Neurolinguistics: a Spectrum of Research Nörolinguistik: Bir Araştırma Spektrumu

Total Page:16

File Type:pdf, Size:1020Kb

Neurolinguistics: a Spectrum of Research Nörolinguistik: Bir Araştırma Spektrumu Türk Eğitim Araştırmaları Dergisi DOI:10.51242/SAKA-TJER.2021.10 Turkish Journal of Educational Research Yıl: 2021, Cilt: 2, Sayı:1, ss.24-27 Neurolinguistics: A Spectrum of Research Nörolinguistik: Bir Araştırma Spektrumu İbrahim Onur AKKURT Makale Başvuru Tarihi / Received: 09.06.2021 Araştırmacı, Mersin Üniversitesi Makale Kabul Tarihi / Accepted: 14.06.2021 [email protected] Makale Türü /Article Type: Araştırma Makalesi/Research Article https://orcid.org/ 0000-0003-2299-0714 Anahtar ÖZET Kelimeler: Neurolinguistics is a fresh and profoundly interdisciplinary field, with impacts from psycholinguistics, brain neurolinguistics, science, aphasiology, (psychological) neuroscience, and some more. The degree and point of neurolinguistics aphasiology, is to furnish understudies and researchers with brief outlines of the cutting edge specifically subject regions, neurobiology and to draw in a wide crowd with an interest in the neurobiology of language. The parts don't struggle to give thorough inclusion, but instead present conversations of noticeable inquiries presented by a given theme. Based on a qualitative document analysis technique, this paper clarifies neurolinguistics and the related specific characteristics. ABSTRACT Keywords: Nörolinguistik, psikodilbilim, beyin bilimi, afazioloji, (psikolojik) sinirbilim ve daha pek çok şeyden Neurolinguistics, etkilenmiş, taze ve derinlemesine disiplinler arası bir alandır. Bu Nörolinguistik'in derecesi ve amacı, Psycholinguistics, yardımcı çalışmaları ve araştırmacıları, özellikle konu bölgelerinin en son ana hatlarını kısa bir şekilde Brain science vermek ve dilin nörobiyolojisine ilgi duyan geniş bir kalabalığı çekmektir. Verilen metindeki parçalar kapsamlı bir katılım sağlamak için mücadele etmiyor, bunun yerine belirli bir tema tarafından sunulan dikkat çekici soruların konuşmalarını sunuyor. Bu çalışma nitel bir veri analizi yöntemi olarak doküman analizi yoluyla nörolinguistik ve özelliklerine ışık tutmaktadır. 1. INTRODUCTION As the only species that advanced to have a language personnel, people have been shockingly generative in making an assorted exhibit of language frameworks. These frameworks differ in phonology, morphology, punctuation, and composed structures. Before the approach of present day mind imaging procedures, little was thought about how contrasts across dialects are reflected in the mind (Chen, et al., 2009). Neurolinguistics is truly established in the improvement in the nineteenth century of aphasiology, the investigation of phonetic shortfalls (aphasias) happening as the consequence of cerebrum damage. Aphasiology endeavors to associate construction to work by examining the impact of mind wounds on language processing (Caplan, 1987). One of the primary individuals to draw an association between a specific mind region and language preparing was Paul Broca, a French specialist who directed examinations on various people who had talking lacks, and tracked down that the greater part of them had mind harm (or sores) on the left front facing projection, in a space presently known as Broca's space (Schiller, 2021). Phrenologists had made the case in the mid nineteenth century that diverse mind locales did various capacities and that language was generally constrained by the front facing areas of the cerebrum, yet Broca's examination was potentially quick to offer observational proof for such a relationship, and has been portrayed as "age making"and "pivotal" to the fields of neurolinguistics and intellectual science (LaPointe, 2012). Afterward, Carl Wernicke, after whom Wernicke's territory is named, recommended that various spaces of the mind were particular for various semantic errands, with Broca's space taking care of the engine creation of discourse, and Wernicke's region taking care of hear-able discourse 24 Türk Eğitim Araştırmaları Dergisi, 2021, C.2, S.1, ss.24-27 - Turkish Journal of Educational Research, 2021, Vol.2, Issue.1, pp. 24-27 comprehension crafted by Broca and Wernicke set up the field of aphasiology and the possibility that language can be concentrated through inspecting actual qualities of the brain (Nishitani, et al., 2005). Early work in aphasiology additionally profited by the mid-20th century work of Korbinian Brodmann, who "planned" the outside of the cerebrum, sharing it into numbered territories dependent on every space's cytoarchitecture (cell structure) and function; these zones, known as Brodmann zones, are still generally utilized in neuroscience today (Burns & Fahy, 2010). 2. METHODOLOGY For a number of years, documents and formal reports have been among the most basic tools which are utilized in qualitative research studies. Currently, the number of scientific articles in which the document analysis technique is used has increased (Xu & Croft, 2017). It is so remarkable that various documents can be used to complete the deficiency of satisfying data in several documents. Moreover, the quite clear fact is that neither proficient researchers nor others continuously sufficiently use the document analysis technique, in research fields (Bowen, 2009). According to Corbin and Strauss (2008), document analysis is a standardized process that is followed up to analyze or review reports or documents which can be online materials or paper- based. They also claim that document analysis like other analytical techniques used in qualitative research design requires analyzing and clarifying data to achieve commentary, comprehension, and functional information. This study, which is based upon a qualitative research design, profits by document analysis technique owing to the records, documents, or scientific articles that are examined and researched by researchers (Karasar, 2008). 3. LITERATURE REVIEW THE HUMAN BRAIN The actual seat for the portrayal and handling of language is facilitated in the cerebrum. A side view uncovers three significant divisions in the human mind: the cerebrum, which is the biggest part and establishes what is generally alluded to as the "cerebrum"; the cerebellum, which lies behind the frontal cortex and is basically a movement control focus with associations with the frontal cortex and the spinal rope; the cerebrum stem, which shapes the tail from which the frontal cortex and the cerebellum fledgling and serves to transfer data to and from the spinal string, and to manage indispensable capacities like relaxing. The frontal cortex is separated into two cerebral hemi-circles (left and right) by the longitudinal fissure, associated by a band of cross fibers (corpus callosum) (Tatu, 1998). The outside of the halves of the globe is covered with a layer of dim matter, the cerebral cortex, comprised of nerve cell bodies (neurons), while the internal layer, the white matter, comprises generally of long axons. While dark matter is basically liable for data handling, white matter is answerable for data transmission, conveying nerve electrical signs all through the mind and the remainder of the body (Ungerleider & Haxby, 1994). Clinical and trial proof demonstrates that the cortex is the essential seat of human thinking and discernment, remembering most parts of Considering its unmistakable quality for the human cerebrum, the cortex merits hide their depiction (Bambini, 2012). 25 AKKURT, İbrahim Onur - Neurolinguistics: A Spectrum of Research EVOLUTION OF BRAIN AND LANGUAGE RELATIONSHIPS Developmental neurolinguistics tends to different wellsprings of data, which incorporate palaeoanthropology (most importantly, information on transformative changes in the size and state of the noggin, and in like manner on size, weight and design of the human mind) and palaeohistory, near and authentic phonetics, hereditary qualities, neuroanatomy and neurophysiology. Albeit transformative neurolinguistics is a moderately new field of neurolinguistics, its worth is incredible, both from the down to earth and hypothetical, particularly philosophical, perspectives (Wilkins & Wakefield, 1995). In the writing on the advancement of mind instruments that give the language staff, there is a typical view that language began to grow as it were at the point when the human mind grew adequately from both the underlying and practical perspectives (De Zubicaray & Schiller, 2019). Contrasted with other high intellectual capacities, human language has all the earmarks of being a generally ongoing developmental procurement. Indeed, this apparently happened anyplace somewhere in the range of 50,000 and 80,000 years prior when our human predecessors left Africa (Tattersall, 2010; Berwick et al., 2013). In this respect analysts predominantly accentuate two indispensably significant conditions. To start with, creatures, including primates, don't exhibit anything even distantly like the human language workforce or human language. That is, they didn't create language throughout development, and they can't 'learn' or 'obtain' human language throughout their ontogenetic turn of events, even in the ideal conditions made by specialists 'abruptly' on the developmental course of events and has not advanced since (Berwick et al., 2013). It appears to be doubtlessly, nonetheless, that adjustments in the cerebrum structure happened continuously, as per progress in language design and language correspondence and the rise of new necessities for discourse, including anatomical changes in the human vocal harmonies and in the enunciation device, and communicated in language cognizance. Then again, the human limit with respect to language may have advanced on the rear of a generally
Recommended publications
  • Defining the Relation Between Linguistics and Neuroscience
    Defining the relation between linguistics and 6 neuroscience David Poeppel and David Embick University of Maryland College Park and University of Pennsylvania The popularity of the study of language and the brain is evident from the large number of studies published in the last 15 or so years that have used PET, fMRI, EEG, MEG, TMS, or NIRS to investigate aspects of brain and language, in linguistic domains ranging from phonetics to discourse processing. The amount of resources devoted to such studies suggests that they are motivated by a viable and successful research program, and implies that substantive progress is being made. At the very least, the amount and vigor of such research implies that something significant is being learned. In this article, we present a critique of the dominant research program, and provide a cautionary perspective that challenges the belief that explanatorily significant progress is already being made. Our critique focuses on the question of whether current brain/language research provides an example of interdisciplinary cross-fertilization, or an example of cross-sterilization. In developing our critique, which is in part motivated by the necessity to examine the presuppositions of our own work (e.g. Embick, Marantz, Miyashita, O'Neil, Sakai, 2000; Embick, Hackl, Schaeffer, Kelepir, Marantz, 2001; Poeppel, 1996; Poeppel et al. 2004), we identify fundamental problems that must be addressed if progress is to be made in this area of inquiry. We conclude with the outline of a research program that constitutes an attempt to overcome these problems, at the core of which lies the notion of computation.
    [Show full text]
  • Neural Representational Similarity Between Symbolic and Non-Symbolic Quantities Predicts Arithmetic Skills in Childhood but Not Adolescence
    Received: 29 July 2020 Revised: 1 April 2021 Accepted: 3 May 2021 DOI: 10.1111/desc.13123 SHORT REPORT Neural representational similarity between symbolic and non-symbolic quantities predicts arithmetic skills in childhood but not adolescence Flora Schwartz1 Yuan Zhang1 Hyesang Chang1 Shelby Karraker1 Julia Boram Kang1 Vinod Menon1,2,3,4 1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Abstract Medicine, Stanford, California, USA Mathematical knowledge is constructed hierarchically from basic understanding of 2 Department of Neurology and Neurological quantities and the symbols that denote them. Discrimination of numerical quantity in Sciences, Stanford University School of Medicine, Stanford, California, USA both symbolic and non-symbolic formats has been linked to mathematical problem- 3 Stanford Neuroscience InstituteStanford solving abilities. However, little is known of the extent to which overlap in quantity University School of Medicine, Stanford, California, USA representations between symbolic and non-symbolic formats is related to individual 4 Symbolic Systems Program, Stanford differences in numerical problem solving and whether this relation changes with dif- University School of Medicine, Stanford, ferent stages of development and skill acquisition. Here we investigate the association California, USA between neural representational similarity (NRS) across symbolic and non-symbolic Correspondence quantity discrimination and arithmetic problem-solving skills in early and late devel- Vinod Menon, Stanford University School of opmental stages: elementary school children (ages 7–10 years) and adolescents and Medicine, 401 Quarry Rd, Stanford, CA 94305, USA. young adults (AYA, ages 14–21 years). In children, cross-format NRS in distributed Email: [email protected] brain regions, including parietal and frontal cortices and the hippocampus, was posi- Flora Schwartz, Yuan Zhang, and Hyesang tively correlated with arithmetic skills.
    [Show full text]
  • Jyoti Mishra, Ph.D
    Contact CURRICULUM VITAE UCSF - Mission Bay Sandler Neurosciences Center Rm 502 Jyoti Mishra, Ph.D 675 Nelson Rising Lane San Francisco, CA 94158-0444 Web: http://profiles.ucsf.edu/jyoti.mishra http://gazzaleylab.ucsf.edu/people-profiles/jyoti-mishra/ Email: [email protected] [email protected] Phone: 415-502-7322 Personal Statement I am a translational neuroscientist with expertise in attention, learning and brain plasticity. My research mission is “advancing neurotechnology from the lab to the community”. I develop and evaluate novel neurotechnologies that can serve as neurocognitive diagnostics and therapeutics; in this context, I recently developed novel attention training tools for aging adults and children with attention deficits. My current lab projects focus on advancing real-time neurofeedback technologies and developing neuroscience-based training that optimizes decision-making in children. My community projects evaluate our innovative neurocognitive therapeutics in children with ADHD and neglected children in institutional foster-care, here in the United States as well as in India via global mental health research collaborations. Positions and Employment 2013 - present Assistant Professor Step 2 Departments of Neurology, Psychiatry and Global Health Sciences University of California, San Francisco 2009 - 2014 Senior Scientist, Brain Plasticity Institute PositScience Corporation, San Francisco 2009 - 2012 Postdoctoral Research Fellow, Neurology University of California, San Francisco 2008 - 2009 Postdoctoral Research
    [Show full text]
  • Gesellschaft Und Psychiatrie in Österreich 1945 Bis Ca
    1 VIRUS 2 3 VIRUS Beiträge zur Sozialgeschichte der Medizin 14 Schwerpunkt: Gesellschaft und Psychiatrie in Österreich 1945 bis ca. 1970 Herausgegeben von Eberhard Gabriel, Elisabeth Dietrich-Daum, Elisabeth Lobenwein und Carlos Watzka für den Verein für Sozialgeschichte der Medizin Leipziger Universitätsverlag 2016 4 Virus – Beiträge zur Sozialgeschichte der Medizin Die vom Verein für Sozialgeschichte der Medizin herausgegebene Zeitschrift versteht sich als Forum für wissenschaftliche Publikationen mit empirischem Gehalt auf dem Gebiet der Sozial- und Kulturgeschichte der Medizin, der Geschichte von Gesundheit und Krankheit sowie an- gren­­zender Gebiete, vornehmlich solcher mit räumlichem Bezug zur Republik Österreich, ihren Nachbarregionen sowie den Ländern der ehemaligen Habsburgermonarchie. Zudem informiert sie über die Vereinstätigkeit. Die Zeitschrift wurde 1999 begründet und erscheint jährlich. Der Virus ist eine peer-reviewte Zeitschrift und steht Wissenschaftlerinnen und Wissenschaftlern aus allen Disziplinen offen. Einreichungen für Beiträge im engeren Sinn müssen bis 31. Okto- ber, solche für alle anderen Rubriken (Projektvorstellungen, Veranstaltungs- und Aus stel lungs- be richte, Rezensionen) bis 31. Dezember eines Jahres als elektronische Dateien in der Redak- tion einlangen, um für die Begutachtung und gegebenenfalls Publikation im darauf ­­fol genden Jahr berücksichtigt werden zu können. Nähere Informationen zur Abfassung von Bei trägen sowie aktuelle Informationen über die Vereinsaktivitäten finden Sie auf der Homepage des Ver eins (www.sozialgeschichte-medizin.org). Gerne können Sie Ihre Anfragen per Mail an uns richten: [email protected] Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbi - bli o grafie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt.
    [Show full text]
  • Neurolinguistic and Machine-Learning Perspectives on Direct Speech Bcis for Restoration of Naturalistic Communication
    Brain-Computer Interfaces ISSN: 2326-263X (Print) 2326-2621 (Online) Journal homepage: http://www.tandfonline.com/loi/tbci20 Neurolinguistic and machine-learning perspectives on direct speech BCIs for restoration of naturalistic communication Olga Iljina, Johanna Derix, Robin Tibor Schirrmeister, Andreas Schulze- Bonhage, Peter Auer, Ad Aertsen & Tonio Ball To cite this article: Olga Iljina, Johanna Derix, Robin Tibor Schirrmeister, Andreas Schulze- Bonhage, Peter Auer, Ad Aertsen & Tonio Ball (2017): Neurolinguistic and machine-learning perspectives on direct speech BCIs for restoration of naturalistic communication, Brain-Computer Interfaces, DOI: 10.1080/2326263X.2017.1330611 To link to this article: http://dx.doi.org/10.1080/2326263X.2017.1330611 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 21 Jun 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tbci20 Download by: [93.230.60.226] Date: 22 June 2017, At: 15:41 BRAINCOMPUTER INTERFACES, 2017 https://doi.org/10.1080/2326263X.2017.1330611 OPEN ACCESS Neurolinguistic and machine-learning perspectives on direct speech BCIs for restoration of naturalistic communication Olga Iljinaa,b,c,e,g,h, Johanna Derixe,h, Robin Tibor Schirrmeistere,h, Andreas Schulze-Bonhaged,e, Peter Auera,b,c,f, Ad Aertseng,i and Tonio Balle,h aGRK 1624 ‘Frequency effects in language’, University of
    [Show full text]
  • 1 Language and the Brain Colin Phillips, University of Maryland
    Language and the Brain Colin Phillips, University of Maryland & Kuniyoshi L. Sakai, University of Tokyo Many species have evolved sophisticated communication systems, but human language stands out as special in at least two respects, both of which contribute to the vast expressive power of human language. First, humans are able to memorize many thousands of words, each of which encodes a piece of meaning using an arbitrary sound or gesture. By some estimates, during the preschool and primary school years a child learns an average of 5-10 new words per day, on the way to attaining a vocabulary of 20,000-50,000 words by adulthood. Second, humans are able to combine words to form sentences and discourses, making it possible to communicate infinitely many different messages, and providing the basis of human linguistic creativity. Furthermore, speakers are able to generate and understand novel messages quickly and effortlessly, on the scale of hundreds of milliseconds. Linguists and cognitive neuroscientists are interested in understanding what special properties of the human brain make such feats possible. Efforts to answer this question go back at least 150 years. A great deal of attention has been given to the issue of which regions of the human brain are most important for language, first using findings from brain-damaged patients, and in recent years adding a wealth of new information from modern non-invasive brain recording techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). However, it is important to bear in mind that knowing where language is supported in the human brain is just one step on the path to finding what are the special properties of those brain regions that make language possible.
    [Show full text]
  • Language, Culture and the Neurobiology of Pain: a Theoretical Exploration
    Behavioural Neurology, 1989, 2, 235-259 Language, Culture and the Neurobiology of Pain: a Theoretical Exploration HORACIO FABREGA, JR. Universiry oj Pittsburgh, School oj Medicine, Department oj Psychiatry, Pittsburgh, Pennsylvania 15213, USA Language and culture, as conceptualized in traditional anthropology, may have an important influence on pain and brain-behavior relations. The paradigm case for the influence of language and culture on perception and cognition is stipulated in the Sapir-Whorfhypothesis which has been applied to phenomena "external" to the individual. In this paper, the paradigm is applied to information the person retrieves from "inside" his body; namely, "noxious" stimuli which get registered in consciousness as pain. Introduction Every person seems to "know" what pain is and by means of language is able to describe it. Given the ubiquity and importance of pain in the adaptation of higher animal forms, one may infer that it has played an important role in evolution. It is thus very likely that pre-hominids and earlier members of the human species also "knew" a great deal about pain. A neurophysiologist would claim that pain is based on brain structures which all members of the human species share. At present these structures and their mode offunctioning are incompletely understood. An anthropolo­ gist who endorses a position of cultural relativism is aware of the variety of beliefs and understandings about pain and behaviors associated with it and would claim that there appear to exist not one but many varieties of pain (Fabrega, 1974; Zborowski, 1958; Fabrega and Tyma, 1976a,b). Language and culture play some role in the phenomenon of pain.
    [Show full text]
  • Neuroscience Impact Brain and Business
    Innovation Trend Report Neuroscience Impact Brain and Business NEUROSCIENCE IMPACT – BRAIN AND BUSINESS INTRODUCTION This work is licensed under a Creative Commons Attribution-NonCommercial- Acknowledgements NoDerivatives 4.0 International. We would like to extend a special thanks to all of the companies and To view a copy of this license, visit: individuals who participated in our Report with any kind of contribution. https://creativecommons.org/licenses/ The following companies agreed to be publicly named and gave us by-nc-nd/4.0/ or send a letter to: Creative precious content to be published: Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Dreem Neural Sense Emotiv Neuralya Halo Neuroscience Paradromics Mindmaze Pymetrics Neuron Guard Synetiq We would also like to thank the following individuals for helping us with precious suggestions and information: Russel Poldrack, Professor of Psychology at Stanford University, CA, USA; John Dylan-Haynes, Professor at the Bernstein Center for Computational Neuroscience Berlin, Germany; Carlo Miniussi, Director of Center for Mind/Brain Sciences – CIMeC, University of Trento, Rovereto TN Italy; Zaira Cattaneo, Associate Professor in Psychobiology and Physiological Psychology, Department of Psychology, University of Milano-Bicocca, Milano, Italy; Nadia Bolognini, University of Milano Bicocca, Department of Psychology, & IRCCS Istituto Auxologico Italiano, Laboratory of Neuropsychology; Dario Nardi, Author, speaker and expert in the fields of neuroscience and personality; Intesa Sanpaolo Innovation Center Nick Chater, Professor of Behavioral Science at Warwick Business School; assumes no responsibility on the Enrico Maria Cervellati, Associate Professor of Corporate Finance external linked content, both in terms of at the Department of Management Ca’ Foscari University of Venice; availability that of immutability in time.
    [Show full text]
  • Neurophysiological Activity Related to Speech Production: an ERP Investigation Adithya Chandregowda University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-20-2015 Neurophysiological Activity Related to Speech Production: An ERP Investigation Adithya Chandregowda University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Neurosciences Commons, and the Other Psychology Commons Scholar Commons Citation Chandregowda, Adithya, "Neurophysiological Activity Related to Speech Production: An ERP Investigation" (2015). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/5919 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Neurophysiological Activity Related to Speech Production: An ERP Investigation by Adithya Chandregowda A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Communication Sciences and Disorders College of Behavioral and Community Sciences University of South Florida Co-Major Professor: Emanuel Donchin, Ph.D. Co-Major Professor: Yael Arbel, Ph.D. Stefan A. Frisch, Ph.D. Nathan D. Maxfield, Ph.D. Date of Approval: November 20, 2015 Keywords: Speech motor control, Readiness potentials, Principal component analysis Copyright © 2015, Adithya Chandregowda TABLE OF CONTENTS LIST OF TABLES ................................................................................................................
    [Show full text]
  • Introduction to Neurolinguistics
    Introduction to Neurolinguistics Aniela Improta França UFRJ (Federal University of Rio de Janeiro, Brazil) This is an account of Introduction to Neurolinguistics, a week-long course that took place during the First South American Summer School in Formal Linguistics (EVELIN ’04), UNICAMP, São Paulo, Brazil. Classes ranged from an overview of brain anatomy and an introduction to neurolinguistics protocols to the comparative analysis of neurolinguistics and medical research about the Language Faculty. 1. About the course Neurolinguistics is a branch of Cognitive Neuroscience, that, on its turn, together with many other fields such as Systemic, Movement, Sensory, Cellular and others, is a branch of a larger domain named the Neurosciences. Neurolinguistics can still be divided into two areas: language acquisition and processing and language impairment. THE NEUROSCIENCES Cognitive Systemic Movement Sensory Cellular Neurolinguistics Vision Hearing Attention Memory Language Acquisition Language Impairment Language Processing The focus on language impairment is a historic one, dating from 400 b.C., with Hippocrates’ accounts on infirmities that produced lack of language. Contrastingly, the questions about the healthy Faculty of Language – how we come to acquire and use our mother tongue – have been systematically taken for granted through a long stretch of history, despite the fact that language is the one cognition that definitely sets us apart from other animals on this planet. In reality, language investigation has only taken a definite bio-linguistic course in the 1950’s with the advent of Noam Chomsky’s Generative Grammar (Chomsky, 1957, 1965). And the neurophysiological characterization of the healthy Faculty of Language, that is, the understanding of language-brain relations at work, only started being investigated specially in the late 1980’s, with the introduction of non-invasive cognitive assessment techniques that brought new and exciting perspectives into the field.
    [Show full text]
  • SEPTEMBER 2018 Vol
    The Journal of the IYNA SEPTEMBER 2018 Vol. 2 Issue 5 Featured Articles ‘Brain Versus Com- ‘The Brain of a puter: A Comparison Honeybee’ of Structure, Meth- - Vilena Lee ods, and Capabilities’ - Khayla Black International Youth Neuroscience Association –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Contents INTRODUCTION Letter from the Editors IYNA Editorial Team page 2 GENERAL NEUROSCIENCE The Brain of a Honeybee Vilena Lee pages 3-7 The Neuroscience Behind Imagination, Kimaya Gadre pages 8-10 or What We Imagine it to be Neurolinguistics: The Intersection of Language Geetanjali Rastogi pages 11-14 and the Brain DISEASE Protein Dysregulation in Amyotrophic Lateral Sarah Shirley p ages 15-17 Sclerosis RESEARCH Oxytocin and Social Cognitive Decits Tobey Le pages 18-20 NEUROTECHNOLOGY Brain versus Computer: A Comparison of Khayla Black pages 21-26 Structure, Methods, and Capabilities INTERVIEW An Interview With Elisabeth Glowatzki: Dharshan Varia pages 27-30 Departments of Otolaryngology and Head and Neck Surgery and Neuroscience at Johns Hopkins University Zebrash and Hearing: An Interview with Dr. Chinmayi Balusu pages 31-35 Allison Con CONTRIBUTORS PAGE page 36 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ・I NTRODUCTION ・ –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Letter From the Editors Sojas Wagle, Robert Morgan, Anita Singh, and Miruna-Elena Vlad Dear Readers, Welcome to the fth issue of the second season of the IYNA Journal! We greatly appreciate your readership, continued or new. This is the second issue with our redesigned journal process where we now have a rolling basis for article publications. This means that every article that is submitted before the deadline will not necessarily be published for that specic issue, but publication in a future issue is virtually guaranteed if the author makes changes to their article as directed by the editors’ suggestions.
    [Show full text]
  • Neuromodulation of Cursing in American English a Combined
    Brain and Language 206 (2020) 104791 Contents lists available at ScienceDirect Brain and Language journal homepage: www.elsevier.com/locate/b&l Neuromodulation of cursing in American English: A combined tDCS and T pupillometry study ⁎ Jamie Reillya,b, , Bonnie Zuckermana,b, Alexandra Kellyc, Maurice Fluriea,b, Sagar Raod a Eleanor M. Saffran Center for Cognitive Neuroscience, USA b Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA c Department of Psychology, Drexel University, Philadelphia, PA, USA d Swarthmore College, Swarthmore, PA, USA ARTICLE INFO ABSTRACT Keywords: Many neurological disorders are associated with excessive and/or uncontrolled cursing. The right prefrontal Cursing cortex has long been implicated in a diverse range of cognitive processes that underlie the propensity for cursing, Tabooness including non-propositional language representation, emotion regulation, theory of mind, and affective arousal. Psycholinguistics Neurogenic cursing often poses significant negative social consequences, and there is no known behavioral tDCS intervention for this communicative disorder. We examined whether right vs. left lateralized prefrontal neu- Brain Stimulation rostimultion via tDCS could modulate taboo word production in neurotypical adults. We employed a pre/post design with a bilateral frontal electrode montage. Half the participants received left anodal and right cathodal stimulation; the remainder received the opposite polarity stimulation at the same anatomical loci. We employed physiological (pupillometry) and behavioral (reaction time) dependent measures as participants read aloud taboo and non-taboo words. Pupillary responses demonstrated a crossover reaction, suggestive of modulation of phasic arousal during cursing. Participants in the right anodal condition showed elevated pupil responses for taboo words post stimulation.
    [Show full text]