Project Title: Pea Viruses: Investigating the Current Knowledge on Distribution and Control of Pea Viruses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recombination-Based Generation of the Agroinfectious Clones of Peanut
Journal of Virological Methods 237 (2016) 179–186 Contents lists available at ScienceDirect Journal of Virological Methods journal homepage: www.elsevier.com/locate/jviromet Recombination-based generation of the agroinfectious clones of Peanut stunt virus 1 1 ∗ Barbara Wrzesinska´ , Przemysław Wieczorek , Aleksandra Obrepalska-St˛ eplowska˛ Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research Institute, Władysława Wegorka˛ 20 St, 60-318, Poznan,´ Poland a b s t r a c t Article history: Full-length cDNA clones of Peanut stunt virus strain P (PSV-P) were constructed and introduced into Nico- Received 2 June 2016 tiana benthamiana plants via Agrobacterium tumefaciens. The cDNA fragments corresponding to three Received in revised form 5 September 2016 PSV genomic RNAs and satellite RNA were cloned into pGreen binary vector between Cauliflower mosaic Accepted 15 September 2016 virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator employing seamless recombina- Available online 19 September 2016 tional cloning system. The plasmids were delivered into A. tumefaciens, followed by infiltration of hosts plants. The typical symptoms on systemic leaves of infected plants similar to those of wild-type PSV- Keywords: P were observed. The presence of the virus was confirmed by means of RT-PCR and Western blotting. Peanut stunt virus Re-inoculation to N. benthamiana, Phaseolus vulgaris, and Pisum sativum resulted in analogous results. Viral infectious clones cDNA Generation of infectious clones of PSV-P enables studies on virus-host interaction as well as revealing Agrobacterium tumefaciens viral genes functions. Seamless recombination © 2016 Elsevier B.V. All rights reserved. Isothermal recombination 1. Introduction stunting, vein clearing as well as the infection might be latent (Obrepalska-St˛ eplowska˛ et al., 2008a). -
Aphid-Transmitted Viruses in Vegetable Crops Department of Departmentof Integrated Virus Disease Management
Agri-Science Queensland Employment, Economic Development and Innovation and Development Economic Employment, Aphid-transmitted viruses in vegetable crops Department of Departmentof Integrated virus disease management The majority of viruses infecting plants are spread by Non-persistent transmission insects, and aphids are the most common group of • It takes less than one minute of feeding for an virus vectors or carriers. All potyviruses (the largest aphid to acquire the virus and the same short time group of plant viruses) are transmitted by aphids. to infect another plant when feeding. Aphids are sap-sucking insects and have piercing, • Viruses remain viable on aphids mouthparts for a sucking mouthparts. Their mouthparts include a few hours only. needle-like stylet that allows the aphid to access • When an aphid loses the virus from its mouthparts and feed on the contents of plant cells. During when feeding it has to feed again on another feeding, aphids simultaneously ingest sap contents infected plant to obtain a new ‘charge’ of virus and inject saliva, which can contain viruses if the before it can infect other plants. aphid has previously fed on an infected plant. Persistent transmission The structure of aphid mouthparts, their searching • It takes several hours of feeding for an aphid to behaviour for host plants, the range of available acquire a virus. host plants and high reproductive rates contribute to • The virus must circulate through the aphid’s body the efficiency of aphids to act as virus carriers. to the salivary glands before transmission can Aphid transmission occur. This period is at least 12 hours. -
Geostatistical Analysis of Spatial Distribution of Therioaphis Maculata (Hemiptera: Aphididae) and Coccinellid Lady Beetles (Coleoptera: Coccinellidae)
J. Crop Prot. 2019, 8 (1): 103-115______________________________________________________ Research Article Geostatistical analysis of spatial distribution of Therioaphis maculata (Hemiptera: Aphididae) and coccinellid lady beetles (Coleoptera: Coccinellidae) Hakimeh Shayestehmehr and Roghaiyeh Karimzadeh* Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. Abstract: Understanding the spatial dynamics of insect distributions provides useful information about their ecological requirements and can also be used in site-specific pest management programs. Interactions between prey and predator are spatially and temporally dynamic and can be affected by several factors. In this study, geostatistics was used to characterize the spatial variability of spotted alfalfa aphid, Therioaphis maculata Buckton and coccinellid lady beetles in alfalfa fields. Global positioning and geographic information systems were used for spatial sampling and mapping the distribution pattern of these insects. This study was conducted in three alfalfa fields with areas of 7.3, 3.1 and 0.5 ha and two growing seasons, 2013 and 2014. The 0.5 ha field was divided into 10 × 10m grids and 3.1 and 7.3 ha fields were divided into 30 × 30m grids. Weekly sampling began when height of alfalfa plants reached about 15cm and was continued until the cuttings of alfalfa hay. For sampling, 40 and 10 stems were chosen randomly in 30 × 30m and 10 × 10m grids, respectively and shaken into a white pan three times. Aphids and coccinellids fallen in the pan were counted and recorded. Semivariance analysis indicated that distribution of T. maculata and coccinellids was aggregated in the fields. Comparison of the distribution maps of aphid and lady beetles indicated that there was an overlap between the maps, but they did not coincide completely. -
Cabbage Aphid Brevicoryne Brassicae Linnaeus (Insecta: Hemiptera: Aphididae)1 Harsimran Kaur Gill, Harsh Garg, and Jennifer L
EENY577 Cabbage aphid Brevicoryne brassicae Linnaeus (Insecta: Hemiptera: Aphididae)1 Harsimran Kaur Gill, Harsh Garg, and Jennifer L. Gillett-Kaufman2 Introduction The cabbage aphid belongs to the genus Brevicoryne. The name is derived from the Latin words “brevi” and “coryne” and which loosely translates as “small pipes”. In aphids, there are two small pipes called cornicles or siphunculi (tailpipe-like appendages) at the posterior end that can be seen if you look with a hand lens. The cornicles of the cab- bage aphid are relatively shorter than those of other aphids with the exception of the turnip aphid Lipaphis erysimi (Kaltenbach). These short cornicles and the waxy coating found on cabbage aphids help differentiate cabbage aphids from other aphids that may attack the same host plant Figure 1. Cabbage aphids, Brevicoryne brassicae Linnaeus, on cabbage. (Carter and Sorensen 2013, Opfer and McGrath 2013). Credits: Lyle Buss, UF/IFAS Cabbage aphids cause significant yield losses to many crops of the family Brassicaceae, which includes the mustards and Identification crucifers. It is important to have a comprehensive under- The cabbage aphid is difficult to distinguish from the turnip standing of this pest and its associated control measures so aphid (Lipaphis erysimi (Kaltenbach)). The cabbage aphid that its spread and damage can be prevented. is 2.0 to 2.5 mm long and covered with a grayish waxy covering, but the turnip aphid is 1.6 to 2.2 mm long and has Distribution no such covering (Carter and Sorensen 2013). The cabbage aphid is native to Europe, but now has a world- The cabbage aphid and green peach aphid (Myzus persicae wide distribution (Kessing and Mau 1991). -
Peanut Stunt Virus Infecting Perennial Peanuts in Florida and Georgia1 Carlye Baker2, Ann Blount3, and Ken Quesenberry4
Plant Pathology Circular No. 395 Fla. Dept. of Agric. & Consumer Serv. ____________________________________________________________________________________July/August 1999 Division of Plant Industry Peanut Stunt Virus Infecting Perennial Peanuts in Florida and Georgia1 Carlye Baker2, Ann Blount3, and Ken Quesenberry4 INTRODUCTION: Peanut stunt virus (PSV) has been reported to cause disease in a number of economically important plants worldwide. In the southeastern United States, PSV is widespread in forage legumes and is considered a major constraint to productivity and stand longevity (McLaughlin et al. 1992). It is one of the principal viruses associated with clover decline in the southeast (McLaughlin and Boykin 1988). In 2002, this virus (Fig. 1) was reported in the forage legume rhizoma or perennial peanut, Arachis glabrata Benth. (Blount et al. 2002). Perennial peanut was brought into Florida from Bra- zil in 1936. In general, the perennial peanut is well adapted to the light sandy soils of the southern Gulf Coast region of the U.S. It is drought-tolerant, grows well on low-fertility soils and is relatively free from disease or insect pest problems. The rela- tively impressive forage yields of some accessions makes the perennial peanut a promising warm-sea- son perennial forage legume for the southern Gulf Coast. Due to its high-quality forage, locally grown perennial peanut hay increasingly competes for the million plus dollar hay market currently satisfied by imported alfalfa (Medicago sativa L). There are ap- proximately 25,000 acres of perennial peanut in Ala- bama, Georgia and Florida combined. About 1000 acres are planted as living mulch in citrus groves. Fig. 1. A field of ‘Florigraze’ showing the yellowing symptoms of Peanut Popular forage cultivars include ‘Arbrook’ and Stunt Virus. -
REVIEW Mustafa ADHAB*
REVIEW VIRUS-HOST RELATIONSHIPS: AN OVERVIEW Mustafa ADHAB* University of Baghdad, Department of Plant Protection, Al-Jadriya Baghdad, Iraq, 10070, 00964-7719720419 *Corresponding author: [email protected] ORCID: 0000-0003-0579-9838 ABSTRACT In order to survive in nature, different pathogens follow different procedures to manipulate their host plants for the pathogen favor. Plant viruses are not an exception of this rule. They are often found to alter the host plant traits in the way that affects the community of organisms in the host plant as well as the vectoring insects. It has been indicated that virus-infected plants are more preferable than virus-free plants with respect to the growth rates, longevity and reproduction of the vector. Viruses use several strategies in order to reprogram their host’s cell to make it more conducive to replication and spread. Consequently, phytohormone signaling pathway in virus-infected plants can be disrupted either directly or indirectly. In plants, there are hormone pathways contribute to all aspects of plant physiology. Sometimes, virus infection can be advantageous to the infected host by providing the plant with tolerance to biotic and abiotic stresses. This article summarizes some aspects where the virus found to reprogram the host’s cell to make it more conducive to virus’ cycle of life. It also provides an important basic knowledge about how biotic and abiotic stress affects the interaction among virus, vector and the host plant; this knowledge could open the gate to understand the effect of multi- stress effect on the host plant in future studies through recognizing the necessity for plants to have an integrated system of defense against different threats. -
Lipaphis Erysimi) on Brassica Crop
American-Eurasian J. Agric. & Environ. Sci., 16 (2): 224-228, 2016 ISSN 1818-6769 © IDOSI Publications, 2016 DOI: 10.5829/idosi.aejaes.2016.16.2.12754 High Pressure Water Spray Technique for Controlling Mustard Aphid (Lipaphis Erysimi) on Brassica Crop 1Muhammad Nawaz, 12Sikander Ali and Qaisar Abbas 1Oilseed Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan 2Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan Abstract: Miraculous results of a nozzle modified by the authors at Oilseeds Research Institute, Faisalabad to dislodge the aphid colony with simple tap water have been presented. A study was carried out to tackle the serious problems posed by the Mustard aphid (Lipaphis erysimi) in Brassica juncea using different types of hollow cone nozzles such as hollow cone single orifice (modified), single orifice (original), double orifice, triple orifice and tetra orifice nozzle (Check). These nozzles were tested for dislodging the mustard aphid by spraying simple tap water through them. The study revealed that among the nozzles tested, the hollow cone nozzle (modified) showed highest percentage of rapid reduction in aphid population (90.8%) recorded immediately after spraying of water followed by hollow cone nozzle single orifice (original) with the results (65.9%). Whereas, the other nozzles used for the study did not prove their worth as their aphid dislodging percentage remained low. It ranged from 40.4 to 49.2 %. Key words: Brassica juncea Mustard Water spray High pressure INTRODUCTION increases during winter at such a level that it reduces the yield and quality of Brassica. [10]. Both the nymphs and Brassica spp. family Cruciferae, is an important adults suck sap from leaves, inflorescence, stems, flowers oilseed crop of the world. -
Virus Diseases in Canola and Mustard
Virus diseases in canola and mustard Agnote DPI 495, 1st edition, September 2004 Kathi Hertel, District Agronomist, Dubbo www.agric.nsw.gov.au Mark Schwinghamer, Senior Plant Pathologist, and Rodney Bambach, Technical Officer, Tamworth Agricultural Institute INTRODUCTION DISTRIBUTION Virus diseases in canola (Brassica napus) were Viruses have probably occurred in canola since found in recent seasons in production areas across commercial crops started but were unrecognised Australia. Beet western yellow virus (BWYV) was due to indistinct symptoms. However, in NSW first identified in eastern and Western Australia pulse crops surveyed and tested for a range of in the early 1980s. At that time it infected canola viruses between 1994 and 2003, BWYV and a wide range of other plants in Tasmania. increased in incidence, suggesting that an Since 1998 it has become very common outside increase in BWYV may have occurred in canola of Tasmania in canola, mustard (Brassica juncea) also over that period. and pulse crops, often at high infection levels. Two A major survey of canola crops in Western viruses, Cauliflower mosaic virus (CaMV) and Australia in 1998 showed than BWYV was very Turnip mosaic virus (TuMV), have also been common. In NSW, symptoms suggestive of detected in canola in eastern and Western Australia BWYV were widespread in canola early in 1999. and mustard in NSW. Relatively little information This prompted laboratory tests which confirmed on CaMV and TuMV is available, but in Western the presence of BWYV but were unable to Australia they are much less common in canola confirm associations with viral symptoms. Major than BWYV. -
Effect of Aphis Craccivora Koch. Reared on Different Host Plants on the Biology of Cheilomenes Sexmaculata (Fabricius)
Journal of Biological Control, 30(1): 19-24, 2016 Research Article Effect of Aphis craccivora Koch. reared on different host plants on the biology of Cheilomenes sexmaculata (Fabricius) S. ROUTRAY*, K. V. HARI PRASAD and D. DEY1 Department of Entomology, S. V. Agricultural College, Tirupati - 517 501, ANGRAU, Andhra Pradesh, India. 1Department of Entomology, College of Agriculture, OUAT, Bhubaneswar-3, India. *Corresponding author E-mail: [email protected] ABSTRACT: Biology of Cheilomenes sexmaculata (Fabricius) was studied on aphids reared on different host plants. The total life cycle of C. sexmaculata ranged from 19.56 days to 27.87 days when aphids fed to this were reared on six different host plants viz., cowpea, groundnut, cotton, sunflower, greengram and blackgram. Adult male longevity varied from 11.00 to 14.00 days. Adult female longevity varied from 14.00 to 17.00 days. Shortest larval duration (6.75 days) was noticed on cowpea and longest larval duration (8.25 days) was noticed on groundnut. On cotton and sunflower 25 per cent larval mortality each were noticed. The head capsule width of first, second, third and fourth instar larvae of C. sexmaculata were 0.28±0.09 mm, 0.42±0.06 mm, 0.58±0.01 mm and 0.63±0.03 mm respectively when fed to aphids from nucleus culture. KEY WORDS: Aphis craccivora, Cheilomenes sexmaculata, host plants, larval duration, larval mortality (Article chronicle: Received: 12-12-2015; Revised: 04-02-2016; Accepted: 15-03-2016) INTRODUCTION MATERIALS AND METHODS Coccinellids are considered to be of great economic Nucleus cultures of aphids were maintained in a sus- importance and they have been successfully employed in ceptible cowpea cultivar (CO-702). -
A Contribution to the Aphid Fauna of Greece
Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively). -
Idaho State Department of Agriculture Division of Plant Industries
IDAHO STATE DEPARTMENT OF AGRICULTURE DIVISION OF PLANT INDUSTRIES 2011 SUMMARIES OF PLANT PESTS, INVASIVE SPECIES, NOXIOUS WEEDS, PLANT LAB, NURSERY AND FIELD INSPECTION PROGRAMS WITH SURVEY RESULTS INTRODUCTION - ISDA’s Division of Plant Industries derives its statutory authority from multiple sections of Idaho Code, Title 22, including the Plant Pest Act, the Noxious Weed Law, the Nursery and Florist Law, and the Invasive Species Act. These laws give the Division of Plant Industries clear directives to conduct pest surveys and manage invasive species and plant pests with the purpose of protecting Idaho’s agricultural industries, which include crops, nursery and ranching, and is valued at over $4 billion. The Division also cooperates with other agencies, such as the Idaho Department of Lands (IDL), the University of Idaho (UI), the United States Forest Service (USFS), the United States Department of Agriculture (USDA), Plant Protection and Quarantine (PPQ), county governments, Cooperative Weed Management Areas (CWMA), and industry groups to protect all of Idaho’s landscapes and environments from invasive species. Finally, the Division of Plant Industries helps accomplish the broader mission of the Department of Agriculture to serve consumers and agriculture by safeguarding the public, plants, animals and the environment through education and regulation. This report summarizes the comprehensive and cooperative programs conducted during 2011 to enforce Idaho Statutes and fulfill the broader mission of the Department. APPLE MAGGOT (AM) (Rhagoletis pomonella Walsh) - In 1990, ISDA established by Administrative Rule an AM-free regulated area (the “Apple Maggot Free Zone” or AMFZ) that contains the major apple production areas of the state. -
Plant Pathology Circular No. 275 Fla. Dept. Agric. & Consumer Serv
Plant Pathology Circular No. 275 Fla. Dept. Agric. & Consumer Serv. September 1985 Division of Plant Industry LETTUCE MOSAIC VIRUS Gail C. Wislerl Lettuce mosaic virus (LMV) was first reported in 1921 in Florida by Jagger (6). Due to transmission of LMV through seed, it has now been reported in at least 14 countries (4) or wherever lettuce is commercially grown. Although specific leaf symptoms are difficult to detect in mature lettuce, the overall effect on lettuce production is significant in terms of stunting, the absence of heading, and early bolting. The 50-million dollar per year Florida lettuce industry was severely threatened during the early 1970's by an outbreak of LMV. Fortunately, the lettuce growers in California had already established a viable indexing program for control of LMV through years of observation, experimentation, and research. This program was designed to establish the minimum allowable percentage of infected seed in commercial seedlots. It had been demonstrated that even with 1-3% infected seed, the spread by aphids could lead to 100% infection by harvest time. Research has shown that seed infection greater than even 0.1% gives inadequate disease control (2). Therefore, the allowable tolerance under Florida law adopted in 1973 and by California at an earlier date is less than one infected seed in 30,000. If one seed in 30,000 is infected, the entire seedlot is rejected. SYMPTOMS: Symptoms of LMV are most easily detected in young plants. First seen is an inward rolling of the leaves along the long axis, and the first true leaf is irregularly shaped and slightly lobed.