Appendix Available Tools and Resources

Total Page:16

File Type:pdf, Size:1020Kb

Appendix Available Tools and Resources Appendix Available Tools and Resources This chapter describes tools, datasets, and resources to implement and exploit the techniques described in the book. A.1 Libraries and APIs A.1.1 Libraries for Natural Language Processing In Chap. 2, we described a classical pipeline for text processing which allows to extract relevant features from unstructured text. We started with the lexical analysis (Sect. 2.1.1), whose main goal is to identify and extract relevant words and phrases from the text, and we concluded with the syntactic analysis (Sect. 2.1.2), which aims at inferring information about the structure of the text and the role of each word in the text. In this section, we list a set of libraries which can be used to perform the afore- mentioned analysis: • OpenNLP: Machine learning-based toolkit for the processing of natural language text, which supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, language detection, and coreference resolution. More information at: https://opennlp.apache.org/ http://opennlp.sourceforge.net/models-1.5/ • TextPro: Suite of modular NLP tools for analysis of written texts for both Italian and English. The suite has been designed to integrate and reuse state-of-the-art NLP components developed by researchers at Fondazione Bruno Kessler.1 The current 1https://www.fbk.eu. © Springer Nature Switzerland AG 2019 173 P. Lops et al., Semantics in Adaptive and Personalised Systems, https://doi.org/10.1007/978-3-030-05618-6 174 Appendix: Available Tools and Resources version of the tool suite provides functions ranging from tokenization to parsing and named entity recognition. The different modules included in TextPro have been evaluated in the context of several evaluation campaigns and international shared tasks, such as EVALITA2 (PoS tagging, named entity recognition, and parsing for Italian) and Semeval 20103 (keyphrase extraction from scientific articles in English). The architecture of TextPro is organized as a pipeline of processors where each stage accepts data from an initial input (or from the output of a previous stage), executes a specific task, and outputs the resulting data (or sends it to the next stage). More information at: http://textpro.fbk.eu/ • Stanford CoreNLP: A set of human language technology tools, which can give the base forms of words, their part-of-speech tags, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases and syntactic dependencies, indicate which noun phrases refer to the same entities, indicate sentiment, extract particular or open-class relations between entity mentions, get the quotes people said, etc. More information at: http://nlp.stanford.edu/software/corenlp.shtml http://corenlp.run/ • GATE: A full-lifecycle open-source solution for text processing. GATEis in active use for all types of computational task involving human language. It has a mature and extensive community of developers, users, educators, students, and scientists, and it is widely adopted by corporations, small and medium enterprises, research labs, and universities worldwide. More information at: https://gate.ac.uk/ • UIMA: Apache UIMA (Unstructured Information Management applications) allows to analyze large volumes of unstructured information in order to discover relevant knowledge. UIMA might ingest plain text and identify entities, such as persons, places, organizations, or relations, such as works-for or located-at. It allows to perform a wide range of operations, such as language identification, sen- tence boundary detection, and entity detection (person/place names, etc.). More information at: https://uima.apache.org/index.html • SpaCy: Free, open-source library for advanced Natural Language Processing in Python. It can be used to build information extraction or natural language under- standing systems, or to preprocess text for deep learning. More information at: https://spacy.io/ • Natural Language Toolkit (NLTK): Platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 2http://www.evalita.it. 3http://semeval2.fbk.eu/semeval2.php?location=. Appendix: Available Tools and Resources 175 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning. More information at: https://www.nltk.org/ Besides the complete libraries to perform the most common NLP tasks, we can use the following tools to perform some of the operations of the NLP pipeline: • Snowball: A small string processing language designed for creating stemming algorithms for use in Information Retrieval. More information at: http://snowballstem.org/ • Porter stemmer: One of the most famous rule-based stemming algorithms. For English language, you can refer to: http://snowball.tartarus.org/algorithms/porter/stemmer.html http://snowballstem.org/algorithms/porter/stemmer.html For Italian language, you can refer to: http://snowball.tartarus.org/algorithms/italian/stemmer.html http://snowballstem.org/algorithms/italian/stemmer.html • Morph-it!: Morphological resource (dictionary) for the Italian language. It is a lexicon of inflected forms with their lemma and morphological features. Hence, each word is assigned with its lemma and various morphological information (features). Among the most important features, we have positive, comparative, or superlative for adjectives, inflectional gender (feminine or masculine), and number (singular or plural) for both nouns and adjectives. More information at: http://docs.sslmit.unibo.it/doku.php?id=resources:morph-it • LemmaGen: A standardized open-source multilingual platform for lemmatization in 12 European languages. It is able to learn lemmatization rules for new languages by providing it with existing (word form, lemma) pair examples. More information at: http://lemmatise.ijs.si • Stanford Log-linear Part-Of-Speech Tagger: Included in the Stanford CoreNLP suite, it reads text in some language and assigns parts of speech to each open cat- egory word/token (noun, verb, adjective, …). Similarly to other POS Taggers, it uses fine-grained POS tags, such as “noun-plural”. This software is a Java imple- mentation of the log-linear part-of-speech taggers described in [14, 15]. Several downloads are available. The basic download contains two trained tag- ger models for English. The full download contains three trained English tagger models, an Arabic tagger model, a Chinese tagger model, a French tagger model, and a German tagger model. Both versions include the same source and other required files. The tagger can be retrained on any language, given POS-annotated training text for the language. The English taggers adopt the Penn Treebank tag set. The tagger is licensed under the GNU General Public License (v2 or later). 176 Appendix: Available Tools and Resources Open-source licensing is under the full GPL, which allows many free uses. For distributors of proprietary software, commercial licensing is available. More information at: http://nlp.stanford.edu/software/tagger.shtml • Stanford Parser: Included in the Stanford CoreNLP suite, it is a probabilistic context-free grammar parser for English, which can be adapted to other languages such as Italian, Bulgarian, and Portuguese. It also includes a German parser based on the Negra corpus, a Chinese parser based on the Chinese Treebank, as well as Arabic parsers based on the Penn Arabic Treebank. The output of the parser is Universal Dependencies v1 as well as phrase structure trees. The types of parsers included in the package are shift-reduce constituency parser and neural network dependency parser; a tool for scoring of generic dependency parses, called in addition, dependency scoring, is also provided. They are released under a dual license—open-source licensing is under the full GPL, which allows many free uses, while commercial licensing is available for distributors of proprietary software. More information at: https://nlp.stanford.edu/software/lex-parser.shtml • MaltParser: System for data-driven dependency parsing, which can be used to induce a parsing model from treebank data and to parse new data using an induced model. While a traditional parser generator constructs a parser given a grammar, a data-driven parser generator constructs a parser given a treebank. MaltParser is an implementation of inductive dependency parsing, where the syntactic analysis of a sentence amounts to the derivation of a dependency structure, and where inductive machine learning is used to guide the parser at nondeterministic choice points. The parsing methodology is based on (i) a deterministic parsing algorithms for building labeled dependency graphs; (ii) history-based models for predicting the next parser action at nondeterministic choice points; and (iii) discriminative learning to map histories to parser actions. Parsers developed using MaltParser have many parameters that need to be optimized and have achieved state-of-the- art accuracy for a number of languages. More information at: http://www.maltparser.org/ • SENNA: Software distributed under a noncommercial license, which performs NLP tasks, such as part-of-speech tagging, chunking, name entity recognition, semantic role labeling, and syntactic parsing. SENNA is fast because it uses a simple architecture, self-contained because it does
Recommended publications
  • Classifying Relevant Social Media Posts During Disasters Using Ensemble of Domain-Agnostic and Domain-Specific Word Embeddings
    AAAI 2019 Fall Symposium Series: AI for Social Good 1 Classifying Relevant Social Media Posts During Disasters Using Ensemble of Domain-agnostic and Domain-specific Word Embeddings Ganesh Nalluru, Rahul Pandey, Hemant Purohit Volgenau School of Engineering, George Mason University Fairfax, VA, 22030 fgn, rpandey4, [email protected] Abstract to provide relevant intelligence inputs to the decision-makers (Hughes and Palen 2012). However, due to the burstiness of The use of social media as a means of communication has the incoming stream of social media data during the time of significantly increased over recent years. There is a plethora of information flow over the different topics of discussion, emergencies, it is really hard to filter relevant information which is widespread across different domains. The ease of given the limited number of emergency service personnel information sharing has increased noisy data being induced (Castillo 2016). Therefore, there is a need to automatically along with the relevant data stream. Finding such relevant filter out relevant posts from the pile of noisy data coming data is important, especially when we are dealing with a time- from the unconventional information channel of social media critical domain like disasters. It is also more important to filter in a real-time setting. the relevant data in a real-time setting to timely process and Our contribution: We provide a generalizable classification leverage the information for decision support. framework to classify relevant social media posts for emer- However, the short text and sometimes ungrammatical nature gency services. We introduce the framework in the Method of social media data challenge the extraction of contextual section, including the description of domain-agnostic and information cues, which could help differentiate relevant vs.
    [Show full text]
  • Injection of Automatically Selected Dbpedia Subjects in Electronic
    Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hospitalization Prediction Raphaël Gazzotti, Catherine Faron Zucker, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon To cite this version: Raphaël Gazzotti, Catherine Faron Zucker, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon. Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hos- pitalization Prediction. SAC 2020 - 35th ACM/SIGAPP Symposium On Applied Computing, Mar 2020, Brno, Czech Republic. 10.1145/3341105.3373932. hal-02389918 HAL Id: hal-02389918 https://hal.archives-ouvertes.fr/hal-02389918 Submitted on 16 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hospitalization Prediction Raphaël Gazzotti Catherine Faron-Zucker Fabien Gandon Université Côte d’Azur, Inria, CNRS, Université Côte d’Azur, Inria, CNRS, Inria, Université Côte d’Azur, CNRS, I3S, Sophia-Antipolis, France I3S, Sophia-Antipolis, France
    [Show full text]
  • Automatic Correction of Real-Word Errors in Spanish Clinical Texts
    sensors Article Automatic Correction of Real-Word Errors in Spanish Clinical Texts Daniel Bravo-Candel 1,Jésica López-Hernández 1, José Antonio García-Díaz 1 , Fernando Molina-Molina 2 and Francisco García-Sánchez 1,* 1 Department of Informatics and Systems, Faculty of Computer Science, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain; [email protected] (D.B.-C.); [email protected] (J.L.-H.); [email protected] (J.A.G.-D.) 2 VÓCALI Sistemas Inteligentes S.L., 30100 Murcia, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-86888-8107 Abstract: Real-word errors are characterized by being actual terms in the dictionary. By providing context, real-word errors are detected. Traditional methods to detect and correct such errors are mostly based on counting the frequency of short word sequences in a corpus. Then, the probability of a word being a real-word error is computed. On the other hand, state-of-the-art approaches make use of deep learning models to learn context by extracting semantic features from text. In this work, a deep learning model were implemented for correcting real-word errors in clinical text. Specifically, a Seq2seq Neural Machine Translation Model mapped erroneous sentences to correct them. For that, different types of error were generated in correct sentences by using rules. Different Seq2seq models were trained and evaluated on two corpora: the Wikicorpus and a collection of three clinical datasets. The medicine corpus was much smaller than the Wikicorpus due to privacy issues when dealing Citation: Bravo-Candel, D.; López-Hernández, J.; García-Díaz, with patient information.
    [Show full text]
  • A Way with Words: Recent Advances in Lexical Theory and Analysis: a Festschrift for Patrick Hanks
    A Way with Words: Recent Advances in Lexical Theory and Analysis: A Festschrift for Patrick Hanks Gilles-Maurice de Schryver (editor) (Ghent University and University of the Western Cape) Kampala: Menha Publishers, 2010, vii+375 pp; ISBN 978-9970-10-101-6, e59.95 Reviewed by Paul Cook University of Toronto In his introduction to this collection of articles dedicated to Patrick Hanks, de Schryver presents a quote from Atkins referring to Hanks as “the ideal lexicographer’s lexicogra- pher.” Indeed, Hanks has had a formidable career in lexicography, including playing an editorial role in the production of four major English dictionaries. But Hanks’s achievements reach far beyond lexicography; in particular, Hanks has made numerous contributions to computational linguistics. Hanks is co-author of the tremendously influential paper “Word association norms, mutual information, and lexicography” (Church and Hanks 1989) and maintains close ties to our field. Furthermore, Hanks has advanced the understanding of the relationship between words and their meanings in text through his theory of norms and exploitations (Hanks forthcoming). The range of Hanks’s interests is reflected in the authors and topics of the articles in this Festschrift; this review concentrates more on those articles that are likely to be of most interest to computational linguists, and does not discuss some articles that appeal primarily to a lexicographical audience. Following the introduction to Hanks and his career by de Schryver, the collection is split into three parts: Theoretical Aspects and Background, Computing Lexical Relations, and Lexical Analysis and Dictionary Writing. 1. Part I: Theoretical Aspects and Background Part I begins with an unfinished article by the late John Sinclair, in which he begins to put forward an argument that multi-word units of meaning should be given the same status in dictionaries as ordinary headwords.
    [Show full text]
  • Information Extraction Based on Named Entity for Tourism Corpus
    Information Extraction based on Named Entity for Tourism Corpus Chantana Chantrapornchai Aphisit Tunsakul Dept. of Computer Engineering Dept. of Computer Engineering Faculty of Engineering Faculty of Engineering Kasetsart University Kasetsart University Bangkok, Thailand Bangkok, Thailand [email protected] [email protected] Abstract— Tourism information is scattered around nowa- The ontology is extracted based on HTML web structure, days. To search for the information, it is usually time consuming and the corpus is based on WordNet. For these approaches, to browse through the results from search engine, select and the time consuming process is the annotation which is to view the details of each accommodation. In this paper, we present a methodology to extract particular information from annotate the type of name entity. In this paper, we target at full text returned from the search engine to facilitate the users. the tourism domain, and aim to extract particular information Then, the users can specifically look to the desired relevant helping for ontology data acquisition. information. The approach can be used for the same task in We present the framework for the given named entity ex- other domains. The main steps are 1) building training data traction. Starting from the web information scraping process, and 2) building recognition model. First, the tourism data is gathered and the vocabularies are built. The raw corpus is used the data are selected based on the HTML tag for corpus to train for creating vocabulary embedding. Also, it is used building. The data is used for model creation for automatic for creating annotated data.
    [Show full text]
  • Finetuning Pre-Trained Language Models for Sentiment Classification of COVID19 Tweets
    Technological University Dublin ARROW@TU Dublin Dissertations School of Computer Sciences 2020 Finetuning Pre-Trained Language Models for Sentiment Classification of COVID19 Tweets Arjun Dussa Technological University Dublin Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis Part of the Computer Engineering Commons Recommended Citation Dussa, A. (2020) Finetuning Pre-trained language models for sentiment classification of COVID19 tweets,Dissertation, Technological University Dublin. doi:10.21427/fhx8-vk25 This Dissertation is brought to you for free and open access by the School of Computer Sciences at ARROW@TU Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Finetuning Pre-trained language models for sentiment classification of COVID19 tweets Arjun Dussa A dissertation submitted in partial fulfilment of the requirements of Technological University Dublin for the degree of M.Sc. in Computer Science (Data Analytics) September 2020 Declaration I certify that this dissertation which I now submit for examination for the award of MSc in Computing (Data Analytics), is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the test of my work. This dissertation was prepared according to the regulations for postgraduate study of the Technological University Dublin and has not been submitted in whole or part for an award in any other Institute or University.
    [Show full text]
  • ACL 2019 Social Media Mining for Health Applications (#SMM4H)
    ACL 2019 Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task Proceedings of the Fourth Workshop August 2, 2019 Florence, Italy c 2019 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-950737-46-8 ii Preface Welcome to the 4th Social Media Mining for Health Applications Workshop and Shared Task - #SMM4H 2019. The total number of users of social media continues to grow worldwide, resulting in the generation of vast amounts of data. Popular social networking sites such as Facebook, Twitter and Instagram dominate this sphere. According to estimates, 500 million tweets and 4.3 billion Facebook messages are posted every day 1. The latest Pew Research Report 2, nearly half of adults worldwide and two- thirds of all American adults (65%) use social networking. The report states that of the total users, 26% have discussed health information, and, of those, 30% changed behavior based on this information and 42% discussed current medical conditions. Advances in automated data processing, machine learning and NLP present the possibility of utilizing this massive data source for biomedical and public health applications, if researchers address the methodological challenges unique to this media. In its fourth iteration, the #SMM4H workshop takes place in Florence, Italy, on August 2, 2019, and is co-located with the
    [Show full text]
  • Mapping the Hyponymy Relation of Wordnet Onto
    Under review as a conference paper at ICLR 2019 MAPPING THE HYPONYMY RELATION OF WORDNET ONTO VECTOR SPACES Anonymous authors Paper under double-blind review ABSTRACT In this paper, we investigate mapping the hyponymy relation of WORDNET to feature vectors. We aim to model lexical knowledge in such a way that it can be used as input in generic machine-learning models, such as phrase entailment predictors. We propose two models. The first one leverages an existing mapping of words to feature vectors (fastText), and attempts to classify such vectors as within or outside of each class. The second model is fully supervised, using solely WORDNET as a ground truth. It maps each concept to an interval or a disjunction thereof. On the first model, we approach, but not quite attain state of the art performance. The second model can achieve near-perfect accuracy. 1 INTRODUCTION Distributional encoding of word meanings from the large corpora (Mikolov et al., 2013; 2018; Pen- nington et al., 2014) have been found to be useful for a number of NLP tasks. These approaches are based on a probabilistic language model by Bengio et al. (2003) of word sequences, where each word w is represented as a feature vector f(w) (a compact representation of a word, as a vector of floating point values). This means that one learns word representations (vectors) and probabilities of word sequences at the same time. While the major goal of distributional approaches is to identify distributional patterns of words and word sequences, they have even found use in tasks that require modeling more fine-grained relations between words than co-occurrence in word sequences.
    [Show full text]
  • Pairwise Fasttext Classifier for Entity Disambiguation
    Pairwise FastText Classifier for Entity Disambiguation a,b b b Cheng Yu , Bing Chu , Rohit Ram , James Aichingerb, Lizhen Qub,c, Hanna Suominenb,c a Project Cleopatra, Canberra, Australia b The Australian National University c DATA 61, Australia [email protected] {u5470909,u5568718,u5016706, Hanna.Suominen}@anu.edu.au [email protected] deterministically. Then we will evaluate PFC’s Abstract performance against a few baseline methods, in- cluding SVC3 with hand-crafted text features. Fi- For the Australasian Language Technology nally, we will discuss ways to improve disambig- Association (ALTA) 2016 Shared Task, we uation performance using PFC. devised Pairwise FastText Classifier (PFC), an efficient embedding-based text classifier, 2 Pairwise Fast-Text Classifier (PFC) and used it for entity disambiguation. Com- pared with a few baseline algorithms, PFC Our Pairwise FastText Classifier is inspired by achieved a higher F1 score at 0.72 (under the the FastText. Thus this section starts with a brief team name BCJR). To generalise the model, description of FastText, and proceeds to demon- we also created a method to bootstrap the strate PFC. training set deterministically without human labelling and at no financial cost. By releasing 2.1 FastText PFC and the dataset augmentation software to the public1, we hope to invite more collabora- FastText maps each vocabulary to a real-valued tion. vector, with unknown words having a special vo- cabulary ID. A document can be represented as 1 Introduction the average of all these vectors. Then FastText will train a maximum entropy multi-class classi- The goal of the ALTA 2016 Shared Task was to fier on the vectors and the output labels.
    [Show full text]
  • A Second Look at Word Embeddings W4705: Natural Language Processing
    A second look at word embeddings W4705: Natural Language Processing Fei-Tzin Lee October 23, 2019 Fei-Tzin Lee Word embeddings October 23, 2019 1 / 39 Overview Last time... • Distributional representations (SVD) • word2vec • Analogy performance Fei-Tzin Lee Word embeddings October 23, 2019 2 / 39 Overview This time • Homework-related topics • Non-homework topics Fei-Tzin Lee Word embeddings October 23, 2019 3 / 39 Overview Outline 1 GloVe 2 How good are our embeddings? 3 The math behind the models? 4 Word embeddings, new and improved Fei-Tzin Lee Word embeddings October 23, 2019 4 / 39 GloVe Outline 1 GloVe 2 How good are our embeddings? 3 The math behind the models? 4 Word embeddings, new and improved Fei-Tzin Lee Word embeddings October 23, 2019 5 / 39 GloVe A recap of GloVe Our motivation: • SVD places too much emphasis on unimportant matrix entries • word2vec never gets to look at global co-occurrence statistics Can we create a new model that balances the strengths of both of these to better express linear structure? Fei-Tzin Lee Word embeddings October 23, 2019 6 / 39 GloVe Setting We'll use more or less the same setting as in previous models: • A corpus D • A word vocabulary V from which both target and context words are drawn • A co-occurrence matrix Mij , from which we can calculate conditional probabilities Pij = Mij =Mi Fei-Tzin Lee Word embeddings October 23, 2019 7 / 39 GloVe The GloVe objective, in overview Idea: we want to capture not individual probabilities of co-occurrence, but ratios of co-occurrence probability between pairs (wi ; wk ) and (wj ; wk ).
    [Show full text]
  • Cw2vec: Learning Chinese Word Embeddings with Stroke N-Gram Information
    The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) cw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information Shaosheng Cao,1,2 Wei Lu,2 Jun Zhou,1 Xiaolong Li1 1 AI Department, Ant Financial Services Group 2 Singapore University of Technology and Design {shaosheng.css, jun.zhoujun, xl.li}@antfin.com [email protected] Abstract We propose cw2vec, a novel method for learning Chinese word embeddings. It is based on our observation that ex- ploiting stroke-level information is crucial for improving the learning of Chinese word embeddings. Specifically, we de- sign a minimalist approach to exploit such features, by us- ing stroke n-grams, which capture semantic and morpholog- ical level information of Chinese words. Through qualita- tive analysis, we demonstrate that our model is able to ex- Figure 1: Radical v.s. components v.s. stroke n-gram tract semantic information that cannot be captured by exist- ing methods. Empirical results on the word similarity, word analogy, text classification and named entity recognition tasks show that the proposed approach consistently outperforms Bojanowski et al. 2016; Cao and Lu 2017). While these ap- state-of-the-art approaches such as word-based word2vec and proaches were shown effective, they largely focused on Eu- GloVe, character-based CWE, component-based JWE and ropean languages such as English, Spanish and German that pixel-based GWE. employ the Latin script in their writing system. Therefore the methods developed are not directly applicable to lan- guages such as Chinese that employ a completely different 1. Introduction writing system. Word representation learning has recently received a sig- In Chinese, each word typically consists of less charac- nificant amount of attention in the field of natural lan- ters than English1, where each character conveys fruitful se- guage processing (NLP).
    [Show full text]
  • Fasttext.Zip: Compressing Text Classification Models
    Under review as a conference paper at ICLR 2017 FASTTEXT.ZIP: COMPRESSING TEXT CLASSIFICATION MODELS Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Herve´ Jegou´ & Tomas Mikolov Facebook AI Research fajoulin,egrave,bojanowski,matthijs,rvj,[email protected] ABSTRACT We consider the problem of producing compact architectures for text classifica- tion, such that the full model fits in a limited amount of memory. After consid- ering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quan- tization artefacts. Combined with simple approaches specifically adapted to text classification, our approach derived from fastText requires, at test time, only a fraction of the memory compared to the original FastText, without noticeably sacrificing quality in terms of classification accuracy. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy. 1 INTRODUCTION Text classification is an important problem in Natural Language Processing (NLP). Real world use- cases include spam filtering or e-mail categorization. It is a core component in more complex sys- tems such as search and ranking. Recently, deep learning techniques based on neural networks have achieved state of the art results in various NLP applications. One of the main successes of deep learning is due to the effectiveness of recurrent networks for language modeling and their application to speech recognition and machine translation (Mikolov, 2012).
    [Show full text]