Exact and Approximate Inference in Graphical Models
Exact and approximate inference in graphical models: variable elimination and beyond Nathalie Dubois Peyrard, Simon de Givry, Alain Franc, Stephane Robin, Regis Sabbadin, Thomas Schiex, Matthieu Vignes To cite this version: Nathalie Dubois Peyrard, Simon de Givry, Alain Franc, Stephane Robin, Regis Sabbadin, et al.. Exact and approximate inference in graphical models: variable elimination and beyond. 2015. hal-01197655 HAL Id: hal-01197655 https://hal.archives-ouvertes.fr/hal-01197655 Preprint submitted on 5 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Exact and approximate inference in graphical models: variable elimination and beyond Nathalie Peyrarda, Simon de Givrya, Alain Francb, Stephane´ Robinc;d, Regis´ Sabbadina, Thomas Schiexa, Matthieu Vignesa a INRA UR 875, Unite´ de Mathematiques´ et Informatique Appliquees,´ Chemin de Borde Rouge, 31326 Castanet-Tolosan, France b INRA UMR 1202, Biodiversite,´ Genes` et Communautes,´ 69, route d’Arcachon, Pierroton, 33612 Cestas Cedex, France c AgroParisTech, UMR 518 MIA, Paris 5e, France d INRA, UM R518 MIA, Paris 5e, France June 30, 2015 Abstract Probabilistic graphical models offer a powerful framework to account for the dependence structure between variables, which can be represented as a graph.
[Show full text]