Genomic Analysis and Assessment of Melanin Synthesis in Amorphotheca Resinae KUC3009

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Analysis and Assessment of Melanin Synthesis in Amorphotheca Resinae KUC3009 Journal of Fungi Article Genomic Analysis and Assessment of Melanin Synthesis in Amorphotheca resinae KUC3009 Jeong-Joo Oh 1 , Young Jun Kim 2 , Jee Young Kim 1, Sun Lul Kwon 1, Changsu Lee 3, Myeong-Eun Lee 4, Jung Woo Kim 5 and Gyu-Hyeok Kim 1,* 1 Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; [email protected] (J.-J.O.); [email protected] (J.Y.K.); [email protected] (S.L.K.) 2 Life Science and Biotechnology Department, Underwood Division, Underwood International College, Yonsei University, Seoul 03722, Korea; [email protected] 3 Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea; [email protected] 4 Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; [email protected] 5 Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-3014 Abstract: This study reports the draft genome of Amorphotheca resinae KUC30009, a fungal isolate with promising industrial-scale melanin production potential. The mechanisms for melanin or melanin- related pigment formation of this strain were examined through bioinformatic and biochemical strate- gies. The 30.11 Mb genome of A. resinae contains 9638 predicted genes. Genomic-based discovery analyses identified 14 biosynthetic gene clusters (BGCs) associated with secondary metabolite pro- duction. Moreover, genes encoding a specific type 1 polyketide synthase and 4-hydroxynaphthalene Citation: Oh, J.-J.; Kim, Y.J.; Kim, J.Y.; reductase were identified and predicted to produce intermediate metabolites of dihydroxy naphtha- Kwon, S.L.; Lee, C.; Lee, M.-E.; Kim, J.W.; Kim, G.-H. Genomic Analysis lene (DHN)-melanin biosynthesis pathway, but not to DHN-melanin. These findings were further and Assessment of Melanin Synthesis supported by the detection of increased flaviolin concentrations in mycelia and almost unchanged in Amorphotheca resinae KUC3009. J. morphologies of the culture grown with tricyclazole. Apart from this, the formation of melanin Fungi 2021, 7, 289. https://doi.org/ in the culture filtrate appeared to depend on the laccase-like activity of multi-copper oxidases. Si- 10.3390/jof7040289 multaneously, concentrations of nitrogen-containing sources decreased when the melanin formed in the media. Interestingly, melanin formation in the culture fluid was proportional to laccase-like Academic Editor: Laurent Dufossé activity. Based on these findings, we proposed novel strategies for the enhancement of melanin production in culture filtrates. Therefore, our study established a theoretical and methodological basis Received: 22 March 2021 for synthesizing pigments from fungal isolates using genomic- and biochemical-based approaches. Accepted: 9 April 2021 Published: 12 April 2021 Keywords: Amorphotheca resinae; fungal melanin; bioinformatics; melanin pigments Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- 1. Introduction iations. Contrary to their synthetic counterparts, the demand for natural pigments has been steadily increasing in recent years in response to global market shifts and consumer prefer- ences [1,2]. Filamentous fungi have been gaining recognition as a potential microbial source of natural pigments; however, the industrial applications of these microorganisms are not Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. as widespread as those involving algae or bacteria [3]. Fungi can potentially produce a This article is an open access article wide range of pigments, such as carotenoids, Monascus pigments, and melanins [4–8], and distributed under the terms and can utilize a wide range of substrates, thus making the medium composition design and conditions of the Creative Commons fermentation process more flexible [9]. Attribution (CC BY) license (https:// However, fungal pigments are secondary metabolites, and most of their synthesis creativecommons.org/licenses/by/ pathways and optimal production conditions remain largely unknown [10], which limits 4.0/). their optimization and widespread adoption in industrial applications. Fortunately, with J. Fungi 2021, 7, 289. https://doi.org/10.3390/jof7040289 https://www.mdpi.com/journal/jof J. Fungi 2021, 7, 289 2 of 13 the accumulation of high-throughput sequencing data, bioinformatics tools can be used to identify putative genes or gene clusters involved in metabolite production. Afterward, comprehensive prediction of the provisional biosynthetic pathways of pigments would be possible based on the identified putative genes or gene clusters [11]. Therefore, genomic studies could provide fundamental insights into the pathways associated with secondary metabolite synthesis in fungi, thus paving the way for their adoption in industrial-scale pro- cesses. We previously reported the promising capacity of the fungus Amorphotheca resinae KUC3009 to produce melanin at an industrial scale due to its antioxidant activity and high metal ion adsorption capability [8,12]. However, general information on the mechanisms of melanin or melanin-related pigment biosynthesis in A. resinae is not yet available. There- fore, understanding the mechanisms involved in melanin biosynthesis using bioinformatic tools would provide critical insights to optimize scalable pigment production using fungi. Our study sequenced and assembled the whole genome of A. resinae KUC3009. After gene annotation, the putative genes and gene clusters involved in pigment formation were comprehensively investigated. Afterward, the involvement of putative genes or gene clusters was further corroborated with biochemical and molecular approaches. Based on these results, we proposed potential strategies for the optimization of scalable melanin production. Therefore, our study establishes a robust foundation for the production of secondary metabolites using A. resinae, as well as fundamental guidelines for future studies to improve upon. 2. Materials and Methods 2.1. Fungal Culture and DNA/RNA Extraction from Mycelia A. resinae KUC3009 obtained from the Korea University Culture (KUC) collection was sub-cultured on sterilized cellophane membrane disks placed on potato dextrose agar for seven days at 25 ◦C. The mycelia on the cellophane membrane were then harvested, and their genomic DNA was extracted using a DNeasy plant mini kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions [13]. The quantity and quality of the extracted DNA were analyzed via the PicoGreen® method and gel electrophoresis. Total RNA was also extracted from the same cultures using the RNeasy plant mini kit (Qiagen, CA, USA) according to the manufacturer’s instructions. The quantity and quality of the extracted RNA were assessed using an Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) coupled with a DNA 1000 chip. 2.2. Library Construction and Whole-Genome Sequencing Library construction and genome sequencing were carried out by Macrogen Co. Ltd. (Seoul, Korea). A DNA library with fragment sizes of approximately 20 kb was prepared with the SMRTbell template prep kit 1.0 (Pacific Biosciences, Menlo Park, CA, USA) and se- quenced using the PacBio Sequel platform. Additionally, short reads were also constructed and sequenced with an Illumina HiSeq 4000 sequencer (San Diego, CA, USA). De novo assembly of PacBio sequence reads was performed using the hierarchical genome assembly process (HGAP) v4.0. After assembly, HiSeq reads were implemented to ensure a more accurate genome sequence using Pilon v1.21 [14]. An RNA-Seq library was also prepared and sequenced with an Illumina HiSeq 4000 system for high-quality genome annotation. 2.3. Genome Analysis, Annotation, and Phylogenetic Analyses The completeness of the draft genome assembly was evaluated with BUSCO v3.0.2 using 1315 core genes of the Ascomycota dataset [15]. Genomic similarity comparisons between A. resinae and other strains were performed using orthoANI [16]. After the draft genome was analyzed, the gene locations were predicted using Maker (v2.31.8) [17]. tRNA and rRNA genes were predicted using tRNAscan (v1.4) and barrnap (v0.7, https: //github.com/tseemann/barrnap, accessed on 1 November 2018), respectively [18]. The functions of the predicted genes were annotated using Protein BLAST+ (v2.6.0), after which the annotated genes were classified according to KOG analysis [19]. Gene clusters related J. Fungi 2021, 7, 289 3 of 13 to secondary metabolism were analyzed using antiSMASH Fungi v6.0 and secondary metabolite regions were identified using a “relaxed” strictness [20]. Lastly, Signal P5.0 was used to predict the presence of the signal peptide in translated products from the putative genes [21]. The internal transcribed spacer (ITS) region was selected for phylogenetic analysis of the selected fungus. The ITS region was amplified using the ITS1F (50-CTT GGT CAT TTA GAG GAA GTA A-30) and LR3 (50-CCG TGT TTC AAG ACG GG-30) primers. Polymerase chain reaction (PCR) was performed on a Bio-Rad MyCycler (Hercules, CA, USA) with the following protocol: initial denaturation at 95 ◦C for 5 min; 34 cycles at 95 ◦C (30 s), 55 ◦C (30 s), and 72 ◦C (30 s); final 5-min extension at 72 ◦C. DNA sequencing was carried out by Macrogen (Seoul, Korea) using the Sanger
Recommended publications
  • Constructing an Efficient Bacillus Subtilis Spore Display by Using
    molecules Article Constructing an Efficient Bacillus subtilis Spore Display by Using Cohesin−Dockerin Interactions He Wang 1,*,†, Xiaomin Jiang 2,†, Yongchang Qian 3 and Lianghong Yin 3 1 School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China 2 School of Agricultural and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; [email protected] 3 School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; [email protected] (Y.Q.); [email protected] (L.Y.) * Correspondence: [email protected]; Tel.: +86-511-84423559 † These authors contributed equally to this work. Abstract: Bacillus subtilis spore display has become a field of increasing interest in the past two decades. To improve the efficiency of B. subtilis spore display, its directed modification was performed based on the cellulosome architecture by introducing onto them divergent cohesin (Coh) modules that can specifically bind to the target enzyme bearing the matching dockerins (Doc). In this study, five different pairs of cohesins and dockerins, selected from four cellulolytic microbes, were examined for their capabilities in displaying a tetrameric enzyme β-galactosidase from Bacillus stearothermophilus IAM11001 on the surface of B. subtilis WB600 spores. Immunofluorescence microscopy, western blotting, dot blotting, and enzyme assay was applied to confirm its surface expression. All the resultant five Coh–Doc based spore display can hydrolyze o-nitrophenyl-β-D-galactopyranoside. Citation: Wang, H.; Jiang, X.; Qian, Further, the optimized Coh–Doc based spore display exhibited the highest display efficiency. Overall, Y.; Yin, L. Constructing an Efficient the results of current study may open new perspectives on the use of Coh–Doc interaction, which Bacillus subtilis Spore Display by will find application in improving the efficiency of B.
    [Show full text]
  • Epidemiology of Mucopolysaccharidoses Update
    diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed.
    [Show full text]
  • Pharmacological Analysis of Cyclooxygenase-1 in Inflammation
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13313–13318, October 1998 Pharmacology Pharmacological analysis of cyclooxygenase-1 in inflammation CHRISTOPHER J. SMITH,YAN ZHANG,CAROL M. KOBOLDT,JERRY MUHAMMAD,BEN S. ZWEIFEL,ALEX SHAFFER, JOHN J. TALLEY,JAIME L. MASFERRER,KAREN SEIBERT, AND PETER C. ISAKSON* Searle Research and Development, 700 Chesterfield Parkway North, St. Louis, MO 63198 Communicated by Philip Needleman, Monsanto Company, St. Louis, MO, August 25, 1998 (received for review May 11, 1998) ABSTRACT The enzymes cyclooxygenase-1 and cycloox- and is expressed constitutively in most tissues and cells (17), ygenase-2 (COX-1 and COX-2) catalyze the conversion of although it can be induced in some cell lines under certain arachidonic acid to prostaglandin (PG) H2, the precursor of conditions (18). A second, inducible, form of COX was PGs and thromboxane. These lipid mediators play important hypothesized to exist on the basis of the finding of a glucocor- roles in inflammation and pain and in normal physiological ticoid-regulated increase in COX activity observed in vitro and functions. While there are abundant data indicating that the in vivo in response to inflammatory stimuli (19, 20). The inducible isoform, COX-2, is important in inflammation and isolation of a distinct gene and enzyme for COX-2 confirmed pain, the constitutively expressed isoform, COX-1, has also this hypothesis and led to the supposition that selective inhi- been suggested to play a role in inflammatory processes. To bition of inducible COX-2 would be anti-inflammatory, while address the latter question pharmacologically, we used a preserving the physiological functions of COX-1 derived PGs.
    [Show full text]
  • Quality Control in Immunocytochemistry: Experiences with the Oestrogen Receptor Assay J Clin Pathol: First Published As 10.1136/Jcp.45.2.120 on 1 February 1992
    120 J Clin Pathol 1992;45:120-124 Quality control in immunocytochemistry: Experiences with the oestrogen receptor assay J Clin Pathol: first published as 10.1136/jcp.45.2.120 on 1 February 1992. Downloaded from F T Bosman, A F P M de Goeij, M Rousch Abstract ted specificity to be produced, and the develop- Aims: To evaluate the feasibility of an ment of very sensitive second step reagents. As interlaboratory quality control pro- a consequence, almost every surgical pathology gramme in immunohistochemistry. laboratory routinely uses immunocyto- chemistry on a daily basis. As recently Methods: Several pathology laboratories ' were asked to carry out immunohisto- indicated by Elias et al, however, an important chemical oestrogen receptor staining on a source of variability in the performance of set of freeze dried cryostat sections of immunocytochemistry techniques is the vari- breast cancer tissue. The sections and ation among laboratories in tissue processing protocols for staining and semi- and histochemical procedures. This could be quantitative scoring were mailed to the improved by standardisation, monitored by participating laboratories in two trials. quality control programmes. The oestrogen receptor content of the A typical example of an immunocyto- breast cancer samples was determined by chemical test which requires such an approach radioligand binding assay on the tumour is the evaluation of the oestrogen receptor cytosol. content in breast cancer. About 60% of Results: In the first trial 11 laboratories patients with an oestrogen receptor positive (response rate 60%) participated. Eight tumour will respond to some form ofendocrine (73%) of the participants scored within a treatment; less than 10% of oestrogen receptor 95% confidence interval and all but one negative neoplasms respond.23 Expression of correctlyclassified thetumour as receptor oestrogen receptor protein may also be regar- positive.
    [Show full text]
  • NIH Public Access Author Manuscript Trends Biotechnol
    NIH Public Access Author Manuscript Trends Biotechnol. Author manuscript; available in PMC 2012 May 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Trends Biotechnol. 2011 May ; 29(5): 222±230. doi:10.1016/j.tibtech.2011.01.003. Measuring enzyme activity in single cells Michelle L. Kovarik1 and Nancy L. Allbritton1,2 1Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 2Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695 Abstract Seemingly identical cells can differ in their biochemical state, function and fate, and this variability plays an increasingly recognized role in organism-level outcomes. Cellular heterogeneity arises in part from variation in enzyme activity, which results from interplay between biological noise and multiple cellular processes. As a result, single-cell assays of enzyme activity, particularly those that measure product formation directly, are crucial. Recent innovations have yielded a range of techniques to obtain these data, including image-, flow- and separation- based assays. Research to date has focused on easy-to-measure glycosylases and clinically- relevant kinases. Expansion of these techniques to a wider range and larger number of enzymes will answer contemporary questions in proteomics and glycomics, specifically with respect to biological noise and cellular heterogeneity. The role of enzyme activity in cellular heterogeneity Biochemical measurements of single cells are becoming more prevalent as appreciation grows for heterogeneity among seemingly identical cells [1-3]. Cellular heterogeneity is now recognized to have substantial impact at the organism level on processes such as embryonic development [4], immune response [5-6], efficacy of chemotherapy [7-8], and evolutionary fitness [3].
    [Show full text]
  • Natural Skin‑Whitening Compounds for the Treatment of Melanogenesis (Review)
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 20: 173-185, 2020 Natural skin‑whitening compounds for the treatment of melanogenesis (Review) WENHUI QIAN1,2, WENYA LIU1, DONG ZHU2, YANLI CAO1, ANFU TANG1, GUANGMING GONG1 and HUA SU1 1Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine; 2School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China Received June 14, 2019; Accepted March 17, 2020 DOI: 10.3892/etm.2020.8687 Abstract. Melanogenesis is the process for the production of skin-whitening agents, boosted by markets in Asian countries, melanin, which is the primary cause of human skin pigmenta- especially those in China, India and Japan, is increasing tion. Skin-whitening agents are commercially available for annually (1). Skin color is influenced by a number of intrinsic those who wish to have a lighter skin complexions. To date, factors, including skin types and genetic background, and although numerous natural compounds have been proposed extrinsic factors, including the degree of sunlight exposure to alleviate hyperpigmentation, insufficient attention has and environmental pollution (2-4). Skin color is determined by been focused on potential natural skin-whitening agents and the quantity of melanosomes and their extent of dispersion in their mechanism of action from the perspective of compound the skin (5). Under physiological conditions, pigmentation can classification. In the present article, the synthetic process of protect the skin against harmful UV injury. However, exces- melanogenesis and associated core signaling pathways are sive generation of melanin can result in extensive aesthetic summarized. An overview of the list of natural skin-lightening problems, including melasma, pigmentation of ephelides and agents, along with their compound classifications, is also post‑inflammatory hyperpigmentation (1,6).
    [Show full text]
  • Dermatologic Manifestations of Hermansky-Pudlak Syndrome in Patients with and Without a 16–Base Pair Duplication in the HPS1 Gene
    STUDY Dermatologic Manifestations of Hermansky-Pudlak Syndrome in Patients With and Without a 16–Base Pair Duplication in the HPS1 Gene Jorge Toro, MD; Maria Turner, MD; William A. Gahl, MD, PhD Background: Hermansky-Pudlak syndrome (HPS) con- without the duplication were non–Puerto Rican except sists of oculocutaneous albinism, a platelet storage pool de- 4 from central Puerto Rico. ficiency, and lysosomal accumulation of ceroid lipofuscin. Patients with HPS from northwest Puerto Rico are homozy- Results: Both patients homozygous for the 16-bp du- gous for a 16–base pair (bp) duplication in exon 15 of HPS1, plication and patients without the duplication dis- a gene on chromosome 10q23 known to cause the disorder. played skin color ranging from white to light brown. Pa- tients with the duplication, as well as those lacking the Objective: To determine the dermatologic findings of duplication, had hair color ranging from white to brown patients with HPS. and eye color ranging from blue to brown. New findings in both groups of patients with HPS were melanocytic Design: Survey of inpatients with HPS by physical ex- nevi with dysplastic features, acanthosis nigricans–like amination. lesions in the axilla and neck, and trichomegaly. Eighty percent of patients with the duplication exhibited fea- Setting: National Institutes of Health Clinical Center, tures of solar damage, including multiple freckles, stel- Bethesda, Md (a tertiary referral hospital). late lentigines, actinic keratoses, and, occasionally, basal cell or squamous cell carcinomas. Only 8% of patients Patients: Sixty-five patients aged 3 to 54 years were di- lacking the 16-bp duplication displayed these findings.
    [Show full text]
  • Aberrant Colourations in Wild Snakes: Case Study in Neotropical Taxa and a Review of Terminology
    SALAMANDRA 57(1): 124–138 Claudio Borteiro et al. SALAMANDRA 15 February 2021 ISSN 0036–3375 German Journal of Herpetology Aberrant colourations in wild snakes: case study in Neotropical taxa and a review of terminology Claudio Borteiro1, Arthur Diesel Abegg2,3, Fabrício Hirouki Oda4, Darío Cardozo5, Francisco Kolenc1, Ignacio Etchandy6, Irasema Bisaiz6, Carlos Prigioni1 & Diego Baldo5 1) Sección Herpetología, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo 11800, Uruguay 2) Instituto Butantan, Laboratório Especial de Coleções Zoológicas, Avenida Vital Brasil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil 3) Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Travessa 14, Rua do Matão, 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 4) Universidade Regional do Cariri, Departamento de Química Biológica, Programa de Pós-graduação em Bioprospecção Molecular, Rua Coronel Antônio Luiz 1161, Pimenta, Crato, Ceará 63105-000, CE, Brazil 5) Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, CP 3300, Posadas, Misiones, Argentina 6) Alternatus Uruguay, Ruta 37, km 1.4, Piriápolis, Uruguay Corresponding author: Claudio Borteiro, e-mail: [email protected] Manuscript received: 2 April 2020 Accepted: 18 August 2020 by Arne Schulze Abstract. The criteria used by previous authors to define colour aberrancies of snakes, particularly albinism, are varied and terms have widely been used ambiguously. The aim of this work was to review genetically based aberrant colour morphs of wild Neotropical snakes and associated terminology. We compiled a total of 115 cases of conspicuous defective expressions of pigmentations in snakes, including melanin (black/brown colour), xanthins (yellow), and erythrins (red), which in- volved 47 species of Aniliidae, Boidae, Colubridae, Elapidae, Leptotyphlopidae, Typhlopidae, and Viperidae.
    [Show full text]
  • Molecular Phylogenetic and Scanning Electron Microscopical Analyses
    Acta Biologica Hungarica 59 (3), pp. 365–383 (2008) DOI: 10.1556/ABiol.59.2008.3.10 MOLECULAR PHYLOGENETIC AND SCANNING ELECTRON MICROSCOPICAL ANALYSES PLACES THE CHOANEPHORACEAE AND THE GILBERTELLACEAE IN A MONOPHYLETIC GROUP WITHIN THE MUCORALES (ZYGOMYCETES, FUNGI) KERSTIN VOIGT1* and L. OLSSON2 1 Institut für Mikrobiologie, Pilz-Referenz-Zentrum, Friedrich-Schiller-Universität Jena, Neugasse 24, D-07743 Jena, Germany 2 Institut für Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Erbertstr. 1, D-07743 Jena, Germany (Received: May 4, 2007; accepted: June 11, 2007) A multi-gene genealogy based on maximum parsimony and distance analyses of the exonic genes for actin (act) and translation elongation factor 1 alpha (tef ), the nuclear genes for the small (18S) and large (28S) subunit ribosomal RNA (comprising 807, 1092, 1863, 389 characters, respectively) of all 50 gen- era of the Mucorales (Zygomycetes) suggests that the Choanephoraceae is a monophyletic group. The monotypic Gilbertellaceae appears in close phylogenetic relatedness to the Choanephoraceae. The mono- phyly of the Choanephoraceae has moderate to strong support (bootstrap proportions 67% and 96% in distance and maximum parsimony analyses, respectively), whereas the monophyly of the Choanephoraceae-Gilbertellaceae clade is supported by high bootstrap values (100% and 98%). This suggests that the two families can be joined into one family, which leads to the elimination of the Gilbertellaceae as a separate family. In order to test this hypothesis single-locus neighbor-joining analy- ses were performed on nuclear genes of the 18S, 5.8S, 28S and internal transcribed spacer (ITS) 1 ribo- somal RNA and the translation elongation factor 1 alpha (tef ) and beta tubulin (βtub) nucleotide sequences.
    [Show full text]
  • Aspergillus Tubingensis Causes Leaf Spot of Cotton (Gossypium Hirsutum L.) in Pakistan
    Phyton, International Journal of Experimental Botany DOI: 10.32604/phyton.2020.08010 Article Aspergillus tubingensis Causes Leaf Spot of Cotton (Gossypium hirsutum L.) in Pakistan Maria Khizar1, Urooj Haroon1, Musrat Ali1, Samiah Arif2, Iftikhar Hussain Shah2, Hassan Javed Chaudhary1 and Muhammad Farooq Hussain Munis1,* 1Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan 2Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China *Corresponding Author: Muhammad Farooq Hussain Munis. Email: [email protected] Received: 20 July 2019; Accepted: 12 October 2019 Abstract: Cotton (Gossypium hirsutum L.) is a key fiber crop of great commercial importance. Numerous phytopathogens decimate crop production by causing various diseases. During July-August 2018, leaf spot symptoms were recurrently observed on cotton leaves in Rahim Yar Khan, Pakistan and adjacent areas. Infected leaf samples were collected and plated on potato dextrose agar (PDA) media. Causal agent of cotton leaf spot was isolated, characterized and identified as Aspergillus tubingensis based on morphological and microscopic observations. Conclusive identification of pathogen was done on the comparative molecular analysis of CaM and β-tubulin gene sequences. BLAST analysis of both sequenced genes showed 99% similarity with A. tubingensis. Koch’s postulates were followed to confirm the pathogenicity of the isolated fungus. Healthy plants were inoculated with fungus and similar disease symptoms were observed. Fungus was re-isolated and identified to be identical to the inoculated fungus. To our knowledge, this is the first report describing the involvement of A. tubingensis in causing leaf spot disease of cotton in Pakistan and around the world.
    [Show full text]
  • Colorado Birds | Summer 2021 | Vol
    PROFESSOR’S CORNER Learning to Discern Color Aberration in Birds By Christy Carello Professor of Biology at The Metropolitan State University of Denver Melanin, the pigment that results in the black coloration of the flight feathers in this American White Pelican, also results in stronger feathers. Photo by Peter Burke. 148 Colorado Birds | Summer 2021 | Vol. 55 No.3 Colorado Birds | Summer 2021 | Vol. 55 No.3 149 THE PROFESSOR’S CORNER IS A NEW COLORADO BIRDS FEATURE THAT WILL EXPLORE A WIDE RANGE OF ORNITHOLOGICAL TOPICS FROM HISTORY AND CLASSIFICATION TO PHYSIOLOGY, REPRODUCTION, MIGRATION BEHAVIOR AND BEYOND. AS THE TITLE SUGGESTS, ARTICLES WILL BE AUTHORED BY ORNI- THOLOGISTS, BIOLOGISTS AND OTHER ACADEMICS. Did I just see an albino bird? Probably not. Whenever humans, melanin results in our skin and hair color. we see an all white or partially white bird, “albino” In birds, tiny melanin granules are deposited in is often the first word that comes to mind. In feathers from the feather follicles, resulting in a fact, albinism is an extreme and somewhat rare range of colors from dark black to reddish-brown condition caused by a genetic mutation that or even a pale yellow appearance. Have you ever completely restricts melanin throughout a bird’s wondered why so many mostly white birds, such body. Many birders have learned to substitute the as the American White Pelican, Ring-billed Gull and word “leucistic” for “albino,” which is certainly a Swallow-tailed Kite, have black wing feathers? This step in the right direction, however, there are many is due to melanin.
    [Show full text]
  • Amino Acid Disorders
    471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue.
    [Show full text]