Structural Studies on ISWI, an ATP-Dependent Nucleosome

Total Page:16

File Type:pdf, Size:1020Kb

Structural Studies on ISWI, an ATP-Dependent Nucleosome Université Grenoble 1 — Joseph Fourier Sciences et Géographie N attribué par la bibliothèque Thèse de Tim GRÜNE Doctorat: Chimie et Sciences du Vivant — Biologie Discipline: Aspect Moleculaires et Cellulaires de la Biologie Structural studies on ISWI, an ATPdependent nucleosome remodelling factor Thèse dirigée par: Christoph W. MÜLLER Laboratoire Européenne de Biologie Moleculaire, Grenoble Soutenance publique le 3 Octobre 2003 Jury: Christoph W. MÜLLER EMBL Grenoble Directeur de thèse Elena CONTI EMBL Heidelberg Rapportrice Félix REY CNRS GifsurYvette Rapporteur Hans GEISELMANN UJF Grenoble Président du Jury Saadi KHOCHBIN UJF Grenoble membre du Jury 2 3 Abstract The Imitation Switch protein, or ISWI, from D. melanogaster is an essential enzyme that uses the energy from ATP hydrolysis in order to rearrange nucleosomes in chromatin. It plays an important role in gene expression because access to DNA and especially to promoter sites is altered by nucleosome positioning. ISWI can thus act both as an enhancer and repressor of transcription. In all eukaryotes one can find a large number of complexes involved in chromatin remodelling. Despite the diversity and variety of functioning, all these complexes contain an ATPase with a homologous socalled SNF2 domain that is conserved through all eukaryotes. Four groups of remodelling ATPases can be distinguished, SNF2, SNF2L, CHD1, and INO80 of which only the first three have been further characterised according to conserved domains they contain besides the SNF2 domain. For more than 15 years these complexes have been known and a large pool of data is available to characterise a process that, together with covalent histone modifications, alters the chromatin structure and has important influence on processes like transcription, DNA repair, and replication. But to date detailed information that might shed light on the mechanism of how remodelling is carried out has been missing and only coarse hypotheses have been proposed. The work summarised in this document began in January 2000 with the aim to find structural information about ISWI. The starting point was a clone and a protocol that allowed to produce the enzyme recombinantly, but the path was certainly not straight. A manifold of attempts was undertaken, many of which are not described here. Acf1 and ISWI build one of the complexes that can be found in vivo. The possibility of ISWI being stabilised by Acf1 was considered, but neither could Acf1 expression be detected in bacteria nor could the complex be produced in insect cells in sufficient amounts for structural studies. Binding to substrates like the Nterminal tail of histone H4, ATP and nonhydrolisable analogues of ATP, or cruciform DNA was investigated but did not produce useful results. Given that ATPases often undergo large conformational changes, it was not unexpected that crystallisation trials with the fulllength protein (Mr = 120 kDa) failed. One of the first experiments was therefore to find subdomains of the protein by restricted proteolysis. It showed that the enzyme consists of two flexibly linked main parts, the Nterminus that makes two thirds of the protein, and the Cterminus, about one third. These two parts were subcloned, but only the Cterminal part proved to be stable and gave crystals. Many Nterminal clones could be purified but were difficult to concentrate, even worse than the fulllength protein. Crystals of the Cterminal fragment of ISWI were obtained in July 2001. Since then, most of the effort went into improving the crystals‘ data collection, but the structure could only be solved with a new crystal form that suddenly appeared in May 2002. The introduction of this thesis provides a short overview on chromatin remodelling complexes but emphasises the ISWI family. Chromatin remodelling covers a wide network of intertwined actions that include histone tail modifications, transcription, silencing and the condensation and decondensation of chromatin. No attempt was made to fully cover the literature. The in vitro assays used to characterise the functioning and interaction with substrate are explained in a general way and only the results specific to ISWI are described in further detail. The part following the introduction is dedicated to the techniques that were used to gain insight into the struc ture of ISWI. These obviously include protein crystallisation and crystallography (with emphasis on the phase problem), but also a short section about circular dichroism. The main result of this work is the crystal structure of ISWI [691:991] to 1.9 Å resolution. The elongated structure consists of three domains which are described separately in detail. The very Nterminal domain presents a new fold and has been named the “Hand” domain. It is in direct contact with the following SANT domain. The last domain, SLIDE, is separated from the rest of the molecule by a straight 50 Ålong spacer helix. The fragment has an asymmetric charge distribution of acidic and basic residues between the Nterminal domains and the Cterminal domain. Most of the molecule has a negative charged distribution on the surface, but especially the SLIDE domain contains some positive patches. The following analysis showed that this patch is probably the main area where the Cterminal part of ISWI contacts the DNA of the nucleosome by a classical helixturnhelix motif. The water, glucose, and glycerol molecules, that were found in the structure, are described in detail because they are important for crystal contacts. The description includes a beautiful composition with a water molecule sitting right on one of the symmetry axes that forms a pentagonal water ring with two more water molecules from the asymmetric unit and their symmetry mates. Most of the water molecules of the structure concentrate at the Cterminus of the protein where they build part of the interface between two protein molecules. Functional interpretation of the structure was based on the homology of both the SANT and the SLIDE domain with DNA binding proteins like the oncogene product cMyb and the homeodomain protein Pax6. The SLIDE domain is only distantly related to SANT domains which had been proposed to be DNA binding. However, we now found strong evidence that in fact the more remotely related SLIDE domain contacts the DNA directly while the helix of the SANT domain that, according to the structural homology, should be in contact with the DNA is too negatively charged to bind DNA. The thesis finishes with a suggestion of how the Cterminal fragment of ISWI might bind the nucleosome and hence act as a substrate recognition module for fulllength ISWI. Note for reading Like during this introduction, I sometimes refer to the names of the domains in the structure of the Cterminal fragment of ISWI. In order to better understand the text I recommend the reader to first look at figure 13.1 in order to get an overview of the model and the domain names and their borders. Furthermore, 4 I sometimes use the term ISWIC. With this term I refer to any of the Cterminal clones of ISWI I prepared during this work where a distinction is not necessary. These are mainly the ones that crystallised: ISWI [691:991], ISWI [701:991] and ISWI [713:991]. 5 Résumé1 La protéine Imitation Switch de Drosophila melanogaster est une enzyme essentielle qui utilise l’énergie de l’hydrolyse de l’adénosine triphosphate pour réarranger des nucléosomes dans la chromatine. Elle joue un rôle important dans l’expression des gènes parce que l’accès à l’ADN et aux sites promoteurs est modifié par le po sitionnement des nucléosomes. ISWI peut donc agir comme activateur mais aussi comme répresseur de la trans cription. Dans tous les Eucaryotes, on peut trouver un grand nombre de complexes multiprotéiques impliqués dans le réarrangement de la chromatine. En dépit de leur diversité et de leur varieté de fonctionnement, tous ces com plexes contiennent une ATPase présentant un domaine homologue très conservé nommé SNF2. Une caractérisation plus approfondie de ces ATPases impliquées dans le remodelage de la chromatine a permis de distinguer quatre groups : SNF2, SNF2L, CHD1 et INO80. En quinze ans, depuis la découverte de ces complexes, un grand nombre d’informations ont été collectées pour caractériser le processus de remodelage de la chromatine qui, avec les mo difications covalentes des histones, affecte la structure de la chromatine et a donc une influence importante sur des processus comme la réplication, la réparation de l’ADN et la transcription. Mais jusqu’ici le manque d’informa tions détaillées qui pourraient éclairer le mécanisme de remodelage du nucléosome a seulement conduit à proposer des hypothèses. Le travail récapitulé dans ce document a commencé en janvier 2000 avec le but de l’obtention d’informa tions structurales sur ISWI. Le point de départ était un clone et un protocole permettant de produire l’enzyme ISWI recombinante chez E.coli. Mais le chemin conduisant à des résultats a été ramifié : une multitude d’expé riences différentes a été effectuées, dont beaucoup ne sont pas décrites ici. Par exemple, ISWI établit avec Acf1 un complexe qui peut être trouvé in vivo. La possibilité de stabiliser ISWI par association à Acf1 a été conside rée. Malheureusement aucune expression d’Acf1 n’a été détectée dans les bactéries et les quantités de complexe produites en cellules d’insecte étaient insuffisantes pour des études structurles. L’association d’ISWI avec des sub strats dont l’extrémité Nterminale de l’histone H4, l’ATP, des analogues nonhydrolysables de l’ATP ou de l’ADN cruciforme a été étudiée mais n’a pas produit de résultats utiles. Sachant que les ATPases subissent de grands changements de conformation durant leur activité enzymatique, il n’est pas surprenant que les essais de cristallisation avec la protéine entière (Mr = 120 kDa) aient échoué. L’une des premières expériences a donc été une protéolyse restreinte de la protéine entière afin d’identifier des sous domaines.
Recommended publications
  • The Epigenetic Regulator Cfp1
    Article in press - uncorrected proof BioMol Concepts, Vol. 1 (2010), pp. 325–334 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BMC.2010.031 Review The epigenetic regulator Cfp1 David G. Skalnik concept is illustrated by a variety of phenomena, including Wells Center for Pediatric Research, Section of Pediatric X-chromosome inactivation, in which one X chromosome in Hematology/Oncology, Departments of Pediatrics and each cell of a developing female blastocyst becomes irre- Biochemistry and Molecular Biology, Indiana University versibly inactivated; genomic imprinting, in which mater- School of Medicine, 1044 W. Walnut St., Indianapolis, nally and paternally derived alleles of a gene are IN 46202, USA differentially expressed; and the observation that diverse tis- sues express distinct sets of genes to permit unique func- e-mail: [email protected] tional properties, yet each (with rare exceptions) carries identical genetic information (1–4). Epigenetic information is largely encoded within chro- matin structure. A major class of epigenetic modifications is Abstract post-translational modification of histones. Dozens of dis- Numerous epigenetic modifications have been identified and tinct covalent modifications at specific amino acid residues correlated with transcriptionally active euchromatin or have been identified, including acetylation, methylation, repressed heterochromatin and many enzymes responsible phosphorylation, and sumoylation (2, 5, 6). Many of these for the addition and removal of these marks have been char- modifications are tightly correlated with either transcription- acterized. However, less is known regarding how these ally active euchromatin or transcriptionally silenced hetero- enzymes are regulated and targeted to appropriate genomic chromatin. Relatively subtle changes of covalent modifica- locations.
    [Show full text]
  • A Versatile Couple with Roles in Replication and Recombination
    Colloquium Bacteriophage T4 gene 41 helicase and gene 59 helicase-loading protein: A versatile couple with roles in replication and recombination Charles E. Jones*, Timothy C. Mueser†, Kathleen C. Dudas‡, Kenneth N. Kreuzer‡, and Nancy G. Nossal*§ *Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830; †Department of Chemistry, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606; and ‡Department of Microbiology, Duke University Medical Center, Durham, NC 27710 Bacteriophage T4 uses two modes of replication initiation: origin- protein (gene 45) that is loaded by the complex of the gene 44 dependent replication early in infection and recombination-depen- and 62 proteins. In the presence of the T4 gene 32 single- dent replication at later times. The same relatively simple complex stranded DNA binding protein, T4 DNA polymerase, the clamp, of T4 replication proteins is responsible for both modes of DNA and the clamp loader are sufficient for slow strand displacement synthesis. Thus the mechanism for loading the T4 41 helicase must synthesis of the leading strand. The 5Ј to 3Ј gene 41 helicase be versatile enough to allow it to be loaded on R loops created by unwinds DNA ahead of the fork and increases the elongation transcription at several origins, on D loops created by recombina- rate more than 10-fold to 400 nt͞sec, comparable to that in vivo. tion, and on stalled replication forks. T4 59 helicase-loading protein Although the helicase can load on nicked and forked DNA by is a small, basic, almost completely ␣-helical protein whose N- itself, its loading is greatly accelerated by the 59 helicase-loading terminal domain has structural similarity to high mobility group protein.
    [Show full text]
  • Palindromes in DNA—A Risk for Genome Stability and Implications in Cancer
    International Journal of Molecular Sciences Review Palindromes in DNA—A Risk for Genome Stability and Implications in Cancer Marina Svetec Mikleni´cand Ivan Krešimir Svetec * Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-1483-6016 Abstract: A palindrome in DNA consists of two closely spaced or adjacent inverted repeats. Certain palindromes have important biological functions as parts of various cis-acting elements and protein binding sites. However, many palindromes are known as fragile sites in the genome, sites prone to chromosome breakage which can lead to various genetic rearrangements or even cell death. The ability of certain palindromes to initiate genetic recombination lies in their ability to form secondary structures in DNA which can cause replication stalling and double-strand breaks. Given their recombinogenic nature, it is not surprising that palindromes in the human genome are involved in genetic rearrangements in cancer cells as well as other known recurrent translocations and deletions associated with certain syndromes in humans. Here, we bring an overview of current understanding and knowledge on molecular mechanisms of palindrome recombinogenicity and discuss possible implications of DNA palindromes in carcinogenesis. Furthermore, we overview the data on known palindromic sequences in the human genome and efforts to estimate their number and distribution, as well as underlying mechanisms of genetic rearrangements specific palindromic sequences cause. Keywords: DNA palindromes; quasipalindromes; palindromic amplification; palindrome-mediated genetic recombination; carcinogenesis Citation: Svetec Mikleni´c,M.; Svetec, I.K. Palindromes in DNA—A Risk for Genome Stability and Implications in Cancer.
    [Show full text]
  • DNA Topology Influences P53 Sequence-Specific DNA Binding
    DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites Eva Brázdová Jagelská, Václav Brázda, Petr Pečinka, Emil Paleček, Miroslav Fojta To cite this version: Eva Brázdová Jagelská, Václav Brázda, Petr Pečinka, Emil Paleček, Miroslav Fojta. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochemical Journal, Portland Press, 2008, 412 (1), pp.57-63. 10.1042/BJ20071648. hal-00478935 HAL Id: hal-00478935 https://hal.archives-ouvertes.fr/hal-00478935 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 14 Feb 2008 as manuscript BJ20071648 DNA TOPOLOGY INFLUENCES P53 SEQUENCE-SPECIFIC DNA BINDING THROUGH STRUCTURAL TRANSITIONS WITHIN THE TARGET SITES Eva Brázdová Jagelskáa, Václav Brázdaa*, Petr Pečinkab, Emil Palečeka and Miroslav Fojtaa aInstitute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic bFaculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic *Corresponding author Tel.: 420 541517231 Fax.: 420 541211293 e-mail: [email protected] Abbreviations: scDNA, supercoiled DNA; lin, linear DNA; o, oligodeoxynucleotide; SK, plasmid pBluescript SK-; fl, full length; wt, wild-type; Keywords: p53 protein / DNA binding / protein-DNA complex Short title: DNA topology affects p53 binding THIS IS NOT THE FINAL VERSION - see doi:10.1042/BJ20071648 Stage 2(a) POST-PRINT Page 1 Licenced copy.
    [Show full text]
  • Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes Václav Brázda1*, Rob C Laister2, Eva B Jagelská1 and Cheryl Arrowsmith3
    Brázda et al. BMC Molecular Biology 2011, 12:33 http://www.biomedcentral.com/1471-2199/12/33 REVIEW Open Access Cruciform structures are a common DNA feature important for regulating biological processes Václav Brázda1*, Rob C Laister2, Eva B Jagelská1 and Cheryl Arrowsmith3 Abstract DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner’s syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIb, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction- resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed. Keywords: cruciform structure, inverted repeat, protein-DNA binding Review representation of inverted repeats, which occurs nonran- Genome sequencing projects have inundated us with domly in the DNA of all organisms, has been noted in information regarding the genetic basis of life.
    [Show full text]
  • Chromosomal Instability Mediated by Non-B DNA: Cruciform Conformation and Not DNA Sequence Is Responsible for Recurrent Translocation in Humans
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Chromosomal instability mediated by non-B DNA: Cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans Hidehito Inagaki,1 Tamae Ohye,1 Hiroshi Kogo,1 Takema Kato,1,2 Hasbaira Bolor,2 Mariko Taniguchi,1,4 Tamim H. Shaikh,3 Beverly S. Emanuel,3 and Hiroki Kurahashi1,5 1Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; 221st Century COE Program, Development Center for Targeted and Invasive Diagnosis and Treatment, Fujita Health University, Toyoake, Aichi 470-1192, Japan; 3Division of Human Genetics, The Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that pro- motes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the pro- portion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans. [Supplemental material is available online at www.genome.org.] Chromosomal aberrations, including translocations or deletions, (Kurahashi et al.
    [Show full text]
  • Glia Are Essential for Sensory Organ Function in C. Elegans
    REPORTS commercial and recreational fisheries are com- tion will be disproportionately affected by higher 10. A. N. LeGrande, G. A. Schmidt, Geophys. Res. Lett. 33, posed of both populations of bluefin tuna (Fig. fishing rates in the eastern management zone. L12604 (2006). 11. J. Ashford, C. Jones, Geochim. Cosmochim. Acta 71,87 2). A large fraction of the school (57.4%) and The disparity between the eastern and western (2007). medium (44.3%) category bluefin tuna present in population sizes and the continued decline of the 12. R. B. Millar, Can. J. Fish. Aquat. Sci. 44, 583 (1987). the U.S. waters of the Mid Atlantic Bight were western stock suggests that some added level of 13. G. H. Rau, T. Takahashi, D. J. Des Marais, Nature 341, from the eastern population, and we observed protection is needed to ensure the sustainability 516 (1989). 14. S. L. H. Teo et al., Mar. Biol. (Berlin) 151, 1 (2007). that the occurrence of eastern bluefin tuna in the of the smaller western component. Natal homing 15. J. Carlsson, J. R. McDowell, J. E. L. Carlsson, J. E. Graves, Mid Atlantic Bight decreased with increasing rates reported here were remarkably high to both J. Hered. 98, 23 (2007). size (age) (Fig. 3). Our estimates of trans-Atlantic regions and clearly show that the contribution of 16. T. P. Quinn, Fish. Res. 18, 29 (1993). exchange were significantly higher than previous eastern adults to the western spawning area is 17. J. R. Baker, G. A. Antonelis, C. W. Fowler, A. E. York, reports from conventional tags (3) and demon- inconsequential.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Recognition of Local DNA Structures by P53 Protein
    International Journal of Molecular Sciences Review Recognition of Local DNA Structures by p53 Protein Václav Brázda * and Jan Coufal Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-541-517-231 Academic Editor: Tomoo Iwakuma Received: 24 November 2016; Accepted: 3 February 2017; Published: 10 February 2017 Abstract: p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. Keywords: p53 protein; local DNA structures; protein-DNA interactions 1. Introduction p53 is one of the most intensively studied tumor suppressor proteins and its regulation and relation to cancer has been reviewed extensively [1–3].
    [Show full text]
  • LN-EPC Vs CEPC List
    Supplementary Information Table 5. List of genes upregulated on LN-EPC (LCB represents the variation of gene expression comparing LN-EPC with CEPC) Gene dystrophin (muscular dystrophy, Duchenne and Becker types) regulator of G-protein signalling 13 chemokine (C-C motif) ligand 8 vascular cell adhesion molecule 1 matrix metalloproteinase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase) chemokine (C-C motif) ligand 2 solute carrier family 2 (facilitated glucose/fructose transporter), member 5 eukaryotic translation initiation factor 1A, Y-linked regulator of G-protein signalling 1 ubiquitin D chemokine (C-X-C motif) ligand 3 transcription factor 4 chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant) solute carrier family 7, (cationic amino acid transporter, y+ system) member 11 transcription factor 4 apolipoprotein D RAS guanyl releasing protein 3 (calcium and DAG-regulated) matrix metalloproteinase 1 (interstitial collagenase) DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked /// DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked transcription factor 4 regulator of G-protein signalling 1 B-cell linker interleukin 8 POU domain, class 2, associating factor 1 CD24 antigen (small cell lung carcinoma cluster 4 antigen) Consensus includes gb:AK000168.1 /DEF=Homo sapiens cDNA FLJ20161 fis, clone COL09252, highly similar to L33930 Homo sapiens CD24 signal transducer mRNA. /FEA=mRNA /DB_XREF=gi:7020079 /UG=Hs.332045 Homo sapiens cDNA FLJ20161 fis, clone COL09252, highly similar to L33930 Homo sapiens CD24 signal transducer mRNA
    [Show full text]
  • DNA Cruciform Structure
    1 DNA cruciform structure The formation of cruciforms is strongly dependent on base sequence and requires perfect or imperfect inverted repeats of 6 or more nucleotides in the DNA sequence. Cruciform structures consist of a branch point, a stem and a loop, where the size of the loop is dependent on the length of the gap between inverted repeats (Fig. 1). The AT-rich gap sequences increase the probability of cruciform formation. After its formation, the distant DNA fragments approach. There are two distinct classes of cruciforms. One class of cruciforms, denoted as unfolded, have a square planar conformation characterized by a 4-fold symmetry in which adjacent arms are nearly perpendicular to one another. The second class comprises a folded (or stacked) conformation where the adjacent arms form an acute angle with the main DNA strands (Fig. 1, 2). Fig.1 Linear DNA fragment (А) and corresponding cruciform (В). 2 Fig. 2 Different conformations of cruciform DNA. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. Cruciform structures are targets for many structurall and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures [1]. The mutations and epigenetic modifications that alter the propensity for cruciform formation can have drastic consequences for cellular processes. Thus, it is unsurprising that the dysregulation of cruciform binding proteins is often associated with the pathological processes and diseases.
    [Show full text]
  • SOS-Inducible DNA Repair Proteins, Ruva and Ruvb, Of
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 8445-8449, October 1991 Biochemistry SOS-inducible DNA repair proteins, RuvA and RuvB, of Escherichia coli: Functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA (mutagenesis/rccombination/DNA-binding protein/protein-protein interaction) TOSHIKAZU SHIBA, HIROSHI IWASAKI, ATSUO NAKATA, AND HIDEO SHINAGAWA* Department of Experimental Chemotherapy, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565, Japan Communicated by Evelyn M. Witkin, June 3, 1991 (receivedfor review October 5, 1990) ABSTRACT The ruv operon is induced by treatments that H.S., unpublished results). These multifunctional properties damage DNA and is regulated by the LexA repressor. It of the ruvAB genes are reminiscent of those of the recA gene encodes two proteins, RuvA and RuvB, that are involved in (13). DNA repair, recombination in RecE and RecF pathways, and We started biochemical studies on RuvA and RuvB pro- mutagenesis. RuvB protein was previously purified and has teins to define the functions ofthese proteins in DNA repair, ATP-binding activity and weak ATPase activity. To study the recombination, and mutagenesis. We have purified RuvB biochemical properties of RuvA and its interaction with RuvB, protein and demonstrated that it binds to ATP and ADP and we purified RuvA protein to near homogeneity from an over- has weak ATPase activity (14), which was predicted from the producing strain. RuvA bound more efficiently to single- amino acid sequence (5, 6). stranded DNA than to double-stranded DNA. RuvA bound to In this work, we purified RuvA protein and characterized DNA greatly enhanced the ATPase activity of RuvB; the its biochemical properties.
    [Show full text]