MASTER's THESIS Listener Envelopment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basics of Acoustics Contents
BASICS OF ACOUSTICS CONTENTS 1. preface 03 2. room acoustics versus building acoustics 04 3. fundamentals of acoustics 05 3.1 Sound 05 3.2 Sound pressure 06 3.3 Sound pressure level and decibel scale 06 3.4 Sound pressure of several sources 07 3.5 Frequency 08 3.6 Frequency ranges relevant for room planning 09 3.7 Wavelengths of sound 09 3.8 Level values 10 4. room acoustic parameters 11 4.1 Reverberation time 11 4.2 Sound absorption 14 4.3 Sound absorption coefficient and reverberation time 16 4.4 Rating of sound absorption 16 5. index 18 2 1. PREFACE Noise or unwanted sounds is perceived as disturbing and annoying in many fields of life. This can be observed in private as well as in working environments. Several studies about room acoustic conditions and annoyance through noise show the relevance of good room acoustic conditions. Decreasing success in school class rooms or affecting efficiency at work is often related to inadequate room acoustic conditions. Research results from class room acoustics have been one of the reasons to revise German standard DIN 18041 on “Acoustic quality of small and medium-sized room” from 1968 and decrease suggested reverberation time values in class rooms with the new 2004 version of the standard. Furthermore the standard gave a detailed range for the frequency dependence of reverberation time and also extended the range of rooms to be considered in room acoustic design of a building. The acoustic quality of a room, better its acoustic adequacy for each usage, is determined by the sum of all equipment and materials in the rooms. -
Physics of Music PHY103 Lab Manual
Physics of Music PHY103 Lab Manual Lab #6 – Room Acoustics EQUIPMENT • Tape measures • Noise making devices (pieces of wood for clappers). • Microphones, stands, preamps connected to computers. • Extra XLR microphone cables so the microphones can reach the padded closet and hallway. • Key to the infamous padded closet INTRODUCTION One important application of the study of sound is in the area of acoustics. The acoustic properties of a room are important for rooms such as lecture halls, auditoriums, libraries and theatres. In this lab we will record and measure the properties of impulsive sounds in different rooms. There are three rooms we can easily study near the lab: the lab itself, the “anechoic” chamber (i.e. padded closet across the hall, B+L417C, that isn’t anechoic) and the hallway (that has noticeable echoes). Anechoic means no echoes. An anechoic chamber is a room built specifically with walls that absorb sound. Such a room should be considerably quieter than a normal room. Step into the padded closet and snap your fingers and speak a few words. The sound should be muffled. For those of us living in Rochester this will not be a new sensation as freshly fallen snow absorbs sound well. If you close your eyes you could almost imagine that you are outside in the snow (except for the warmth, and bizarre smell in there). The reverberant sound in an auditorium dies away with time as the sound energy is absorbed by multiple interactions with the surfaces of the room. In a more reflective room, it will take longer for the sound to die away and the room is said to be 'live'. -
Vern Oliver Knudsen Papers LSC.1153
http://oac.cdlib.org/findaid/ark:/13030/kt109nc33w No online items Finding Aid for the Vern Oliver Knudsen Papers LSC.1153 Finding aid updated by Kelly Besser, 2021. UCLA Library Special Collections Finding aid last updated 2021 March 29. Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 [email protected] URL: https://www.library.ucla.edu/special-collections Finding Aid for the Vern Oliver LSC.1153 1 Knudsen Papers LSC.1153 Contributing Institution: UCLA Library Special Collections Title: Vern Oliver Knudsen papers Creator: Knudsen, Vern Oliver, 1893-1974 Identifier/Call Number: LSC.1153 Physical Description: 28.25 Linear Feet(57 document boxes, and 8 map folders) Date (inclusive): circa 1922-1980 Abstract: Vern Oliver Knudsen (1893-1974) was a professor in the Department of Physics at UCLA before serving as the first dean of the Graduate Division (1934-58), Vice Chancellor (1956), Chancellor (1959). He also researched architectural acoustics and hearing impairments, developed the audiometer with Isaac H. Jones, founded the Acoustical Society of America (1928), organized and served as the first director of what is now the Naval Undersea Research and Development Center in San Diego, and worked as a acoustical consultant for various projects including the Hollywood Bowl, the Dorothy Chandler Pavilion, Schoenberg Hall, the United Nations General Assembly building, and a variety of radio and motion picture studios. The collection consists of manuscripts, correspondence, galley proofs, and other material related to Knudsen's professional activities. The collection also includes the papers of Leo Peter Delsasso, John Mead Adams, and Edgar Lee Kinsey. -
Architectural Acoustics
A COMPARISON OF SOURCE TYPES AND THEIR IMPACTS ON ACOUSTICAL METRICS By KEELY SIEBEIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ARCHITECTURAL STUDIES UNIVERSITY OF FLORIDA 2012 1 © 2012 Keely Siebein 2 To my parents 3 ACKNOWLEDGMENTS I would like to thank my mother, father, sisters, brothers, nephews and the rest of my family for all your love and support throughout my life. I would like to thank Professors Gold and Siebein for your continuous support, guidance and encouragement throughout the process of my thesis. I’d also like to thank my fellow acoustics students, Sang Bong, and Sang Bum, Cory, Adam B, Adam G., Jose, Jorge and Jenn and any others who helped me with the data collection and reviewing of the material and for keeping me on track with the process. I’d also like to thank Dave for your continuous support throughout this entire process, for believing in me and doing all that you could to help me throughout the course of my studies. I’d also like to thank my wonderful friends, for believing in me and encouraging me throughout my studies. Thanks to my Dad, for being my father, professor, boss, but most importantly, my mentor. It’s an honor to have studied with you and learned from you in this capacity and I will treasure these years and the time I spent learning under your guidance forever. Thank you all for everything. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. -
Object-Based Reverberation for Spatial Audio Coleman, P, Franck, A, Jackson, P, Hughes, RJ, Remaggi, L and Melchior, F 10.17743/Jaes.2016.0059
Object-based reverberation for spatial audio Coleman, P, Franck, A, Jackson, P, Hughes, RJ, Remaggi, L and Melchior, F 10.17743/jaes.2016.0059 Title Object-based reverberation for spatial audio Authors Coleman, P, Franck, A, Jackson, P, Hughes, RJ, Remaggi, L and Melchior, F Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/53438/ Published Date 2017 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. PAPERS Journal of the Audio Engineering Society Vol. 65, No. 1/2, January/February 2017 (C 2017) DOI: https://doi.org/10.17743/jaes.2016.0059 Object-Based Reverberation for Spatial Audio* PHILIP COLEMAN,1 AES Member, ANDREAS FRANCK,2 AES Member, ([email protected]) PHILIP J. B. JACKSON,1 AES Member, RICHARD J. HUGHES,3 AES Associate Member, LUCA REMAGGI1, AND FRANK MELCHIOR,4 AES Member 1Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, Surrey, GU2 7XH, UK 2Institute of Sound and Vibration Research, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK 3Acoustics Research Centre, University of Salford, Salford, M5 4WT, UK 4BBC Research and Development, Dock House, MediaCityUK, Salford, M50 2LH, UK Object-based audio is gaining momentum as a means for future audio content to be more immersive, interactive, and accessible. -
The Room Acoustics of Large Spaces
ROOMROOM ACOUSTICSACOUSTICS OFOF LARGELARGE SPACESSPACES TheThe TalaskeTalaske Group,Group, inc.inc. The Room Acoustics of Large Spaces Presented by: Rick Talaske The Talaske Group, inc. Oak Park, IL – U.S.A. ASA Tutorial Cancun, Mexico The photos of all projects are designed by The Talaske Group, inc. Presented to the Acoustical Society of America – Cancun, Mexico 02 December 2002 ROOMROOM ACOUSTICSACOUSTICS OFOF LARGELARGE SPACESSPACES TheThe TalaskeTalaske Group,Group, inc.inc. Acoustically speaking: What is a “Large” Room It is my pleasure to present this discussion in Cancun regarding the acoustics of large rooms. Generally, this topic is what the public thinks of when they hear the word “acoustics”. This is because of their experiences in churches, theatres and music halls. I hope to better your understanding about this interesting topic. Es un placer de estar aqui en Cancun y al al vez hacer un presentacion sobre la acustica en grandes espacios. Generalmente, la gente cada vez que se menciona la palabra “acusticaq”, la relacionan con iglesias, teatros ysalas musicales. Espero de que en esta presentacion, ustedes se lleven un mejor entendimiento del concepto de acustica. Presented to the Acoustical Society of America – Cancun, Mexico 02 December 2002 ROOMROOM ACOUSTICSACOUSTICS OFOF LARGELARGE SPACESSPACES TheThe TalaskeTalaske Group,Group, inc.inc. Acoustically speaking: What is a “Large” Room In this paper, a large room: • Schroeder’s Frequency is less than 50 Hz •fc = 2000*SR ( T60/V ) •fc is below the voice and music bandwidth. • Comb filtering is a lesser consideration. • Un espacio grande es un cuarto con muchas resonancias normales. Hay tantas resonancias que finalmente no son tan importantes. -
Contribution of Precisely Apparent Source Width to Auditory Spaciousness
Chapter 8 Contribution of Precisely Apparent Source Width to Auditory Spaciousness Chiung Yao Chen Additional information is available at the end of the chapter http://dx.doi.org/10.5772/56616 1. Introduction It has been shown that the apparent source width (ASW) for one-third-octave band pass noises signal offers a satisfactory explanation for functions of the inter-aural cross-correlation (IACC) and WIACC, which is defined as the time interval of the inter-aural cross-correlation function within ten percent of the maximum (Sato and Ando, [18]). In this chapter, the binaural criteria of spatial impression in halls will be investigated by comparing with ASW for the auditory purpose assistant to visual attention, which is called source localization. It was proposed that the ASW could properly define directional impression corresponding to the inter-aural time delay (τIACC) perceived when listening to sound with a sharp peak in the inter-aural cross- correlation function (ICF) with a small value of WIACC. We supposed that the ASW would be sensed not only with regard to the relative amplitudes between reflections in a hall, but the total arrived energies at two ears through the A-weighting network in the brain, termed as listening level (LL) and the temporal characteristics of sound sources. This hypothesis is based on the fact that the spatial experience in a room will be varied by changing the center frequency of one-third-octave band pass noise signal, and the ASW decreases as the main frequency goes up. For the purpose of this chapter, we shall discuss the relationship among some factors, the geometric mean of sound energies at two ears, the reverberation, IACC, τIACC, and WIACC, and whether they are independently related to the sound source on a horizontal plane. -
Paper One the Standing Wave Problem
LeadingEdge Systematic Approach Room Acoustic Principles - Paper One The Standing Wave Problem Sound quality problems caused by poor room acoustics. We all recognise that room acoustics can cause sound quality problems. But often the issues are not clearly described or discussed. Here we will cover some important considerations and principles of room acoustics problems. Treating your room should not be done in isolation from all the other system building considerations. Your thoughts about room acoustics treatment should be in conjunction with your requirements for mains, supports, system electronics, speakers and cables etc. None of these should be dealt with in isolation, and with regards to room acoustics it’s particularly important to be aware of some of the interactive nature of room acoustics, and other systematic faults. For example, a boomy bass could be caused by a room mode, but equally it could be caused by bass feedback from a wall and up into your system through the mains leads. If it’s your mains cables feeding back vibration that’s the dominant problem, spending money on room treatment may not correctly resolve the issue. Room acoustics problems can be grouped into the following categories. 1. Air mass problems: – Standing waves with sound pressure peaks and suck-outs (and associated velocity peaks) – Velocity generated intermodulation 2. Reflection problems – Unwanted reflected signals at the listening position – Raised reverberant background noise floor The behavior of a room’s air mass is the most important consideration with room treatment. A significant air mass problem is a fundamental destroyer of performance - uncontrolled room modes produce associated velocity intermodulation, which damages every aspect of musical reproduction. -
Acoustics 101 for Architects a Presentation of Acoustical Terminology and Concepts Relating Directly to the Design and Construction of an Architectural Space
Acoustics 101 for Architects A presentation of acoustical terminology and concepts relating directly to the design and construction of an architectural space. Low-tech descriptions, explanations, and examples. By: Michael Fay This essay is tailored to the one group of people who have more influence over a building's acoustics than any other; architects. The focus is on Architectural Acoustics, a field that is broader than most imagine. To do justice to the theme, we must briefly touch on many subordinate topics, most having a synergetic relationship bonding architecture and sound. This paper is based on fundamentals, not perfection. It covers most of the basics, and explores many modern and esoteric matters as well. You will be introduced to interesting and analytical subjects; some you may know, some you may never have considered. Here are a few examples of what you'll find by reading on: . What is sound and why is it so hard to manage or control? . The length of low- and high-frequency sound waves vary by as much as 400:1. Why does this disparity matter? . How and why do various audible frequencies behave differently when interacting with various materials, structures, shapes and finishes? . There are three acoustical tools available to both the architect and the acoustician. What are they? How can they benefit or hinder the work of each craft? . Room geometry: Why some shapes are much better than others. Examples and explanations. Reverberation and echo: How do they differ? Which is better, or worse, and why? How much is too much, or too little? . -
Room Acoustics and Reverberation
21m.380 · Music and Technology Recording Techniques & Audio Production Room acoustics & reverberation Session 18 · Wednesday, November 9, 2016 1 Pa1 presentations • • Flo: Randy Newman – A Few Words in Defense of Our Country (2006) 2 Announcement: Schlepping reminder • Please remember if you are signed up for pre- or post-class schlepping for either recording session on Mon, 11/14, Wed, 11/16. • Pre-class schlepping: Meet at , 10 minutes before class 3 Review 3.1 Recording session 1 3.2 Ed3 assignment • How to limit to −3 dB with ReaComp plugin – Large ratio – Small rms size – Short attack and release times • Review of setting up a gate 4 Audible effects of reflections & delays 4.1 Flutter echoes & resonances • Unpleasant flutter echoes tend to occur between hard, parallel walls • Real-world examples: Killian Hall – Front right stage area as seen from audience (floor & ceiling) – Center of room with folded-in wall panels (left & right wall) • Demo in Pd: Perceptual effect of delays – ≳ 30 ms: Audible as echoes – ≲ 30 ms: Audible as pitched resonance – why? 1 of 10 21m.380 · Room acoustics & reverberation · Wed, 11/9/2016 4.2 Comb filters +6 Figure 2. Comb filter frequency re- sponse (note linear 푥 axis −20 (dB) −40 gain −60 −80 푛 푛+1 푛+2 Δ푡 Δ푡 Δ푡 … Frequency 푓 (Hz) input • Result of mixing a sound with a copy of itself delayed by Δ푡: – Δ푡 = 푇, 2푇, 3푇, ⋯ = 푛 Constructive interference if 푓 푇 3푇 5푇 – Destructive interference if Δ푡 = 2 , 2 , 2 ,… • Sound example: pink noise, moving mic, reflective surface Delay Δ푡 • Can be enjoyed outdoors across mit campus; just combine: + – Broadband hvac noise – Reflections from nearby building walls – Moving observer output • Other ubiquituous examples: Figure 1. -
Room Acoustics
Room Acoustics Room Acoustics Fourth edition Heinrich Kuttruff Institut für Technische Akustik, Technische Hochschule Aachen, Aachen, Germany First published 1973 by Elsevier Science Publishers Ltd Second edition 1979 Third edition 1991 Fourth edition published 2000 by Spon Press 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Spon Press 29 West 35th Street, New York, NY 10001 This edition published in the Taylor & Francis e-Library, 2001. Spon Press is an imprint of the Taylor & Francis Group © 1973, 1979, 1991 Elsevier Science Publishers; 1999, 2000 Heinrich Kuttruff The right of Heinrich Kuttruff to be identified as the Author of this Work has been asserted by him in accordance with the Copyright, Designs and Patents Act 18 All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data Kuttruff, Heinrich. Room acousticHeinrich Kuttruff.–4th ed. p. cm. -
Characterizing Apparent Source Width Perception
CONTRIBUTIONS TO HEARING RESEARCH Volume 25 Johannes Käsbach Characterizing apparent source width perception Hearing Systems Department of Electrical Engineering Characterizing apparent source width perception PhD thesis by Johannes Käsbach Preliminary version: August 2, 2016 Technical University of Denmark 2016 © Johannes Käsbach, 2016 Cover illustration by Emma Ekstam. Preprint version for the assessment committee. Pagination will differ in the final published version. This PhD dissertation is the result of a research project carried out at the Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark. The project was partly financed by the CAHR consortium (2/3) and by the Technical University of Denmark (1/3). Supervisors Prof. Torsten Dau Phd Tobias May Hearing Systems Group Department of Electrical Engineering Technical University of Denmark Kgs. Lyngby, Denmark Abstract Our hearing system helps us in forming a spatial impression of our surrounding, especially for sound sources that lie outside our visual field. We notice birds chirping in a tree, hear an airplane in the sky or a distant train passing by. The localization of sound sources is an intuitive concept to us, but have we ever thought about how large a sound source appears to us? We are indeed capable of associating a particular size with an acoustical object. Imagine an orchestra that is playing in a concert hall. The orchestra appears with a certain acoustical size, sometimes even larger than the orchestra’s visual dimensions. This sensation is referred to as apparent source width. It is caused by room reflections and one can say that more reflections generate a larger apparent source width.