Incorporating Biogeochemical Cycles and Utilizing Complexity Theory for Sustainability Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Principles and Function of Natural Ecosystems by Professor Michel RICARD
Intensive Programme on Education for sustainable development in Protected Areas Amfissa, Greece, July 2014 ------------------------------------------------------------------------ Ecological principles and function of natural ecosystems By Professor Michel RICARD Summary 1. Hierarchy of living world 2. What is Ecology 3. The Biosphere - Lithosphere - Hydrosphere - Atmosphere 4. What is an ecosystem - Ecozone - Biome - Ecosystem - Ecological community - Habitat/biotope - Ecotone - Niche 5. Biological classification 6. Ecosystem processes - Radiation: heat, temperature and light - Primary production - Secondary production - Food web and trophic levels - Trophic cascade and ecology flow 7. Population ecology and population dynamics 8. Disturbance and resilience - Human impacts on resilience 9. Nutrient cycle, decomposition and mineralization - Nutrient cycle - Decomposition 10. Ecological amplitude 11. Ecology, environmental influences, biological interactions 12. Biodiversity 13. Environmental degradation - Water resources degradation - Climate change - Nutrient pollution - Eutrophication - Other examples of environmental degradation M. Ricard: Summer courses, Amfissa July 2014 1 1. Hierarchy of living world The larger objective of ecology is to understand the nature of environmental influences on individual organisms, populations, communities and ultimately at the level of the biosphere. If ecologists can achieve an understanding of these relationships, they will be well placed to contribute to the development of systems by which humans -
Modeling Biogeochemical Cycles
4 Modeling Biogeochemical Cycles Henning Rodhe 4.1 Introductory Remarks spatial average (i.e., the physical size of the reservoir itself) often has a horizontal size To formulate a model is to put together pieces of approaching that of a continent, or larger, i.e., knowledge about a particular system into a > 1000 km. The time scales corresponding to this consistent pattern that can form the basis for (1) spatial average are months, or longer. This interpretation of the past history of the system means that day-to-day variations in weather and (2) prediction of the future of the system. To and ocean currents are not generally considered be credible and useful, any model of a physical, explicitly when modeling biogeochemical cycles. chemical or biological system must rely on both The advent of fast computers and the avail- scientific fundamentals and observations of the ability of detailed data on the occurrence of world around us. High-quality observational certain chemical species have made it possible data are the basis upon which our understand- to construct meaningful cycle models with a ing of the environment rests. However, observa- much smaller and faster spatial and temporal tions themselves are not very useful unless the resolution. These spatial and time scales corre- results can be interpreted in some kind of model. spond to those in weather forecast models, i.e. Thus observations and modeling go hand in down to 100 km and 1 h. Transport processes hand. (e.g., for CO2 and sulfur compounds) in the This chapter focuses on types of models used oceans and atmosphere can be explicitly to describe the functioning of biogeochemical described in such models. -
Provided for Non-Commercial Research and Educational Use
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Encyclopedia of Ecology, Volumes 1-5 published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial M Scotti. Development Capacity. In Sven Erik Jørgensen and Brian D. Fath (Editor-in-Chief), Ecological Indicators. Vol. [2] of Encyclopedia of Ecology, 5 vols. pp. [911-920] Oxford: Elsevier. Author's personal copy Ecological Indicators | Development Capacity 911 animals that appear on and in dung and the processes they Cross WF, Benstead JP, Frost PC, and Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: Recent progress and initiate are highly predictable, but in detail depend on the perspectives. Freshwater Biology 50: 1895–1912. habitat and climate under investigation. Specialized copro- Findlay S and Sinsabaugh R (eds.) (2000) Dissolved Organic Matter in philous fungi, similarly, exhibit a clear sequence of Aquatic Ecosystems. San Diego: Academic Press. Flindt MR, Pardal MA, Lillebø AI, Martins I, and Marques JC (1999) utilization of their habitat, spores of early stages already Nutrient cycling and plant dynamics in estuaries: A brief review. -
Ascendency As Ecological Indicator for Environmental Quality Assessment at the Ecosystem Level: a Case Study
Hydrobiologia (2006) 555:19–30 Ó Springer 2006 H. Queiroga, M.R. Cunha, A. Cunha, M.H. Moreira, V. Quintino, A.M. Rodrigues, J. Seroˆ dio & R.M. Warwick (eds), Marine Biodiversity: Patterns and Processes, Assessment, Threats, Management and Conservation DOI 10.1007/s10750-005-1102-8 Ascendency as ecological indicator for environmental quality assessment at the ecosystem level: a case study J. Patrı´ cio1,*, R. Ulanowicz2, M. A. Pardal1 & J. C. Marques1 1IMAR- Institute of Marine Research, Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal 2Chesapeake Biological Laboratory, Center for Environmental and Estuarine Studies, University of Maryland, Solomons, Maryland, 20688-0038, USA (*Author for correspondence: E-mail: [email protected]) Key words: network analysis, ascendency, eutrophication, estuary Abstract Previous studies have shown that when an ecosystem consists of many interacting components it becomes impossible to understand how it functions by focussing only on individual relationships. Alternatively, one can attempt to quantify system behaviour as a whole by developing ecological indicators that combine numerous environmental factors into a single value. One such holistic measure, called the system ‘ascen- dency’, arises from the analysis of networks of trophic exchanges. It deals with the joint quantification of overall system activity with the organisation of the component processes and can be used specifically to identify the occurrence of eutrophication. System ascendency analyses were applied to data over a gradient of eutrophication in a well documented small temperate intertidal estuary. Three areas were compared along the gradient, respectively, non eutrophic, intermediate eutrophic, and strongly eutrophic. Values of other measures related to the ascendency, such as the total system throughput, development capacity, and average mutual information, as well as the ascendency itself, were clearly higher in the non-eutrophic area. -
Chapter 3. Nutrient Cycling by Fungi in Wet Tropical Forests
Chapter 3 Nutrient cycling by fungi in wet tropical forests D. Jean Lodge U.S.D.A. Forest Service, Forest Products Laboratory, Center for Forest Mycology Reseach, PO Box B, Palmer, Pueto Rico 00721, U.S.A. Introduction Fungi are primarily responsible for the recycling of mineral nutrients through decomposition of organic matter (Swift, Heal & Anderson, 1979) and the uptake and transfer of these nutrients into plants via mycorrizal fungi (Janos, 1983). In addition, fungi and other soil microorganisms serve alternately as sources and sinks of labile nutrients that are necessary for plant growth (Marumoto, Anderson & Domsch 1983 Yang & Insam 1991). Thus, fungal and microbial biomass can control significant fractions of the labile nutrient pools in some humid and wet tropical forests (Marumoto et al., 1982; Lodge, 1985; Yang & Insam, 1991), and regulate the availability of nutrients that may limit plant growth (Jordan 1985; Hilton, 1987; Singh et al., 1989 Lee, Han & Jordan 1990 Behera Pati & Basu, 1991; Yang & Insam, 1991). The term biomass normally refers only to living organisms, but it is used more broadly in this chapter to refer to dead as well as living microorganisms as both contain nutrients. Although humid tropical forests often have large stature and an abundance of vegetation, their growth and productivity is frequently limited by the availability of mineral nutrients. A diversity of soils occurs in the wet tropics so it is difficult to generalise about nutrient limitation. However, the availability of phosphorus to higher plants is generally limited because phosphorus combines with aluminium and iron oxides in the highly weathered soils to form insoluble complexes (Sanchez 1976). -
The Importance of Soil Food Web for Healthy Environment and Sustainable Development
International Journal of Applied Research 2015; 1(3): 15-20 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 3.4 The importance of soil food web for healthy IJAR 2015; 1(3): 15-20 www.allresearchjournal.com environment and sustainable development Received: 18-01-2015 Accepted: 08-02-2015 Rajeev Ranjan, M. Divya and M. Bavitha Rajeev Ranjan Abstract PG Research Scholar, Soil food web is a natural network of consumer resource interactions among different functional Dept. of Aquaculture, groups of soil organisms which are occur in the soil ecosystem. Soil is a complex, unconsolidated Fisheries College & Research mixture of inorganic, organic, and living material that is found on the immediate surface of the earth Institute, TNFU, that supports many important functions for plants, animals, and humans. The soil food web is very Thoothukudi-8, dynamic, complex and interchanging depending on its ecosystem. Nutrients in soil in their most basic Tamil Nadu, India. form come from fully decomposed organic matter which we call compost. Decomposition of organic matter is largely a biological process that occurs naturally. The organisms found in the soil food web M. Divya PG Research Scholar, carry out a large amount of microbial processes such as decomposition, mineralization, Dept. of Aquatic environment immobilization, respiration, and fixation along with many others. Without soil food web, plants management, would not obtain the nutrients which are necessary for growth. Nutrient exchanges between organic Fisheries College & Research matter, water and soil are essential to soil fertility and need to be maintained for sustainable Institute, TNFU, Thoothukudi- production. A diverse and complete soil food web where soils are well structured and fertile through 8, T.N. -
Ecological Modelling Comparative Network Analysis Toward Characterization of Systemic Organization for Human–Environmental
Ecological Modelling 220 (2009) 3123–3132 Contents lists available at ScienceDirect Ecological Modelling journal homepage: www.elsevier.com/locate/ecolmodel Comparative network analysis toward characterization of systemic organization for human–environmental sustainability Daniel A. Fiscus ∗ Biology Department, Frostburg State University, 308 Compton Science Center, Frostburg, MD 21532, USA article info abstract Article history: A preliminary study in comparative ecological network analysis was conducted to identify key assump- Available online 17 June 2009 tions and methodological challenges, test initial hypotheses and explore systemic and network structural characteristics for environmentally sustainable ecosystems. A nitrogen network for the U.S. beef supply Keywords: chain – a small sub-network of the industrial food system analyzed as a pilot study – was constructed Ecological network analysis and compared to four non-human carbon and nitrogen trophic networks for the Chesapeake Bay and the Sustainability Florida Everglades. These non-human food webs served as sustainable reference systems. Contrary to Human food web the main original hypothesis, the “window of vitality” and the number of network roles did not clearly differentiate between a human sub-network and the more complete non-human networks. The effective trophic level of humans (a partial estimate of trophic level based on the single food source of beef) was much higher (8.1) than any non-human species (maximum of 4.88). Network connectance, entropy, total dependency coefficients, -
Determination of the Denitrification Capacity of Unconsolidated Rock
Determination of the denitrification capacity of unconsolidated rock aquifers using 15N tracer experiments at groundwater monitoring wells - development of a new method to assess actual and future denitrification in aquifers Dissertation zur Erlangung des Doktorgrades der Fakultät für Forstwissenschaften und Waldökologie der Georg-August-Universität Göttingen vorgelegt von Diplom Geologe Wolfram Eschenbach geboren in Burg Göttingen, 2014 1. Gutachter: Prof. Dr. Heinz Flessa 2. Gutachter: Prof. Dr. Jürgen Böttcher Tag der mündlichen Prüfung: 28.01.2014 "Ich bin mir jedenfalls bewusst, dass ich keine Weisheit besitze, weder groß noch klein." Sokrates Table of contents Figures ...................................................................................................................................... V Tables ....................................................................................................................................... VI Danksagung ........................................................................................................................... VII Abstract ................................................................................................................................... IX Kurzfassung ............................................................................................................................ XI Preface and Outline ............................................................................................................. XIII 1 General Introduction ......................................................................................................... -
5 Reconsidering the Notion of the Organic
DK3072_book.fm Page 101 Thursday, July 27, 2006 9:43 PM Reconsidering the Notion 5 of the Organic Robert E. Ulanowicz CONTENTS 5.1 Introduction...........................................................................................................................101 5.2 Chance and Propensities ......................................................................................................103 5.3 The Origins of Organic Agency...........................................................................................105 5.4 The Integrity of Organic Systems........................................................................................107 5.5 Formalizing Organic Dynamics ...........................................................................................107 5.6 Under Occam’s Razor ..........................................................................................................110 5.7 The Organic Perspective.......................................................................................................111 Acknowledgments..........................................................................................................................112 References ......................................................................................................................................112 ABSTRACT The advent of the Enlightenment entailed a radical shift in worldviews from one wherein life dominates all events to the perspective that all phenomena ultimately are elicited by encounters between lifeless, -
Marine Microbiology: a Need for Deep-Sea In: Overbeck, J., Chrost, R
3. Role of Heterotrophic Bacteria in Marine Ecological Processes N. Ramaiah National Institute of Oceanography, Dona Paula, Goa 403 004, INDIA Introduction 30°C, salinity varying from below 10 to over 40 PSU, the existence, processes and physiology of life in this To the students of biology, the term bacterium elicits milieu are great challenges. smallness, abundance, invidiousness, and In almost every possible niche, the fundamental completeness of single celled prokaryotes. Among property of bacteria is growth/ multiplication. As a other characteristics, ubiquity, nutritional versatility, result of growth and activity, heterotrophic bacteria in infinite diversity and structural ‘simplicity’ come to one’s the marine sphere too are involved in a number of mind. This smallest autonomous biotic entity in the interrelated processes such as decomposition of living world is the most important functional unit. From complex molecules, respiration, mineralization, the knowledge perceivable through the copious and remineralization and, uptake of dissolved organic burgeoning literature on these tiny creatures, it compounds and their conversion to particulate matter. becomes a matter of great wonder that bacteria are Beginning the 1970s, there have been unprecedented so powerful and all-important in the functioning and discoveries related to marine microbial ecology. The µ stability of ecosystems. With less than 0.1 to 4 m in realization that ubiquitous and self-regulating microbial length, the abilities of decomposing innumerable communities provided the foundation to our organic molecules and several xenobiotics bring understanding on the processes in marine food-web heterotrophic bacteria to the centre-stage of nutrient (Landry, 2001). cycling within the earth’s ecosystems. -
Impacts from Harvests and Prescribed Burns to the Nutrient Cycle of Pine Plantations
Technical Resource Bulletin January 2000 TRB-003 Impacts from Harvests and Prescribed Burns to the Nutrient Cycle of Pine Plantations Bill Pickens, Conifer Silviculturist Introduction Forest trees require 16 basic nutrient elements to grow Controlled burning is a widely accepted forestry and maintain health. Three of these elements, oxygen, practice in the Southeast and a common site carbon and hydrogen are derived from water and air. preparation practice at Bladen Lakes State Forest in The rest are supplied by the soil. The "Big Three" North Carolina. A prescribed burn is used to eliminate macronutrients, Nitrogen (N), phosphorus (P), and residual logging debris, reduce vegetative competition, potassium (K), comprise over 67% of the nutrients and improve accessibility for tree planting. Ultimately, found in plant tissue and are used in large quantities by the goal is to enhance the success of seedling forest trees (Landis 2003). Calcium, magnesium, and establishment. sulfur are used in smaller quantities but are just as important to plant health and vigor. The seven micro- This paper reviews the impact harvest and prescribe nutrients, boron, chlorine, copper, iron, manganese, burning for site preparation on the nutrient cycle of molybdenum, and zinc, while used in very small forest trees. amounts are essential to plant metabolism. Harvest Impacts The nutrient cycle is a process where the mineral Harvesting removes nutrients by removing biomass. A nutrients are absorbed by the tree and then returned to majority of the nutrients located in the tree biomass are the soil to be used again. The mineral nutrients are concentrated in the foliage, branches, and root system. -
Ecological Succession and Biogeochemical Cycles
Chapter 10: Changes in Ecosystems Lesson 10.1: Ecological Succession and Biogeochemical Cycles Can a plant really grow in hardened lava? It can if it is very hardy and tenacious. And that is how succession starts. It begins with a plant that must be able to grow on new land with minimal soil or nutrients. Lesson Objectives ● Outline primary and secondary succession, and define climax community. ● Define biogeochemical cycles. ● Describe the water cycle and its processes. ● Give an overview of the carbon cycle. ● Outline the steps of the nitrogen cycle. ● Understand the phosphorus cycle. ● Describe the ecological importance of the oxygen cycle. Vocabulary ● biogeochemical cycle ● groundwater ● primary succession ● carbon cycle ● nitrogen cycle ● runoff ● climax community ● nitrogen fixation ● secondary succession ● condensation ● phosphorus cycle ● sublimation ● ecological succession ● pioneer species ● transpiration ● evaporation ● precipitation ● water cycle Introduction Communities are not usually static. The numbers and types of species that live in them generally change over time. This is called ecological succession. Important cases of succession are primary and secondary succession. In Earth science, a biogeochemical cycle or substance turnover or cycling of substances is a pathway by which a chemical substance moves through both biotic (biosphere) and abiotic (lithosphere, atmosphere, and hydrosphere) compartments of Earth. A cycle is a series of change which comes back to the starting point and which can be repeated. The term "biogeochemical" tells us that biological, geological and chemical factors are all involved. The circulation of chemical nutrients like carbon, oxygen, nitrogen, phosphorus, calcium, and water etc. through the biological and physical world are known as biogeochemical cycles. In effect, the element is recycled, although in some cycles there may be places (called reservoirs) where the element is accumulated or held for a long period of time (such as an ocean or lake for water).