Introduction to Special Section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v. -
DISR) on the Huygens Probe
Data Archive Users’ Guide for the Descent Imager and Spectral Radiometer (DISR) on the Huygens Probe By: The DISR Team 29 January 2013 Version 2.0 International Traffic in Arms Regulations (ITAR) disclosure... Evaluation by the Export Officer of the University of Arizona's Office for the Responsible Conduct of Research (ORCR) has deemed that this document is not subject to International Traffic in Arms Regulations (ITAR) control, and is not restricted by the Arms Export Control Act. It is suitable for public release, and its distribution is unlimited. DISR - C. See 29 January 2013 Index 1.0 Introduction & Science Objectives .................................................................................. 3 2.0 Instrument Description.................................................................................................... 4 3.0 Titan Descent Sequence & Divergences ...................................................................... 11 4.0 Archive Description....................................................................................................... 15 5.0 Data Calibration............................................................................................................ 19 5.1 General Information.................................................................................................. 19 5.2 Descent Cycles......................................................................................................... 20 5.3 Lamp Datasets ........................................................................................................ -
MARS an Overview of the 1985–2006 Mars Orbiter Camera Science
MARS MARS INFORMATICS The International Journal of Mars Science and Exploration Open Access Journals Science An overview of the 1985–2006 Mars Orbiter Camera science investigation Michael C. Malin1, Kenneth S. Edgett1, Bruce A. Cantor1, Michael A. Caplinger1, G. Edward Danielson2, Elsa H. Jensen1, Michael A. Ravine1, Jennifer L. Sandoval1, and Kimberley D. Supulver1 1Malin Space Science Systems, P.O. Box 910148, San Diego, CA, 92191-0148, USA; 2Deceased, 10 December 2005 Citation: Mars 5, 1-60, 2010; doi:10.1555/mars.2010.0001 History: Submitted: August 5, 2009; Reviewed: October 18, 2009; Accepted: November 15, 2009; Published: January 6, 2010 Editor: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University Reviewers: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University; R. Aileen Yingst, University of Wisconsin Green Bay Open Access: Copyright 2010 Malin Space Science Systems. This is an open-access paper distributed under the terms of a Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: NASA selected the Mars Orbiter Camera (MOC) investigation in 1986 for the Mars Observer mission. The MOC consisted of three elements which shared a common package: a narrow angle camera designed to obtain images with a spatial resolution as high as 1.4 m per pixel from orbit, and two wide angle cameras (one with a red filter, the other blue) for daily global imaging to observe meteorological events, geodesy, and provide context for the narrow angle images. Following the loss of Mars Observer in August 1993, a second MOC was built from flight spare hardware and launched aboard Mars Global Surveyor (MGS) in November 1996. -
How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D). -
Gulick, V CV2008.PDF
Curriculum Vitae: Dr. Virginia C. Gulick Nr\SA Amcs RcsearchCenter, lVfail Stop 239-20,Moffetl Field, Califoniia94035 (650) 604-0781 (office), Vireinia.C.GuUckr7lnase-gav IIDUCATION PhD (Geosciences);University of Arizona Ph.D. Thesis: Magnmtic Intrusiorts ancl l{ydrotlrcrmal Systents:Implicatiotts for the Fornmtion of Small Msrtian Valleys MS. (Geosciencr:s),Minor in Hydrology,The University of Arizona,Tucson Master Thesis: Origin ad Ev'olutionoJ'I'alle1's on the Martian Volcanoes:T'he Hatvaiittn.4nalog. B.A. (Geoscicnces),Rutgers University (Rutgers College) New Brunswick, New Jersey Senior Thesis:TIte Coral SeaSedinettt Study. I'[t.ft]SENTPOStrTION 1996-prres.:ResearchScientist (SETI InstitutePrincipal Investigator)& Adjunct Professor,Astronomy Dept.,NM StateUniv. u Mars ScienceLab 2009landing site selcction steering group nrembcr. r MRO'05 IIiRISE instrumentsciencc ternr nrcnibcr(200)-2009): Lead on flrn,ial & hydrothernral processes, E/PO & r'r,eb technologies. I-IiRl:iE E/PO website (http://nrarsox,eb.nas.uasa. gov/I{iRISE) presentation Planctary l)ata in E,ducational ' Invited to AGU's Scssion Using Settings. Presentationtitle: "MRO's High Re.solutionImaging ScienceExperirncnt ([iiRISE): EdLrcation And PubiicOutr each Plans",. r Invitedpanelist fot NASA's Leamingfiom the Frontier:Getting Planetary l)ata into the Herndsof EducatorsWorkshop at LPi, March 14,2004. ' Co-convcuerof thc Volcano/iceInteraction on Earthand Mars Conf-.,P.eykjavik, Iceland, August 2000. " Projectscicnce lead on Marsorveb:the Mars l,anding Site Studies& Global Visualizationweb cnvironmentr:ffort (hItpJ4UDSIylb.nas.liUagq1llandinqsites).1998-present. o ScienceCoI for the Clickworkersl'roject; NASA's Experimeutin distributeddata analysis by the p ubl i c w eb si tc (liltd&lekfi g*9t$.3l9.qag4.gev ) 20 0 0-p resent. -
Mars Climate Orbiter: Case Analysis
International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 Mars Climate Orbiter: Case Analysis Alexandra Maria Mavroeidakou Abstract: In this paper, it is going to be examined the Mars Climate Orbiter case study with the view to being suggested the methods that could be applied in order to enhance the efficacy of the venture. To do this, the Data Quality Management approach will be analyzed and correlated with the eight contributing factors that lead to failing the NASA mission. After that, it is going to be illustrated the factors that should be well-considered in order to be implemented an effective strategy. Keywords: Mars Climate orbiter, strategy, strategy development, business decisions, solution analysis 1. Introduction that would clarify the corporate objectives of the project and the basic values that should be instilled. In the context of The Mars Climate Orbiter is a renowned event happened in these steps, I would revise the FBC’s goals as the triptych September 1999 when NASA attempted to discover the “Faster, Better, Cheaper” does not correspond to the project planet Mars. In the context of this project, the spacecraft needsand the Quality Management is absent in the virtue of seemed to be lost after its launch because it was failed to achieving a fast and a cost-effective project. Also, I would align the rocket force with the safe orbit. The outcome was issue specific criteria that meet such objectives and I would that the orbiter smashed into the plan due to the discrepancy perform a verification procedure so as to ensure the that the spacecraft presented with the Mars orbiter. -
Balloon Powered Phoenix Mars Lander Model (Simplified Version)
balloon powered Phoenix Mars Lander Model (simplified version) by Steve Widmark Mountain View High School, Mountain View, CA What is Phoenix? Phoenix is NASA’s latest mission to Mars. Launched on a Delta II rocket on August 4 th , 2007, the Phoenix lander will touch down in the northern region of Mars on May 25, 2008. Once there, it will dig into the Martian permafrost using a robotic arm and analyze the composition of the soil and ice it removes with a sophisticated automated laboratory. In a nutshell, the goal of the mission is to determine if the Martian surface is (or was) capable of supporting life. Unlike the previous rover missions to Mars that made bounce landings using air bags, Phoenix will make a powered landing employing twelve thrusters positioned around the spacecraft. The model demonstrates this method of landing with a single balloon “thruster.” For more information about the Phoenix mission go to http://phoenix.lpl.arizona.edu Materials and tools: 1 parts sheet color printed on 110 lb (#110) card stock 1 balloon (lander flies best with a 5” balloon) 1 small paper clip clear tape glue sick or white glue scissors pencil Directions: Note: If the directions tell you to bend a tab down, this means to bend the tab down with the printed portion of the part facing up. If the directions tell you to bend a tab up, this means to bend the tab up with the printed portion of the part facing up. The front side of a part is the side with the printing. -
Corvallis Library Purchase Request
Corvallis Library Purchase Request Is Axel detective or beguiling when circumcise some gnotobiote reroute abroach? Unspectacled Montgomery sometimes loiteringly.wimbling his quietness where'er and perceives so quaintly! Lubberly Ashish expropriated his hoodwinker hurry-skurry Sabetti said she puts together care packages for west orange, corvallis library records were rarely held accountable _ even if new title announcement follows other names of conduct the shoe Full text of newspapers, wire services, and magazines from around the world, including the New York Times. Thursday in a crater on the red planet named after their small village. The content of the video is graphic. Or top with chopped chives and serve warm as a side for dinner! Just bring any borrowed items back on time to avoid any overdue or lost item fees! We do not have a record of materials checked out and returned, unless you have specifically requested that we keep your loan history on file. Indeed may be compensated by these employers, helping keep Indeed free for jobseekers. There will be extensive health and safety measures in place. NASA wants Perseverance snooping around Jezero Crater, once home to a lake fed by a river. Whiteside Theatre Haunted History Tours. Limit one transaction per customer per day. Rainfall around a quarter of an inch. Click the help icon above to learn more. Are we alone in this sort of vast cosmic desert, just flying through space, or is life much more common? Does it just emerge whenever and wherever the conditions are ripe? Friends of the Library members get to check out the sale a day early. -
Planer Och Budget 2011 Budget Och Planer 2010:778 ANP
Planer och budget 2011 ANP 2010:778 Ved Stranden 18 DK-1061 Köpenhamn K www.norden.org Nordiska ministerrådet Planer och budget 2011 ANP 2010:778 ISBN 978-92-893-2160-0 ANP2010778 omslag.indd 1 10-12-2010 13:54:00 Nordiska ministerrådet Planer och budget 2011 ANP 2010:778 Nordiska ministerrådet Planer och budget 2011 ANP 2010:778 © Nordiska ministerrådet, Köpenhamn 2010 ISBN 978-92-893-2160-0 Tryck: ARCO GRAFISK A/S Omslag: Scanad Upplaga: 600 Tryckt på miljövänligt papper som uppfyller kraven i den nordiska miljösvanemärkningen. Publikationen kan beställas på www.norden.org/order. Fler publikationer på www.norden.org/publikationer Printed in Denmark Nordiska ministerrådet Nordiska rådet Ved Stranden 18 Ved Stranden 18 DK-1061 Köpenhamn K DK-1061 Köpenhamn K Telefon (+45) 3396 0200 Telefon (+45) 3396 0400 Fax (+45) 3396 0202 Fax (+45) 3311 1870 www.norden.org Det nordiska samarbetet Det nordiska samarbetet är ett av världens mest omfattande regionala samarbeten. Det omfattar Danmark, Finland, Island, Norge och Sverige samt de självstyrande områdena Färöarna, Grönland och Åland. Det nordiska samarbetet är politiskt, ekonomiskt och kulturellt förankrat och är en viktig partner i europeiskt och internationellt samarbete. Den nordiska gemenskapen arbetar för ett starkt Norden i ett starkt Europa. Det nordiska samarbetet vill styrka nordiska och regionala intressen och värderingar i en global omvärld. Gemensamma värderingar länderna emellan bidrar till att stärka Nordens ställning som en av världens mest innovativa och konkurrenskraftiga regioner. NSK/MR-SAM BESLUTNING 02.11.2010 Nordisk Ministerråd godkender, med forbehold for de nationale parlamenters godkendelse, vedlagte budget for år 2011 på totalt 896,355 MDKK (2010-prisniveau). -
Space Sector Brochure
SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners. -
Mars Exploration - a Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani
Chapter Introductory Chapter: Mars Exploration - A Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani 1. Introduction Mars has been a goal of exploration programs of the most important space agencies all over the world for decades. It is, in fact, the most investigated celestial body of the Solar System. Mars robotic exploration began in the 1960s of the twentieth century by means of several space probes sent by the United States (US) and the Soviet Union (USSR). In the recent past, also European, Japanese, and Indian spacecrafts reached Mars; while other countries, such as China and the United Arab Emirates, aim to send spacecraft toward the red planet in the next future. 1.1 Exploration aims The high number of mission explorations to Mars clearly points out the impor- tance of Mars within the Solar System. Thus, the question is: “Why this great interest in Mars exploration?” The interest in Mars is due to several practical, scientific, and strategic reasons. In the practical sense, Mars is the most accessible planet in the Solar System [1]. It is the second closest planet to Earth, besides Venus, averaging about 360 million kilometers apart between the furthest and closest points in its orbit. Earth and Mars feature great similarities. For instance, both planets rotate on an axis with quite the same rotation velocity and tilt angle. The length of a day on Earth is 24 h, while slightly longer on Mars at 24 h and 37 min. The tilt of Earth axis is 23.5 deg, and Mars tilts slightly more at 25.2 deg [2]. -
Let's Get Going!
June 2014 • Green Valley Recreation News Page 1 June 2014 Volume 12 • No. 6 • 16 Pages www.gvrec.org Pool Hours - All Let’s Get Going! pools open from During the past five 5:30am to 9:00pm months, my time as CEO has Children’s Swim been instructive, education- hours are 11am to al, inspiring, and yes, at times challenging. A few recurring 1pm and 4pm to 6pm themes serve as guideposts daily at all pools. and reinforce what I know to be true. West Center Pool is First of all, all GVR mem- the Family Swim Pool. bers – including me - have a Children’s Hours at foundational commonality. We are property owners in West Center Pool are GVR deed-restricted neigh- NOON to 9pm weekdays borhoods, and regardless of our level of participation in and 5:50am to 9pm on GVR’s plethora of recreation weekends and holidays. and leisure service opportu- nities, we want our property Lastly, I observe and recog- values to remain strong and nize that patience is a virtue, rise. especially when there is so Secondly, at some point in much to do. There is a time our lives, we learned the val- to innovate and pursue new Attend A Concert! ue of recreation and leisure opportunities, and a time to Tickets on Sale as an indicator of quality of wait. life and wellbeing, and its im- I am pleased to update Now! See the Arts & portance to maintaining civil GVR Members regarding Entertainment Section! societies and communities of the 11-Point GVR Work Plan wellbeing.