Seismicity and Shape of the Subducted Nazca Plate

Total Page:16

File Type:pdf, Size:1020Kb

Seismicity and Shape of the Subducted Nazca Plate JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. B12, PAGES 17,503-17,529, NOVEMBER 10, 1992 Seismicity and Shapeof the SubductedNazca Plate THOMASCAHILL 1 AND BRYANL. ISACKS Institutefor the Studyof Continentsand Departmentof GeologicalSciences, Cornell University,Ithaca New York An updatedcompilation of earthquakelocations and focal mechanismsolutions from the International SeismologicalCentre and Preliminary Determination of Earthquakes is the basis of a comprehensivestudy of the geometry of the Wadati-Benioff zone beneath western South America. The new data support previous mapping of a sharp flexure rather than a tear in the subductedNazca plate beneath southern Peru and provide evidencefor a similar flexure in the southwardtransition from nearly horizontal subductionto a slab with -30 ø dip at latitude 33øS. In contrast, the transition from 30 ø slab dip beneath Bolivia to a nearly horizontal dip in the region between 28øS - 32øS is more gradual, occurring over several hundred kilometers of along-strike distance between 20øS and 32øS. This southward flattening corresponds to a broadeningof a horizontal, benchlike part of the subductedplate formed between 100 and 125 km depth. The transition in continental tectonic style near 27øS-28øS, from a wide, volcanically active plateau to a narrow, nonvolcaniccordillera, appearsnot to be associatedwith the main slab flattening, which begins to the north of these latitudes, but with a more abrupt changein curvature of the subductedslab, from convex upward to concaveupward, immediately below the plate boundary interface. The concept of Gaussian curvature is applied to slab bending to explain how subductiongeometry is affected by the shape of the South American plate. We hypothesize that the polarity of vertical curvature in the subducting slab is governed by the orientation of lateral curvature of the plate margin. Focal mechanism solutions for intermediate and deep earthquakesare grouped by geographicregion and inverted for the orientation and relative magnitudesof the principal stresses. Results of the inversion indicate that downdip extension dominatesin the slab above 350 km while downdip compressiondominales at greaterdepths. INTRODUCTION Barazangi and lsacks [1976] first interpretedthe teleseismic Details of subductiongeometry are crucial to refine models locationsas indicating the individual segmentsare boundedby relating subduction geometry to upper-plate tectonics; this is tears in the subductingslab. They visualized the two shallow- especially true in the case of the South American Wadati- dipping segmentsof slab having edges sharply offset froIn the Benioff zone (WBZ), the east-dipping zone of mantle adjoining segments by a throw that increases toward the earthquakes that delineates the position and shape of the downdip direction. Hasegawa and Sacks [1981] later inferred, subducted Nazca plate. Hamilton [1969] and Jordan et al. from local seismic data gathered in the vicinity of the segment [1983] and othershave recognizedthe importanceof using this boundary beneath southern Peru, a continuous flexure of the active example of an ocean-continentconvergence system for slab rather than atear. Beyis [1986] and Beyis anttlsacks developing tectonic models of the late Mesozoic in the western [1984] analyzed the distribution of teleseismic hypocenters United States. We presentan updated,three-dimensional view using trend surface analysis and showed that it was possible to of the WBZ beneath western South America, produced by interpret every segment boundary in the region in terms of a adding 9 yearsof teleseismicdata to previousco•npilations of smooth contortion rather than a tear. mantle seismicity. Tears may exist in the vicinity of one or several of the large The feature that lnost strongly characterizes the subduction aseismic areas within the central Andean WBZ. However, the geometry beneath the Andean cordillera is the along-strike teleseisrnic hypocenters indicate such tears would not be variation in dip of the subductedNazca plate [Sykesand Hayes, segment-bounding faults with large vertical offset but rather 1971; Barazangi and lsacks, 1976; Beyis and Isacks, 1984]. would separate gaps lying within the space of the curved Barazangi and lsacks [1976] described the subductedslab as regional trend. Nothing short of one or more large tear-faulting having four 'segments' between 4øS and 45øS, with each focal mechanisrnscould establish the existenceof lithosphere- segment distinguished from its neighbors by a significant scale ripping of the subductedslab; to date, no such event has changein the angle of dip. Beneathsouthern Peru and northern been recognized within the set of central Andean WBZ Chile (15øS to 27øS), and again south of 33øS, the WBZ dips earthquakes. moderately to the east at an angle of about 30 ø. Beneath Associatedwith the changesin angle of subductionbeneath northern and central Peru (8øS to 14øS) and western Argentina western South America are changes in the regional-scale (28øS to 32øS) the subductedlithosphere extends eastwardfor tectonic character of the overriding plate [Barazangi and hundredsof kilometers at a depth near 100 km before resuming Isacks,1976; Jordan et al. 1983]. A distinctive feature of central its downward descent. Andean geology is the spatial correlation between late Cenozoic arc volcanism, plateau formation, and steeper subduction angle. In this paper, digitized topographic and tNow at EngineeringTectonics, P.A. Winston-Salem,North bathyrnetric data and an updated catalog of young volcanic Carolina. centers from lsacks [1988] are used to detail the spatial relationships between subduction geometry, active volcanism, Copyright 1992 by the American GeophysicalUnion. and the physiographyof the Andean cordillera. Paper Number 92JB00493. Along with its effect on the upper plate, the geometry of 0148-0227/92/92JB-00493505.00 subducted Nazca plate also strongly influences deformation 17,503 17,504 CAHILL AND ISACKS:SEISMICITY OF THE S UBDUCTEDNAZCA PLATE within the slab itself [ Isacks and Barazangi, 1977' Schneider longer be discerned. This observation could be predicted from and Sacks, 1987]. The orientation of the stress field in noting that events with n<15 often have a large standard descending slabs is manifested in the focal mechanism deviation of travel time residuals (s), one indicator of location solutions for the intraplate events [Isacks and Molttar, 1971' quality (Figure la). Creager andBoyd, 1991]' within the set of South American The hypocentral data presentedin the cross sections and mantle earthquakes are many that are large enough for regional seismicity maps include all events reported by 15 or determinationof reliable fault-planesolutions. We use several more stations. In determiningthe best fitting depthcontours, a previously unpublishedsolutions along with Harvard Centroid more restrictive subsetof the data was used; all hypocenters Moment Tensor (HCMT) solutions and those of Stauder [ 1973, based on 40 or more (n_>40) P arrival time reports were 1975] to invert for the principal axes and relative magnitudesof included in the selection of events used; in areas where the stress in the subducted slab. seismicity represented byn>40 was sparse or nonexistent, DATA eventswith fewer reports (first 25 _<n _<39 , then 15 _<n _<24) Wadati-BenioffZone Itypocenters were considered; these smaller events were rejected if arrival The catalogs of the International SeismologicalCentre time residualsfrom nearby stations(A<5 ø) were very large. (ISC) for the period of 1964-1985 and the United States In the course of selecting data to use for this study we Geological Survey Preliminary Determination of Epicenters consideredthe complete set of available teleseismiclocations. (PDE) for the periodsof 1963 and 1986-1988 were the primary In addition to the data sources mentioned above, this included sourcesof data used in this study. Intermediate-depthevents the International Seismological Summary catalog between (h>60 kin) were selected from thesetwo catalogson the basis 1950 and 1963, the PDE catalog from 1950-1982, and an of the number of arrival time reports (n) used to locate the unpublished 1964 compilation of Sykes and Hayes [1971]. earthquake. Comparingmaps made from thesedata sets,which spanahnost In a studyof WBZ morphology,some grading and culling 40 years, we observed that consistency in the spatial of the data are necessary to assure use of only reliable distribution of intermediate-depth seismicity is a fundamental hypocentrallocations. We chose to employ n as our sole feature of the South American WBZ. The clusteringof events selection criterion. Standard hypocenter grading schemes, into tight bands of seismicity noted by Santo [1969] for the based on the geographic distribution of teleseismic reporting period of 1960-1968 and by Stauder[1973, 1975] for 1962-1971 stations,local station geometry, and surface-reflectedphases to is reproduced faithfully by events from other time intervals of verify focal depths, are difficult to apply to South American similar length from any of the other compilations. WBZ earthquakes. The azimuthal and distancedistribution of Furthermore,no event in the period between1950 and 1985 seismographstations for events in this region is peculiar; there has been reliably located in any of the substantialspatial gaps are few stationslying between A=10 ø and A=85 ø to the west in seismicity that also characterize the South American WBZ. (the eastern Pacific Ocean) and few stations between A=10 ø Data
Recommended publications
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Shape of the Subducted Rivera and Cocos Plates in Southern Mexico
    JOURNALOF GEOPHYSICAL RESEARCH, VOL. 100, NO. B7, PAGES 12,357-12,373, JULY 10, 1995 Shapeof the subductedRivera and Cocosplates in southern Mexico: Seismic and tectonicimplications Mario Pardo and Germdo Sufirez Insfitutode Geoffsica,Universidad Nacional Aut6noma de M6xico Abstract.The geometry of thesubducted Rivera and Cocos plates beneath the North American platein southernMexico was determined based on the accurately located hypocenters oflocal and te!eseismicearthquakes. The hypocenters ofthe teleseisms were relocated, and the focal depths of 21 eventswere constrainedusing a bodywave inversion scheme. The suductionin southern Mexicomay be approximated asa subhorizontalslabbounded atthe edges by the steep subduction geometryof theCocos plate beneath the Caribbean plate to the east and of theRivera plate beneath NorthAmerica to thewest. The dip of theinterplate contact geometry is constantto a depthof 30 kin,and lateral changes in thedip of thesubducted plate are only observed once it isdecoupled fromthe overriding plate. On thebasis of theseismicity, the focal mechanisms, and the geometry ofthe downgoing slab, southern Mexico may be segmented into four regions ß(1) theJalisco regionto thewest, where the Rivera plate subducts at a steepangle that resembles the geometry of theCocos plate beneath the Caribbean plate in CentralAmerica; (2) theMichoacan region, where thedip angleof theCocos plate decreases gradually toward the southeast, (3) theGuerrero-Oaxac.a region,bounded approximately by theonshore projection of theOrozco and O'Gorman
    [Show full text]
  • Interplate Coupling Along the Nazca Subduction Zone on the Pacific Coast of Colombia Deduced from Geored GPS Observation Data
    Volume 4 Quaternary Chapter 15 Neogene https://doi.org/10.32685/pub.esp.38.2019.15 Interplate Coupling along the Nazca Subduction Published online 28 May 2020 Zone on the Pacific Coast of Colombia Deduced from GeoRED GPS Observation Data Paleogene Takeshi SAGIYA1 and Héctor MORA–PÁEZ2* 1 [email protected] Nagoya University Disaster Mitigation Research Center Nagoya, Japan Abstract The Nazca Plate subducts beneath Colombia and Ecuador along the Pacific Cretaceous coast where large megathrust events repeatedly occur. Distribution of interplate 2 [email protected] Servicio Geológico Colombiano coupling on the subducting plate interface based on precise geodetic data is im- Dirección de Geoamenazas portant to evaluate future seismic potential of the megathrust. We analyze recent Space Geodesy Research Group Diagonal 53 n.° 34–53 continuous GPS data in Colombia and Ecuador to estimate interplate coupling in the Bogotá, Colombia Jurassic Nazca subduction zone. To calculate the interplate coupling ratio, in addition to the * Corresponding author MORVEL plate velocities, three different Euler poles for the North Andean Block are tested but just two of them yielded similar results and are considered appropriate for discussing the Pacific coastal area. The estimated coupling distribution shows four main locked patches. The middle two locked patches correspond to recent large Triassic earthquakes in this area in 1942, 1958, and 2016. The southernmost locked patch may be related to slow slip events. The northern locked patch has a smaller coupling ra- tio of less than 0.5, which may be related to the large earthquake in 1979. However, because of the sparsity of the GPS network, detailed interpretation is not possible.
    [Show full text]
  • Back-Arc Opening and the Mode of Subduction
    VOL.84, NO. B3 JOURNALOF GEOPHYSICALRESEARCH MARCH10, 1979 Back-ArcOpening and the Mode of Subduction SEIYA UYEDA EarthquakeResearch Institute, University of Tokyo,Tokyo, Japan HIROO K ANAMORI SeismologicalLaboratory, California Institute of Technology,Pasadena, California 91125 Trench-arcsystems (subduction zones) can be classified into two types depending onwhether or not activelyopening back-arc basins are associated with them. This suggests that subduction of an oceanic plateis not a sufficientcondition for back-arc opening, though it may be necessary one. Mechanisms that causethe distinction between the two types have been investigated. Earthquake studies suggest that there isa significantdifference inthe mode of plate motion at interplate boundaries between the two types of trench-arcsystems. Extreme cases are Chile, where plate motion is seismic, and the M arianas arc, where it is aseismic.This difference seems to indicatethat the stress state in theback-arc area differs between the twotypes: compression in the Chilean type and tension in theMarianas type. This difference in thestress stateis alsomanifested in other tectonic features, such as topography, gravity, volcanic activity, and crustalmovement. Two possible mechanisms forthe difference between the two types are suggested: (1) Thenature of thecontact zone between upper and lower plates chahges from tight coupling (Chile) to decoupling(the Marianas) through the evolutionary process ofsubduction. The decoupling results inan oceanwardretreat of the trench and back-arc opening. (2) The downgoing slab is anchored tothe mantle, sothat the position of a trenchis also fixed with respect to themantle. Since the motion in themantle is slowcompared tothat of surface plates, it is the motion of the landward plate which controls the opening and nonopeningof back-arcs.
    [Show full text]
  • Chapter 4 Tectonic Reconstructions of the Southernmost Andes and the Scotia Sea During the Opening of the Drake Passage
    123 Chapter 4 Tectonic reconstructions of the Southernmost Andes and the Scotia Sea during the opening of the Drake Passage Graeme Eagles Alfred Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bre- merhaven, Germany e-mail: [email protected] Abstract Study of the tectonic development of the Scotia Sea region started with basic lithological and structural studies of outcrop geology in Tierra del Fuego and the Antarctic Peninsula. To 19th and early 20th cen- tury geologists, the results of these studies suggested the presence of a submerged orocline running around the margins of the Scotia Sea. Subse- quent increases in detailed knowledge about the fragmentary outcrop ge- ology from islands distributed around the margins of the Scotia Sea, and later their interpretation in light of the plate tectonic paradigm, led to large modifications in the hypothesis such that by the present day the concept of oroclinal bending in the region persists only in vestigial form. Of the early comparative lithostratigraphic work in the region, only the likenesses be- tween Jurassic—Cretaceous basin floor and fill sequences in South Geor- gia and Tierra del Fuego are regarded as strong enough to be useful in plate kinematic reconstruction by permitting the interpretation of those re- gions’ contiguity in mid-Mesozoic times. Marine and satellite geophysical data sets reveal features of the remaining, submerged, 98% of the Scotia 124 Sea region between the outcrops. These data enable a more detailed and quantitative approach to the region’s plate kinematics. In contrast to long- used interpretations of the outcrop geology, these data do not prescribe the proximity of South Georgia to Tierra del Fuego in any past period.
    [Show full text]
  • Large Intermediate-Depth Earthquakes and the Subduction Process
    80 Physics ofthe Earth and Planetary Interiors, 53 (1988) 80—166 Elsevier Science Publishers By., Amsterdam — Printed in The Netherlands Large intermediate-depth earthquakes and the subduction process Luciana Astiz ~, Thorne Lay 2 and Hiroo Kanamori ~ ‘Seismological Laboratory, California Institute of Technology, Pasadena, CA (U.S.A.) 2 Department of Geological Sciences, University ofMichigan, Ann Arbor, MI (USA.) (Received September 22, 1987; accepted October 21, 1987) Astiz, L., Lay, T. and Kanamori, H., 1988. Large intermediate-depth earthquakes and the subduction process. Phys. Earth Planet. Inter., 53: 80—166. This study provides an overview of intermediate-depth earthquake phenomena, placing emphasis on the larger, tectonically significant events, and exploring the relation of intermediate-depth earthquakes to shallower seismicity. Especially, we examine whether intermediate-depth events reflect the state of interplate coupling at subduction zones. and whether this activity exhibits temporal changes associated with the occurrence of large underthrusting earthquakes. Historic record of large intraplate earthquakes (m B 7.0) in this century shows that the New Hebrides and Tonga subduction zones have the largest number of large intraplate events. Regions associated with bends in the subducted lithosphere also have many large events (e.g. Altiplano and New Ireland). We compiled a catalog of focal mechanisms for events that occurred between 1960 and 1984 with M> 6 and depth between 40 and 200 km. The final catalog includes 335 events with 47 new focal mechanisms, and is probably complete for earthquakes with mB 6.5. For events with M 6.5, nearly 48% of the events had no aftershocks and only 15% of the events had more than five aftershocks within one week of the mainshock.
    [Show full text]
  • Map and Database of Quaternary Faults in Venezuela and Its Offshore Regions
    U.S. Department of the Interior U.S. Geological Survey Map and Database of Quaternary Faults in Venezuela and its Offshore Regions By Franck A. Audemard M., Michael N. Machette, Jonathan W. Cox, Richard L. Dart, and Kathleen M. Haller Open-File Report 00-018 (paper edition) This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. 2000 Map and Database of Quaternary Faults in Venezuela and its Offshore Regions A project of the International Lithosphere Program Task Group II-2, Major Active Faults of the World Data and map compiled by 1 FRANCK A. AUDEMARD M., 2 MICHAEL N. MACHETTE, 2 JONATHAN W. COX, 2 RICHARD L. DART, AND 2 KATHLEEN M. HALLER 1 Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS) Dpto. Ciencias de la Tierra, Prolongacion Calle Mara, El Llanito Caracas 1070-A, Venezuela 2 U.S. Geological Survey (USGS) Central Geologic Hazards Team MS 966, P.O. Box 25046 Denver, Colorado, USA Regional Coordinator for Central America CARLOS COSTA Universidad Nacional de San Luis Departmento de Geologia Casilla de Correo 320 San Luis, Argentina ILP Task Group II-2 Co-Chairman, Western Hemisphere MICHAEL MACHETTE U.S. Geological Survey (USGS) Central Geologic Hazards Team MS 966, P.O. Box 25046 Denver, Colorado, USA January 2000 version i TABLE OF CONTENTS PAGE INTRODUCTION...............................................................................................................................................................1
    [Show full text]
  • Tectonic Segmentation of the North Andean Margin: Impact of the Carnegie Ridge Collision
    ELSEVIER Earth and Planetary Science Letters 168 (1999) 255±270 Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision M.-A. Gutscher a,Ł, J. Malavieille a, S. Lallemand a, J.-Y. Collot b a Laboratoire de GeÂophysique et Tectonique, UMR 5573, Universite Montpellier II, Place E. Bataillon, F-34095 Montpellier, Cedex 5, France b IRD, Geosciences Azur, Villefranche-sur-Mer, France Received 17 July 1998; accepted 2 March 1999 Abstract The North Andean convergent margin is a region of intense crustal deformation, with six great subduction earthquakes Mw ½ 7:8 this century. The regional pattern of seismicity and volcanism shows a high degree of segmentation along strike of the Andes. Segments of steep slab subduction alternate with aseismic regions and segments of ¯at slab subduction. This segmentation is related to heterogeneity on the subducting Nazca Plate. In particular, the in¯uence of the Carnegie Ridge collision is investigated. Four distinct seismotectonic regions can be distinguished: Region 1 ± from 6ëN to 2.5ëN with steep ESE-dipping subduction and a narrow volcanic arc; Region 2 ± from 2.5ëN to 1ëS showing an intermediate-depth seismic gap and a broad volcanic arc; Region 3 ± from 1ëS to 2ëS with steep NE-dipping subduction, and a narrow volcanic arc; Region 4 ± south of 2ëS with ¯at subduction and no modern volcanic arc. The Carnegie Ridge has been colliding with the margin since at least 2 Ma based on examination of the basement uplift signal along trench-parallel transects. The subducted prolongation of Carnegie Ridge may extend up to 500 km from the trench as suggested by the seismic gap and the perturbed, broad volcanic arc.
    [Show full text]
  • Presentation on Pacific Plate and Associated Boundaries
    PACIFIC PLATE AND ASSOCIATED BOUNDARIES The Pacific Plate • Pacific Plate is the largest plate and an oceanic plate. • It shares its boundaries with numerous plates namely; North American Plate.(Convergent and transform fault) Philippine Plate.(Convergent) Juan de Fuca Plate.(Convergent) Indo – Australian Plate.(Convergent, Transform Fault) Cocos Plate.(Divergent) Nazca Plate.(Divergent) Antarctic Plate.(Divergent,Transform Fault) Types of Plate Boundaries • Convergent Boundary: Subduction zones where two plates converges. Eg; Aleutian Islands(Alaska) • Divergent Boundary: Spreading centres where two plates move away from each other. Eg; East Pacific Rise (MOR, Pacific Ocean). • Transform Faults: Boundary where two plates slide past each other. For Eg. ; San Andreas Fault. BOUNDARY WITH ANTARCTIC PLATE DIVERGENT BOUNDARY • Pacific – Antarctic Ridge TRANSFORM FAULT • Louisville Seamount Chain Pacific – Antarctic Ridge Pacific – Antarctic Ridge(PAR) is located on the seafloor of the South Pacific Ocean. It is driven by the interaction of a mid oceanic ridge and deep mantle plumes located in the eastern portion of East Pacific Ridge. Louisville Seamount Chain It is the longest line of seamount chain in the Pacific Ocean of about 4,300 km, formed along the transform boundary in the western side between Pacific plate and Antarctic plate. It was formed from the Pacific Plate sliding over a long – lived centre of upwelling magma called the Louisville hotspot. BOUNDARY WITH PHILIPPINE PLATE CONVERGENT BOUNDARY • Izu – Ogasawara Trench • Mariana Trench Izu – Ogasawara Trench It is an oceanic trench in the western Pacific Ocean. It stretches from Japan to northern most section of Mariana Trench. Here, the Pacific Plate is being subducted beneath the Philippine Sea Plate.
    [Show full text]
  • Plate Tectonic Setting of the Andean Cordillera
    183 by Victor A. Ramos Plate tectonic setting of the Andean Cordillera Laboratorio de Tectónica Andina, Universidad de Buenos Aires, Argentina. E-mail: [email protected] The Andes are a natural laboratory for the study of the acterize the different segments are widely variable. The present interaction between subduction of the oceanic plate and overview will focus on the major geological differences among these segments, based on today’s plate-tectonic knowledge of this moun- active geological processes. Inter- and intraplate seis- tain chain. micity, volcanic activity, thick- and thin-skinned fold and thrust belts, and foreland basin subsidence, in con- junction with space geodetic observations, contribute to Major geological provinces characterize the present plate tectonic setting of discrete The Andes north of the Golfo de Guayaquil are unique, as estab- segments of the Andes. The inherited geological history, lished by Gansser (1973). The Northern Andes record an important as well as the present tectonic setting, is responsible for accretion of oceanic crust during Jurassic, late Cretaceous, and Pale- the unique geology of the Northern, Central, and South- ogene times. As a result, the Western Cordillera of Colombia and Ecuador is mainly constituted of an oceanic basement that during ern Andes. The Northern Andes are the result of Meso- accretion was related to ophiolite obduction, important penetrative zoic and Cenozoic collisions of oceanic terranes, prior deformation and metamorphism, in cases up to blue schist facies. to the present Andean-type setting. The Central Andes Further north, the emplacement of the Caribbean nappes was related to the collision of an island arc system, the Bonaire block, during have a long history of subduction and volcanic arc Paleogene times (Bosch and Rodríguez, 1992, Kellogg and Bonini, activity, while the Southern Andes record the closing of 1982).
    [Show full text]
  • The Nazca–South America Euler Vector and Its Rate of Change
    Journal of South American Earth Sciences 16 (2003) 125–131 www.elsevier.com/locate/jsames The Nazca–South America Euler vector and its rate of change Eric Kendricka, Michael Bevisa,*, Robert Smalley Jr.b, Benjamin Brooksa, Rodrigo Barriga Vargasc, Eduardo Laurı´ad, Luiz Paulo Souto Fortese aSchool of Ocean and Earth Science and Technology, University of Hawaii, 1680 East West Road, Honolulu, HI 96822, USA bCenter for Earthquake Research, University of Memphis, Memphis, TN, USA cInstituto Geogra´fico Militar de Chile, Santiago, Chile dInstituto Geogra´fico Militar de Argentina, Buenos Aires, Argentina eInstituto Brasileiro de Geografia e Estatı´stica, Rio de Janeiro, Brazil Received 1 March 2002; accepted 1 December 2002 Abstract We present velocities relative to the South American plate for five GPS stations on the Nazca plate and use these measurements to estimate the modern Euler vector. We find a pole at 55.88N, 92.58W with a rotation rate of 0.60 8/Myr. Because the GPS station at Easter Island appears to be moving at approximately 6.6 mm/yr relative to the other Nazca stations, we repeat our analysis with this station excluded from the inversion to obtain a second and preferred result (called CAP10) with a pole at 61.08N, 94.48W and a rate of 0.57 8/Myr. We compare these results with published finite rotation vectors and infer that during the past 10–20 Myrs, the Nazca–South America rotation rate has decelerated by 0.048–0.06 8/Myr2. q 2003 Elsevier Science Ltd. All rights reserved. Keywords: Nazca–South American plate; Kinematic analysis; Euler vector 1.
    [Show full text]
  • Nazca Plate Region) GRENADA 80°W 60°W 40°W 11900900 a A' 1 1 1 2 0 200 400 600 800 1,000 1,200 BARBADOS Compiled by Gavin P
    U.S. DEPARTMENT OF THE INTERIOR OPEN-FILE REPORT 2015–1031-E U.S. GEOLOGICAL SURVEY This report supplements Open-File Report 2010–1083-E 80°W 70°W 60°W 50°W PRE-INSTRUMENTAL SEISMICITY 1500 – 1899 SAINT LUCIA Seismicity of the Earth 1900–2013 BARBADOS Deaths, tsunami, MMI VIII+, or M 8 SAINT VINCENT AND THE GRENADINES HONDURAS M 8.5 labeled with year ARUBA CURAÇAO Seismotectonics of South America (Nazca Plate Region) GRENADA 80°W 60°W 40°W 11900900 A A' 1 1 1 2 0 200 400 600 800 1,000 1,200 BARBADOS Compiled by Gavin P. Hayes, Gregory M. Smoczyk, Harley M. Benz, Antonio Villaseñor, TRINIDAD AND TOBAGO CURAÇAO NICARAGUA Barranquilla Maracaibo Caracas HONDURAS GRENADA 3 Valencia Maracay Demerara Plain and Kevin P. Furlong Cartagena TRENCH AXIS Managua Barquisimeto NICARAGUA 19921992 0 2014 11950950 Clark Basin 10° COSTA RICA PANAMA 1U.S. Geological Survey VENEZUELA 2 GUYANA Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas, (CSIC), Barcelona, Spain COSTA RICA Panama FRENCH 3Department of Geosciences, Pennsylvania State University, University Park, Pa., USA San Jose Cucuta VENEZUELA SURINAME GUIANA 10°N 11983983 PANAMA –200 COLOMBIA Bucaramanga TECTONIC SUMMARY 19341934 GUYANA Equator The South American arc extends over 7,000 kilometers (km), from the Chilean margin triple junction offshore of southern Chile, to Medellin Equator ECUADOR its intersection with the Panama fracture zone, offshore of the southern coast of Panama in Central America. It marks the plate –400 Manizales FRENCH boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca Bogota SURINAME PROFILE A plate begin their descent into the mantle beneath South America.
    [Show full text]