Appendix I. Subharmonic and Plurisubharmonic Functions

Total Page:16

File Type:pdf, Size:1020Kb

Appendix I. Subharmonic and Plurisubharmonic Functions Appendix I. Subharmonic and Plurisubharmonic Functions Subharmonic functions and potential theory are often used in the theory of one complex variable. For holomorphic functions of several complex vari­ ables defined in a domain Q c <en, this same important role is played by another class of real valued functions, the class PSH (Q) of functions pluri­ subharmonic in Q. For f E.Yf(Q), both If I and log If I belong to PSH(Q); for CPiEPSH(Q), i=l, ... ,N, sup CPi is in PSH(Q). Thus the class PSH(Q) is a 1 -:5,i5:N natural extension of the set {log If I, f E.Yf(Q)} and gives general methods for the study of this set. Definition 1.1. Let QcJRm be a domain. A real valued function cp(x) with values in [ - 00, + (0) is said to be subharmonic in Q if i) cp(x) is upper semi-continuous and cp(x) $ - 00; ii) for every XEQ and every r<dQ(x) = inf {llx -x'II: X' EC Q} cp(X):;:;W,;;l S cp(x+rrx)dwm(rx)=)o(x. r, cp) lIall ~ 1 where dW m is the Lebesgue measure on the unit sphere sm-l and Wm is the total mass of sm-l. We denote by SeQ) the family of subharmonic functions in Q. If cp and - cp are subharmonic in Q, we say that cp is harmonic in Q. Remark. If cp is subharmonic in Q and l' < dQ(x), then cp(X):;:;,,;;l r- 2m S cp(x+xl)d'm(x/)=A(x, r, cp) Ilxll ;:;;r where dIm is the Lebesgue measure in JRm and 'm is the total mass of the unit ball B(O, 1). Definition 1.2. Let Q c <en be a domain. A real valued function cp(x) with values in [- 00, + (0) is said to be plurisubharmonic if i) cp(z) is upper semi-continuous and cp(z) $ - 00; ii) for every l' such that {z+uw: lui :;:;1', UE<e} cQ 2" cp(z);;;;(2n)-1 S cp(z+rei8 w)dO. o Appendix I. Subharmonic and Plurisubharmonic Functions 231 If q> and - q> are plurisubharmonic, we say that q> is pluriharmonic in Q. We denote by PSH(Q) the family of functions plurisubharmonic in Q. Remark 1. If Qc(Cn, then PSH(Q)cS(Q) and if n=1, PSH(Q)=S(Q). Remark 2. q> c PSH (Q) if and only if it is upper semi-continuous, not identi­ cally - 00, and if its restriction to every complex line Ll meeting Q is either subharmonic or the constant - 00 on each connected If-open set of Ll "Q. Examples. 1) Any continuous convex function in Q (in terms of the underly­ ing real variables) is in PSH(Q), for then we have q>(x) ~H<p(x + y) + q>(x - y)], and if we replace' y by yeiB and integrate with respect to dG we obtain ii) of D e flllltlOn· .. 12. ; 2n 2) if fE:Yf(Q), then 10glfIEPSH(Q); it is enough to show that <p(u)= 1 2rr . f(z+uw) satisfies 10glq>(0)1~- S q>(re'O)dG when the disc {z+uw: lul~r} .. n 2n 0 IS In ••. k If q>(u) == 0, then the inequality is trivial. If not, we let <p(u) = n (u -a) g(u) j=l for lul~r, where g(u) is holomorphic and has no zeros for lul~r. Then log Ig(u)1 is a harmonic function, and since 211: (2n)-1 S 10glreiO-ajldG=sup(loglajl,10gr)~10gla) o we have 2rr k (2n)-1 S 10glq>(reiB)ldG~ I 10glajl+loglg(0)1=10glq>(0)1. o j=l Proposition 1.3. i) If q>E PSH(Q) and c > 0, then Cq>E PSH(Q). ii) If q>l and q>2 are in PSH(Q), then sup (q>l' q>2)EPSH(Q). iii) rr q>v is a decreasing sequence of plurisubharmonic functions in Q, then either lim q>v(z)== - 00 or q>(Z) = lim q>v(z)EPSH(Q). Proof These are immediate consequences of Definition 1.2. o Definition 1.4. A function q>ES(Q) will be said to be continuous if it is continuous for the completion of the Euclidean topology on' IR to the point -00. Remark. q>ES(Q) is continuous if and only if exp q>(x) is continuous for the Euclidean topology on IR. PropositionI.5. If QcIR»! and q>E~2(Q), then q>ES(Q) if and only if m ij2 L1 q>(x)~O, where L1 is the Laplacian L1 = i~l ox;- If Qc (Cn and q>E~2(Q) then 232 Appendix 1. Subharmonic and Plnrisubharmonic Functions <pEPSH(Q) if and only if Proof We write the Taylor series expansion of <p(x) Then since A(x,r,xj-x)=O for all j by symmetry (this is an odd function) and ).(x,r,(xj-x)(X~-Xk))=O forjtok, again by symmetry. Th~ 1 lim [A(X, r, <p) - <p(x)] r- 2 = ~ LI <p(x);:;; o. r~O 2m On the other hand, if Will is the measure of the unit sphere sm-I in ]Rill, w",=2n"'i 2 [F(m/2)]--I, then we obtain from Gauss' Theorem (or Green's Theorem) ,. (I,1 ) A(x,r,<p)=<p(x)+St-",+ldt S Ll<p(x')dT",(x'). o B(x.t) Thus Ll <p(x);:;;O implies that Jc(x, r, <p);:;;<p(x). It follows from Remark 2 that <pE PSH(Q) n yj2(Q) is plurisubharmonic if and only if (1,2) for every WE<C". D Proposition 1.6. If Qe]Rm and <pES(Q)nyj2(Q), then J.(x,r, <p) and A(x, r, <p) 2 are increasing in r and convex functions of um(r)= _r - m for m>2, of u2 (r) =logr if m=2. If Qe<C" and <pEPSH(Q)nyj2(Q), then ).(z, r, <p) and A (z, 1', <p) are increasing with l' and convex in log r. Proof It follows from (I,1) that 8), 8},(x, 1', <p) (m - 2)rm - 1 -;;- (x, 1', <p) or 8u m (r) is increasing, which shows the first part for m > 2. For m = 2, we have 8), 8).(x,r,<p) 1'-8 (x,r,<p) . r c!u z (1') Appendix 1. Subharmonic and Plurisubharmonic Functions 233 If Qden and qJEPSH(Q)n~2(Q), then it follows from (1,1) for m=2 and (1,2) that a 2" . v(z, z', r)=-a-l- S qJ(z+re'Oz')dO ogr 0 is increasing in r. Since this is true for all z', v(z, r) = W Zn1 S v(z, z', r)dw2n (z') =~ Jc(z, r, qJ) Ilz'II=1" ologl is an increasing function of log r, hence },(z, r, qJ) is convex in log r. 0 Remark. The result that Jc(z, r, qJ) is increasing and convex in logr is an important property of plurisubharmonic functions and is not in general true for IR. 2n-subharmonic functions. In the definition of subharmonic and plurisubharmonic functions, we require only upper semi-continuity, whereas in Propositions 1.5 and 1.6, we made assumptions on the regularity of the functions. We now extend these properties in a way to drop the regularity assumptions. Lemma 1.7. Let Q c IR. m be a domain and 0 < c ~ 1. Suppose that Q' c Q and for XEQ', B(x,cdQ(x))cQ'. Then either Q'=Q or Q'=0. Proof By the hypothesis, Q' is open. Suppose that xoEQ' n Q and let d=dQ(xo)' Then there exists a point X'EQ' such that Ilx' -xoll ~cd/4. This implies that dQ(x')~3d/4 and xoEB(x', cdQ(x'))cQ'. Thus Q' is also closed, and since Q is connected, Q' = Q or Q' = 0. 0 In <c n, we denote by D z. w the disc Dz,w= {Z'E<c n : z' =z+uw, UE<C, lui ~ I}. Lemma 1.8. Let Qc<cn be a domain. For zEQ, we set S(z, Q)= U Dz,w' Dz,w cQ Then S(z, Q) is open and if Q' c Q has the property that ZEQ' implies that S(z,Q)cQ', then Q'=Q or Q'=0. Proof Obviously, S(z, Q) is a disked neighborhood of z. Let ZoES(Z, Q) be such that Zo =l= z. Then Zo = z + z' with z' =l= 0 and the disc. D z •z ' is compact in Q. There exists a disked open neighborhood U of the origin such that Dzoz' +UcQ. But Dz,z'+U is a union of discs centered at z, so Dz,z' + U c S(z, Q). Thus S(z, Q) contains an open neighborhood of Zo and hence IS open. To prove the second part of the lemma, we note that S(z, Q) contains the ball B(z, dQ(z)) and so the conclusion follows from Lemma 1.7. 0 Proposition 1.9. If Qc<cn=IR.2n is a domain, then PSH(Q)cS(Q)cL\ocCQ). 234 Appendix I. Subharmonic and Plurisubharmonic Functions Proof Let N be the set of points in Q such that S cpdT Zn = - 00 for every u neighborhood U of z,U~Q. For zEN and [[z'-z[[<idQ(z), the ball B' = B(z', ~ dQ(z)) is compact in Q and is a neighborhood of z.
Recommended publications
  • Notes on Partial Differential Equations John K. Hunter
    Notes on Partial Differential Equations John K. Hunter Department of Mathematics, University of California at Davis Contents Chapter 1. Preliminaries 1 1.1. Euclidean space 1 1.2. Spaces of continuous functions 1 1.3. H¨olderspaces 2 1.4. Lp spaces 3 1.5. Compactness 6 1.6. Averages 7 1.7. Convolutions 7 1.8. Derivatives and multi-index notation 8 1.9. Mollifiers 10 1.10. Boundaries of open sets 12 1.11. Change of variables 16 1.12. Divergence theorem 16 Chapter 2. Laplace's equation 19 2.1. Mean value theorem 20 2.2. Derivative estimates and analyticity 23 2.3. Maximum principle 26 2.4. Harnack's inequality 31 2.5. Green's identities 32 2.6. Fundamental solution 33 2.7. The Newtonian potential 34 2.8. Singular integral operators 43 Chapter 3. Sobolev spaces 47 3.1. Weak derivatives 47 3.2. Examples 47 3.3. Distributions 50 3.4. Properties of weak derivatives 53 3.5. Sobolev spaces 56 3.6. Approximation of Sobolev functions 57 3.7. Sobolev embedding: p < n 57 3.8. Sobolev embedding: p > n 66 3.9. Boundary values of Sobolev functions 69 3.10. Compactness results 71 3.11. Sobolev functions on Ω ⊂ Rn 73 3.A. Lipschitz functions 75 3.B. Absolutely continuous functions 76 3.C. Functions of bounded variation 78 3.D. Borel measures on R 80 v vi CONTENTS 3.E. Radon measures on R 82 3.F. Lebesgue-Stieltjes measures 83 3.G. Integration 84 3.H. Summary 86 Chapter 4.
    [Show full text]
  • Advanced Topics in Markov Chains
    Advanced Topics in Markov chains J.M. Swart April 25, 2018 Abstract This is a short advanced course in Markov chains, i.e., Markov processes with discrete space and time. The first chapter recalls, with- out proof, some of the basic topics such as the (strong) Markov prop- erty, transience, recurrence, periodicity, and invariant laws, as well as some necessary background material on martingales. The main aim of the lecture is to show how topics such as harmonic functions, coupling, Perron-Frobenius theory, Doob transformations and intertwining are all related and can be used to study the properties of concrete chains, both qualitatively and quantitatively. In particular, the theory is applied to the study of first exit problems and branching processes. 2 Notation N natural numbers f0; 1;:::g N+ positive natural numbers f1; 2;:::g NN [ f1g Z integers ZZ [ {−∞; 1g Q rational numbers R real numbers R extended real numbers [−∞; 1] C complex numbers B(E) Borel-σ-algebra on a topological space E 1A indicator function of the set A A ⊂ BA is a subset of B, which may be equal to B Ac complement of A AnB set difference A closure of A int(A) interior of A (Ω; F; P) underlying probability space ! typical element of Ω E expectation with respect to P σ(:::) σ-field generated by sets or random variables kfk1 supremumnorm kfk1 := supx jf(x)j µ ν µ is absolutely continuous w.r.t. ν fk gk lim fk=gk = 0 fk ∼ gk lim fk=gk = 1 o(n) any function such that o(n)=n ! 0 O(n) any function such that supn o(n)=n ≤ 1 δx delta measure in x µ ⊗ ν product measure of µ and ν ) weak convergence of probability laws Contents 0 Preliminaries 5 0.1 Stochastic processes .
    [Show full text]
  • Extremal Positive Pluriharmonic Functions on Euclidean Balls
    EXTREMAL POSITIVE PLURIHARMONIC FUNCTIONS ON EUCLIDEAN BALLS By Farhad Jafari and Mihai Putinar IMA Preprint Series # 2180 ( November 2007 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA 400 Lind Hall 207 Church Street S.E. Minneapolis, Minnesota 55455–0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu EXTREMAL POSITIVE PLURIHARMONIC FUNCTIONS ON EUCLIDEAN BALLS FARHAD JAFARI AND MIHAI PUTINAR To Professor J. J. Kohn on the occasion of his seventy-fifth birthday Abstract. Contrary to the well understood structure of positive har- monic functions in the unit disk, most of the properties of positive pluri- n harmonic functions in symmetric domains of C , in particular the unit ball, remain mysterious. In particular, in spite of efforts spread over quite a few decades, no characterization of the extremal rays in the n cone of positive pluriharmonic functions in the unit ball of C is known. We investigate this question by a geometric tomography technique, and provide some new classes of examples of such extremal functions. 1. Introduction. According to a classical theorem due to Herglotz and F. Riesz, every non- negative harmonic function in the open unit disk D is the Poisson integral of a positive Borel measure on the unit circle T. This correspondence readily characterizes the extreme points of the convex cone of positive harmonic functions h in D, normalized by the condition h(0) = 1, as the Poisson integrals of extremal probability measures on the unit circle, namely the Dirac measures on the unit circle. Thus these extremal objects are simply the one-parameter class of functions uζ (z) = P (z, ζ), ζ ∈ T, where P (z, ζ) is the classical Poisson kernel in D.
    [Show full text]
  • 1 Subharmonic Functions 2 Harmonic Functions
    1 Subharmonic Functions LTCC course on Potential Theory, Spring 2011 Boris Khoruzhenko1, QMUL This course follows closely a textbook on Potential Theory in the Complex Plane by Thomas Ransford, published by CUP in 1995. Five two-hour lectures will cover the following 1. Harmonic functions: basic properties, maximum principle, mean-value property, positive harmonic functions, Harnack's Theorem 2. Subharmonic functions: maximum principle, local integrability 3. Potentials, polar sets, equilibrium measures 4. Dirichlet problem, harmonic measure, Green's function 5. Capacity, transfinite diameter, Bernstein-Walsh Theorem 2 Harmonic Functions (Lecture notes for Day 1, 21 Feb 2011, revised 24 Feb 2011) 2.1 Harmonic and holomorphic functions Let D be domain (connected open set) in C. We shall consider complex- valued and real valued functions of z = x + iy 2 D. We shall write h(z) or often simply h to denote both a function of complex z and a function in two variables x and y. Notation: hx will be used to denote the partial derivative of h with respect to variable x, similarly hxx, hyy, hxy and hyx are the second order partial derivatives of f. Here come our main definition of the day. Recall that C2(D) denotes the space of functions on D with continuous second order derivatives. Definition A function h : D ! R is called harmonic on D if h 2 C2(D) and hxx + hyy = 0 on D. 1E-mail: [email protected], URL: http://maths.qmul.ac.ukn ∼boris 1 Examples 2 2 2 (a) h(z) = jzj = x + y is not harmonic anywhere on C as hxx + hyy=2.
    [Show full text]
  • The Lusin-Privalov Theorem for Subharmonic Functions
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 12, December 1996, Pages 3721–3727 S 0002-9939(96)03879-8 THE LUSIN-PRIVALOV THEOREM FOR SUBHARMONIC FUNCTIONS STEPHEN J. GARDINER (Communicated by Albert Baernstein II) Abstract. This paper establishes a generalization of the Lusin-Privalov radial uniqueness theorem which applies to subharmonic functions in all dimensions. In particular, it answers a question of Rippon by showing that no subharmonic function on the upper half-space can have normal limit at every boundary point. −∞ 1. Introduction Let u be a subharmonic function on the upper half-plane D and let A = x R: u(x, y) as y 0+ . { ∈ →−∞ → } Then A = R. Indeed, the Lusin-Privalov radial uniqueness theorem for analytic functions6 [12] has a generalization for subharmonic functions on D (see [1], [3], [13]) which asserts that, if A is metrically dense in an open interval I (i.e. A has positive linear measure in each subinterval of I), then A I is of first category. Rippon [13, Theorem 6] showed that this result∩ breaks down in higher dimensions by constructing a subharmonic function u on R2 (0, + ) such that × ∞ 2 u(x1,x2,x3) (x3 0+; (x1,x2) R E0), →−∞ → ∈ \ 2 where E0 is a first category subset of R with zero area measure. A key observation here is that a line segment is polar in higher dimensions but not in the plane. One way around this problem is to replace normal limits by limits along translates of a somewhat “thicker” set, as in [13]. However, this leaves open the question, posed in [13, p.
    [Show full text]
  • Default Functions and Liouville Type Theorems
    Default functions and Liouville type theorems Atsushi Atsuji Keio University 17. Aug. 2016 [Plan of my talk] x1 Default functions: definition and basic properties x2 Submartingale properties of subharmonic functions : Symmetric diffusion cases x3 L1- Liouville properties of subharmonic functions x4 Liouville theorems for holomorphic maps Fix a filtered probability space (Ω; F; Ft;P ). Let Mt be a continuous local martingale. Def. If Mt is not a true martingale, we say Mt is a strictly local martingale. Mt is a (true) martingale , E[MT ] = E[M0] for 8T : bounded stopping time. \Local" property of Mt : γT (M) := E[M0] − E[MT ]: is called a default function (Elworthy- X.M.Li-Yor(`99)). Default formula : Assume that E[jMT j] < 1;E[jM0j] < 1 for a f − g stopping time T and MT ^S ; S : stopping times is uniformly ∗ integrable. Set Mt := sup Ms. 0≤s≤t ∗ ∗ E[MT : MT ≤ λ] + λP (MT > λ) + E[(M0 − λ)+] = E[M0]: Letting λ ! 1, γT (M) = lim λP ( sup Mt > λ): !1 λ 0≤t≤T Another quantity: σT (M) Def. h i1=2 σT (M) := lim λP ( M T > λ): λ!1 Theorem (Elworthy-Li-Yor, Takaoka(`99)) Assume that E[jMT j] < 1;E[jM0j] < 1. r π 9γ (M) = σ (M): T 2 T T Moreover Mt := MT ^t is a uniformly integrable martingale iff γT (M) = σT (M) = 0. See also Azema-Gundy -Yor(`80), Galtchouk-Novikov(`97). [Example] Rt : d-dimensional Bessel process: d − 1 dRt = dbt + dt; R0 = r. 2Rt 2−d If d > 2, then Rt is a strictly local martingale.
    [Show full text]
  • SOME PROPERTIES of GRAUERT TYPE SURFACES Contents 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Politecnico di Milano SOME PROPERTIES OF GRAUERT TYPE SURFACES SAMUELE MONGODI1, ZBIGNIEW SLODKOWSKI2, AND GIUSEPPE TOMASSINI3 Contents 1. Introduction 1 2. Compact curves in Grauert type surfaces 3 3. Level sets of pluriharmonic functions 6 4. A class of examples 11 4.1. S-antisymmetric bundles and cocycles 12 4.2. Proof of Theorem 4.1 15 References 17 1. Introduction In [5, 6], we addressed the problem of studying a class of weakly complete spaces, namely, complex manifolds of dimension 2 endowed with a real analytic plurisubharmonic exhaustion function. Stein spaces are obviously an instance of weakly complete spaces, where the exhaustion function can be taken to be strictly plurisubhar- monic and we have abundance of holomorhpic functions; more gen- erally, holomorphically convex spaces give a wide range of examples, which admit a proper holomorphic map onto a Stein space, their Cartan- Remmert reduction. A completely different example of weakly complete space is due to Grauert (cfr. [7]). As a generalization of the latter, we say that a com- plex surface X is of Grauert type if it admits a real analytic plurisub- harmonic exhaustion function α, such that the regular level sets of Date: June 1, 2017. 2010 Mathematics Subject Classification. Primary 32E, 32T, 32U; Secondary 32E05, 32T35, 32U10. Key words and phrases. Pseudoconvex domains, Weakly complete spaces, Holo- morphic foliations. The first author was supported by the FIRB2012 grant “Differential Geometry and Geometric Function Theory". 1 2 S.
    [Show full text]
  • David Borthwick Introduction to Partial Differential Equations Universitext Universitext
    Universitext David Borthwick Introduction to Partial Differential Equations Universitext Universitext Series editors Sheldon Axler San Francisco State University Carles Casacuberta Universitat de Barcelona Angus MacIntyre Queen Mary, University of London Kenneth Ribet University of California, Berkeley Claude Sabbah École polytechnique, CNRS, Université Paris-Saclay, Palaiseau Endre Süli University of Oxford Wojbor A. Woyczyński Case Western Reserve University Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 David Borthwick Introduction to Partial Differential Equations 123 David Borthwick Department of Mathematics and Computer Science Emory University Atlanta, GA USA ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN 978-3-319-48934-6 ISBN 978-3-319-48936-0 (eBook) DOI 10.1007/978-3-319-48936-0 Library of Congress Control Number: 2016955918 © Springer International Publishing AG 2016, corrected publication 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • On a Monge-Amp`Ere Operator for Plurisubharmonic Functions With
    ON A MONGE-AMPERE` OPERATOR FOR PLURISUBHARMONIC FUNCTIONS WITH ANALYTIC SINGULARITIES MATS ANDERSSON, ZBIGNIEW BLOCKI,ELIZABETH WULCAN Abstract. We study continuity properties of generalized Monge-Amp`ereoperators for plurisubharmonic functions with analytic singularities. In particular, we prove continuity for a natural class of decreasing approximating sequences. We also prove a formula for the total mass of the Monge-Amp`eremeasure of such a function on a compact K¨ahlermanifold. 1. Introduction We say that a plurisubharmonic (psh) function u on a complex manifold X has analytic singularities if locally it can be written in the form (1.1) u = c log jF j + b; where c ≥ 0 is a constant, F = (f1; : : : ; fm) is a tuple of holomorphic functions, and b is bounded. For instance, if fj are holomorphic functions and aj are positive rational numbers, a am then log(jf1j 1 + ··· + jfmj ) has analytic singularities. By the classical Bedford-Taylor theory, [5, 6], if u is of the form (1.1), then in fF 6= 0g, for any k, one can define a positive closed current (ddcu)k recursively as (1.2) (ddcu)k := ddcu(ddcu)k−1: It was shown in [3] that (ddcu)k has locally finite mass near fF = 0g for any k and that the c k−1 natural extension 1fF 6=0g(dd u) across fF = 0g is closed, cf. [3, Eq. (4.8)]. Moreover, by c k−1 [3, Proposition 4.1], u1fF 6=0g(dd u) has locally finite mass as well, and therefore one can define the Monge-Amp`erecurrent c k c c k−1 (1.3) (dd u) := dd u1fF 6=0g(dd u) for any k.
    [Show full text]
  • The Laplace Operator ∆(U) = Div(∇(U)) = I=1 2
    Partial Differential Equations Notes II by Jesse Ratzkin Pn @2u In this set of notes we closely examine the Laplace operator ∆(u) = div(r(u)) = i=1 2 . @xi As the Laplacian will serve as our model operator for second order, elliptic, differential operators, we will be well-served to understand it as well as we can. Some basic definitions: We fix some bounded domain D ⊂ Rn, and suppose that the 1 boundary @D of D is at least C . For most purposes, it will suffice to work on the ball BR(0) of radius R, centered at 0. A harmonic function u on D satisfies ∆u(x) = 0 for all x 2 D. More generally, we are interested in solving the Poisson equation: ∆u = φ(x) (1) for some continuous function φ. In this equation, the given information is the domain D and the function φ on the right-hand-side, and the unknown (i.e. the thing we're solving for) is the function u. In order to specify a solution, we still need to prescribe boundary data for u. The two most common boundary data are Dirichlet boundary values and Neumann boundary values, which we define now. Definition 1. The function u 2 C2(D) \ C0(D¯) solves the Dirichlet boundary value problem for (1) if ∆u = φ, uj@D = f; (2) where f 2 C0(@D) is given. Similarly, we say u 2 C2(D) \ C0(D¯) solves the Neumann boundary value problem for (1) if @u ∆u = φ, = hru; Nij@D = g (3) @N @D for some given g 2 C0(@D).
    [Show full text]
  • Traces of Pluriharmonic Functions Compositio Mathematica, Tome 44, No 1-3 (1981), P
    COMPOSITIO MATHEMATICA PAOLO DE BARTOLOMEIS GIUSEPPE TOMASSINI Traces of pluriharmonic functions Compositio Mathematica, tome 44, no 1-3 (1981), p. 29-39 <http://www.numdam.org/item?id=CM_1981__44_1-3_29_0> © Foundation Compositio Mathematica, 1981, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 44, Fasc. 1-3, 1981, pag. 29-39 @ 1981 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn Printed in the Netherlands TRACES OF PLURIHARMONIC FUNCTIONS Paolo de Bartolomeis and Giuseppe Tomassini Introduction Let M be a real oriented hypersurface in a complex manif old X, which divides X into two open sets X+ and X -. In this paper we characterize in terms of tangential linear diff eren- tial operators on M the distributions T on M which are "jumps" or traces (in the sense of currents) of pluriharmonic functions in X+ and X -. The starting point of our investigation is the non-tangential charac- terizing equation ~b~T = 0, which can be deduced from the theory of boundary values of holomorphic forms. If M is not Levi-flat, we construct a second order tangential local linear differential operator wM such that if T is the trace on M of a pluriharmonic function h, then CùM(T) = ah.
    [Show full text]
  • A Bohr Phenomenon for Elliptic Equations
    A Bohr Phenomenon for Elliptic Equations Lev Aizenb erg Department of Mathematics and Computer Science BarIlan University RamatGan Israel Nikolai Tarkhanov Institut fur Mathematik Universitat Potsdam Postfach Potsdam Germany August L Aizenb erg and N Tarkhanov Abstract In Bohr proved that there is an r such that if a p ower series converges in the unit disk and its sum has mo dulus less than then for jz j r the sum of absolute values of its terms is again less than Recently analogous results were obtained for functions of several variables The aim of this pap er is to comprehend the theorem of Bohr in the context of solutions to second order elliptic equations meeting the maximum principle Bohr Phenomenon Contents Preliminaries Spaces with repro ducing kernels Harmonic functions Separately harmonic functions Pluriharmonic functions Polyharmonic functions Solutions of elliptic equations References L Aizenb erg and N Tarkhanov Preliminaries It was in the spirit of function theory of the b eginning of this century that Bohr Boh published the following theorem Theorem There exists r with the property that if a power P series c z converges in the unit disk and its sum has modulus less than P jc z j for al l jz j r then We dont knowany motivation of Bohrs result but very classical sub jects and co ecient estimates much more precise than the Cauchy inequalities Per haps this called on such mathematicians as M Riesz I Shur and F Wiener who put Theorem in nal form by showing that one can take r
    [Show full text]