schulman, 1976a). viruses recovered over long periods of time. The Ho Each gene segment provides the code for one of the and H1 haemagglutinins are now regarded as a single 8 virus specific proteins synthetized in infected sub-type with H2 and H3 representing the haemag- cells. Seven of these proteins are integrated into glutinins of the 1957 and 1968 sub-types. Animal influenza virus particles. Table 1 summarizes the by copyright.
    [Show full text]