2018 Div. C (High School) Astronomy Help Session Sunday, Feb. 18Th, 2018 Stellar Evolution and Type II Supernovae Scott Jackson Mt

Total Page:16

File Type:pdf, Size:1020Kb

2018 Div. C (High School) Astronomy Help Session Sunday, Feb. 18Th, 2018 Stellar Evolution and Type II Supernovae Scott Jackson Mt 1 2018 Div. C (High School) Astronomy Help Session Sunday, Feb. 18th, 2018 Stellar Evolution and Type II supernovae Scott Jackson Mt. Cuba Astronomical Observatory • SO competition on March 3rd . • Resources – two computers or two 3 ring binder or one laptop plus one 3 ring binder – Programmable calculator – Connection to the internet is not allowed! – Help session before competition at Mt. Cuba Astronomical Observatory 2 3 Study aid -1 • Google each object, – Know what they look like in different parts of the spectrum. For example, the IR, optical, UV and Xray – Understand what each part of the spectrum means – Have a good qualitative feel for what the object is doing or has done within the astrophysical concepts that the student is being asked to know. 4 Study aid - 2 • Know the algebra behind the physics – Just because you think you have the right “equation” to use does not mean you know how to use it!!! – Hint for math problems: Solve equations symbolically BEFORE you put in numbers. Things tend to cancel out including parameters you do not need to have values for. – Know how to use scientific notation. 5 The test – 2 parts • Part 1 – multiple choice and a couple fill in the blanks • Part 2 – word problems for astrophysics there will be some algebra Solve the equations symbolically first then put in numbers!!!! Hint: most problems will not need a calculator if done this way Topics - 1 Stellar evolution, including - stellar classification, - spectral features and chemical composition, - H-R diagram transitions, - Accretion disks - Main sequence stars - HII regions - red supergiant giants, - Cepheids - Semiregular variales - Luminous blue variables - hypergiants, Wolf-Rayet stars, Neutron stars - Magnetars, pulsars, stellar mass black holes - Eclipsing binaries, X-ray and gamma-ray binary systems - Type II supernovas Kepler's laws as they apply to binary star systems, Distance latter in the universe, calculating distance and distance modulus Know about specific objects 7 8 RCW 103, - supernovae remnant with young magnetar – slow pulsar or binary IC 443 – Jelly fish nebulae from a supernova explosion Alpha Orionis – The brightest star in the constellation Orion, Betelgeuse RSG HR 5171 A V766 Centauri, a hypergiant star in a triple star system aout 12,000 ly away SN W49B a supernova remnant in the constellation Aquila ASASSN-15lh, Supernova SN-15lh – likely hypernova or a nova from a magnatar AG Carinae, – Star in Constellation Carina. Shedding mass at huge rate, LBV S Doradus, - Bright star in the Large Magellenic Cloud LBV SN 1987A, SuperNova that occurred in 1987 in the large Magellenic Cloud Geminga, -Rapidly rotating neutron star – pulsar in Gemini NGC 6357– Diffuse nebula in Scorpius. Many new stars: OB association NGC 7822, Star forming region in Cepheus: OB association M82 X-2, Xray pulsar in the galaxy M82. PSR B0355+54 Pulsar in the constellation Camelopardalis DEM L241, Supernova remnant in the large Magellanic Cloud Circinus X-1 X-ray binary system in Circinus RCW 103, -Supernova remnant, contains a supernova remnant that is a 9 magnetar (Neutron star with powerful magnetic fields and a very slow pulsar (rotating neutron star in this case rotating once every 6.5 hours – pulsars usually take less than a second to rotate) - Other possibility: A binary system with a companion orbiting a normal pulsar every 6.5 hours - Located about 9000 ly (light years) from earth. - Magnetar is only one of 30 known – age estimated to be 2000 years old – too young for pulsar to slow down to a period of 6.5 hours IC 443 Jellyfish Nebula – 5000 ly from earth 10 Contains a pulsar with a jet and a ring Alpha Orionis High mass star, several million years old, at the 11 end of its life. Expected to explode as a Type II supernova “soon” In the red supergiant (RSG) stage now. 12 to 17 solar masses. First star to have its surface imaged. Tsurface ~ 3400 K. Star is 4.5 au in diameter -- Would almost go out to Jupiter It is surrounded (right) by a large (400 au in diaeter) nebula of gas and dust. HR 5171 A in the constellation Centaurus, around 12,000 light 12 years from Earth. It is either a red supergiant or recent post-red supergiant yellow hypergiant, and one of the largest known stars. 12,000 ly away. May be 1,300 times the diameter of the sun 50% larger than Betelgeuse Part of a binary system with the companion believed to be touching the main stars surface UV light showing tail 13 SN W49B Type II Supernova remnant May have left behind a back hole and not a pulsar May be the youngest black hole in the Xray Milky Way. Supernova occurred around 17,000 to 21,000 years ago. Odd nebula caused by material ejected out the poles instead of the equator Composite Infared 14 ASAS-SN-15lh Supernova discovered using the All-Sky Automated Survey for Supernova. Intrinsically the brightest supernova yet observed – 570 billion x sun. Considered a “hypernova” Z (redshift)=0.2326 [1171 megaparsecs away] 15 AG Carinae, Luminous blue variable star (LBV) came from a star around 50x the mass of the sun. Also known as HD94910 20,000 ly away. May become a Wolf-Rayet star. Loosing a huge amount of mass due to its very strong solar wind pushing the material way from the star and making the nebula you see surrounding the star Visible (HST) Radio S Doradus– One of the most luminous stars known. 1 million x 16 the sun’s luminosity In constellation of Dorado. Luminous Blue Variable star. Lies in open cluster called NGC 1910. It is variable (below) and is in an instability strip (Next slide) Light curve S Doradus– LBV are variable due to dense solar wind that 17 creates a falsely large star. That solar wind dissipates and the brightness drops Apparent radius of the star changes from 100x to 380 x our sun. Most will eventually become Type II SN 6.5- 6- Zero Age main sequence 5.5- Log Luminosity 32,000K 10,000K 3,200K | Log Temperature | | 18 SN 1987A, Type II supernova. Shock wave from the exploding star smashes into a ring of material and caused the ring to brighten. Ring of material was made before the supernova happened – during the time when the star had strong solar winds. Ring is about 1 light year in diameter. Ring is 20,000 years old -- in Large Magellanic Cloud 19 Geminga Remnant of a supernova that occurred 300,000 years ago. Pulsar with a period of 0.24 seconds. Originally observed as an unknown gamma ray source. 250 parsecs away (Gemina Gamma-ray source). Very high proper motion (speed) Through our galaxy Once believed that a bubble around Our solar system came from Geminga 20 NGC 6357 New star forming region in Scorpius. HII region– ionized hydrogen region – hydrogen being ionized from strong radiation form the new stars. 5500 light years away. OB association of stars Composite X-ray 21 NGC 7822 Star forming region in Cepheus. 800 to 1000 parsecs away. Includes one of the hottest nearby stars known : a massive type O stars – surface temperature of 45000K, luminosity of ~100,000x our sun. another OB association 22 23 M82 X-2 Very bright X ray source in the M82 galaxy in the constellation of Urasa Major. A neutron star comsuming material from an adjacent star. Brightness limited by Eddington Luminosity Radiation pressure balances Gravitational forces Flow of material to white dwarf PSR B0355+54 Pulsar in the constellation Camelopardalis 24 3460 light years away. Period is 0.715 seconds. 5 million years old. Pusar is moving through interstellar media and generating a high energy tails (see in Xrays) by the Chandra xray satellite. Pulsar wind nebula https://arxiv.org/pdf/1610.06167.pdf 25 DEM L241, A star that survived a supernova explosion. System contains a neutron star or black hole and a massive companion star. Supernova remnant is DEM L241. IN the large Magellanic Cloud The progenitor star was likey 25x to 40x the mass of the sun. Visible X-ray Composite 26 Circinus X-1 X ray (Neutron) star with a second star (binary system) . Shows X-ray jets that are seen in black hole systems. Young X-ray binary system. Less than 4600 years old. In the constellation Circinus ~9400 parces away radio Visible+Xray+ radio X-ray 27 Circinus X-1 X ray (Neutron) Visible star Light “Echos” from outbursts reflected in nebulae Visible+Xray X-ray 28 Brightness of Stars • Brightness measured as luminosity or magnitude – Luminosity is the total energy output of a star • Depends on size and surface temperature • Usually measure relative to our sun, e.g., 4 times our sun. – A star’s magnitude is the logarithm of its luminosity – Apparent magnitude (m) [what we see] – is determined by four factors • Its temperature or color (wattage of a light bulb) • Its size • How far away it is • If it is obscured by dust (extinction) – Absolute magnitude (M) • Magnitude of a star when viewed from a fixed distance • Most abs magnitudes will be a negative number (bright) 29 Brightness of a star: A star’s magnitude • Magnitude is more often used to describe an objects brightness. • The higher the magnitude the dimmer the object. – The apparent magnitude of our sun is -26.7 – The apparent magnitude of a full moon is -12.6 – The apparent magnitude of the Sirius is ~ -1 – Dimmest star you see (in Wilmington) ~+3.5 – Dimmest star you see in a dark sky location ~+5.5 • The absolute magnitude is the magnitude of the star / object if it was place a fixed distance away (10 parsecs -- later).
Recommended publications
  • Arxiv:1910.11169V1 [Astro-Ph.EP] 24 Oct 2019 Metchev Et Al.(2004) Due to the Detection of a Strong Mid- Tinuum and at HCO+ and CO Gas Emission Lines
    Astronomy & Astrophysics manuscript no. PDS70_v2 c ESO 2019 October 25, 2019 VLT/SPHERE exploration of the young multiplanetary system PDS70? D. Mesa1, M. Keppler2, F. Cantalloube2, L. Rodet3, B. Charnay4, R. Gratton1, M. Langlois5; 6, A. Boccaletti4, M. Bonnefoy3, A. Vigan6, O. Flasseur7, J. Bae8, M. Benisty3; 9, G. Chauvin3; 9, J. de Boer10, S. Desidera1, T. Henning2, A.-M. Lagrange3, M. Meyer11, J. Milli12, A. Müller2, B. Pairet13, A. Zurlo14; 15; 6, S. Antoniucci16, J.-L. Baudino17, S. Brown Sevilla2, E. Cascone18, A. Cheetham19, R.U. Claudi1, P. Delorme3, V. D’Orazi1, M. Feldt2, J. Hagelberg19, M. Janson20, Q. Kral4, E. Lagadec21, C. Lazzoni1, R. Ligi22, A.-L. Maire2; 23, P. Martinez21, F. Menard3, N. Meunier3, C. Perrot4; 24; 25, S. Petrus3, C. Pinte26; 3, E.L. Rickman19, S. Rochat3, D. Rouan4, M. Samland2; 20, J.-F. Sauvage27; 6, T. Schmidt4; 28, S. Udry19, L. Weber19, F. Wildi19 (Affiliations can be found after the references) Received / accepted ABSTRACT Context. PDS 70 is a young (5.4 Myr), nearby (∼113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in Hα with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. Aims. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system.
    [Show full text]
  • Plasma Physics and Pulsars
    Plasma Physics and Pulsars On the evolution of compact o bjects and plasma physics in weak and strong gravitational and electromagnetic fields by Anouk Ehreiser supervised by Axel Jessner, Maria Massi and Li Kejia as part of an internship at the Max Planck Institute for Radioastronomy, Bonn March 2010 2 This composition was written as part of two internships at the Max Planck Institute for Radioastronomy in April 2009 at the Radiotelescope in Effelsberg and in February/March 2010 at the Institute in Bonn. I am very grateful for the support, expertise and patience of Axel Jessner, Maria Massi and Li Kejia, who supervised my internship and introduced me to the basic concepts and the current research in the field. Contents I. Life-cycle of stars 1. Formation and inner structure 2. Gravitational collapse and supernova 3. Star remnants II. Properties of Compact Objects 1. White Dwarfs 2. Neutron Stars 3. Black Holes 4. Hypothetical Quark Stars 5. Relativistic Effects III. Plasma Physics 1. Essentials 2. Single Particle Motion in a magnetic field 3. Interaction of plasma flows with magnetic fields – the aurora as an example IV. Pulsars 1. The Discovery of Pulsars 2. Basic Features of Pulsar Signals 3. Theoretical models for the Pulsar Magnetosphere and Emission Mechanism 4. Towards a Dynamical Model of Pulsar Electrodynamics References 3 Plasma Physics and Pulsars I. The life-cycle of stars 1. Formation and inner structure Stars are formed in molecular clouds in the interstellar medium, which consist mostly of molecular hydrogen (primordial elements made a few minutes after the beginning of the universe) and dust.
    [Show full text]
  • CENTAURI II Benutzerhandbuch
    CENTAURI II Benutzerhandbuch SW-Version ab 3.1.0.73 MAYAH, CENTAURI, FLASHCAST sind eingetragene Warenzeichen. Alle anderen verwendeten Warenzeichen werden hiermit anerkannt. CENTAURI II Benutzerhandbuch ab SW 3.1.0.73 Bestell-Nr. CIIUM001 Stand 11/2005 (c) Copyright by MAYAH Communications GmbH Die Vervielfältigung des vorliegenden Handbuches, sowie der darin besprochenen Dokumentationen aus dem Internet, auch nur auszugsweise, ist nur mit ausdrücklicher schriftlicher Genehmigung der MAYAH Communications GmbH erlaubt. 1 Einführung ........................................................................................................... 1 1.1 Vorwort......................................................................................................... 1 1.2 Einbau / Installation ...................................................................................... 2 1.3 Lieferumfang ................................................................................................ 2 1.4 Umgebungs- / Betriebsbedingung................................................................ 2 1.5 Anschlüsse................................................................................................... 3 2 Verbindungsaufbau ............................................................................................. 4 2.1 ISDN Verbindungen mit dem Centauri II ...................................................... 4 2.1.1 FlashCast Technologie und Audiocodec Kategorien............................. 4 2.1.2 Wie bekomme ich eine synchronisierte Verbindung
    [Show full text]
  • Beyond the Solar System Homework for Geology 8
    DATE DUE: Name: Ms. Terry J. Boroughs Geology 8 Section: Beyond the Solar System Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE! Provide concise, but detailed answers to essay and fill-in questions. Use an 882-e scantron for your multiple choice and true/false answers. Multiple Choice 1. Which one of the objects listed below has the largest size? A. Galactic clusters. B. Galaxies. C. Stars. D. Nebula. E. Planets. 2. Which one of the objects listed below has the smallest size? A. Galactic clusters. B. Galaxies. C. Stars. D. Nebula. E. Planets. 3. The Sun belongs to this class of stars. A. Black hole C. Black dwarf D. Main-sequence star B. Red giant E. White dwarf 4. The distance to nearby stars can be determined from: A. Fluorescence. D. Stellar parallax. B. Stellar mass. E. Emission nebulae. C. Stellar distances cannot be measured directly 5. Hubble's law states that galaxies are receding from us at a speed that is proportional to their: A. Distance. B. Orientation. C. Galactic position. D. Volume. E. Mass. 6. Our galaxy is called the A. Milky Way galaxy. D. Panorama galaxy. B. Orion galaxy. E. Pleiades galaxy. C. Great Galaxy in Andromeda. 7. The discovery that the universe appears to be expanding led to a widely accepted theory called A. The Big Bang Theory. C. Hubble's Law. D. Solar Nebular Theory B. The Doppler Effect. E. The Seyfert Theory. 8. One of the most common units used to express stellar distances is the A.
    [Show full text]
  • Commission 27 of the Iau Information Bulletin
    COMMISSION 27 OF THE I.A.U. INFORMATION BULLETIN ON VARIABLE STARS Nos. 2401 - 2500 1983 September - 1984 March EDITORS: B. SZEIDL AND L. SZABADOS, KONKOLY OBSERVATORY 1525 BUDAPEST, Box 67, HUNGARY HU ISSN 0374-0676 CONTENTS 2401 A POSSIBLE CATACLYSMIC VARIABLE IN CANCER Masaaki Huruhata 20 September 1983 2402 A NEW RR-TYPE VARIABLE IN LEO Masaaki Huruhata 20 September 1983 2403 ON THE DELTA SCUTI STAR BD +43d1894 A. Yamasaki, A. Okazaki, M. Kitamura 23 September 1983 2404 IQ Vel: IMPROVED LIGHT-CURVE PARAMETERS L. Kohoutek 26 September 1983 2405 FLARE ACTIVITY OF EPSILON AURIGAE? I.-S. Nha, S.J. Lee 28 September 1983 2406 PHOTOELECTRIC OBSERVATIONS OF 20 CVn Y.W. Chun, Y.S. Lee, I.-S. Nha 30 September 1983 2407 MINIMUM TIMES OF THE ECLIPSING VARIABLES AH Cep AND IU Aur Pavel Mayer, J. Tremko 4 October 1983 2408 PHOTOELECTRIC OBSERVATIONS OF THE FLARE STAR EV Lac IN 1980 G. Asteriadis, S. Avgoloupis, L.N. Mavridis, P. Varvoglis 6 October 1983 2409 HD 37824: A NEW VARIABLE STAR Douglas S. Hall, G.W. Henry, H. Louth, T.R. Renner 10 October 1983 2410 ON THE PERIOD OF BW VULPECULAE E. Szuszkiewicz, S. Ratajczyk 12 October 1983 2411 THE UNIQUE DOUBLE-MODE CEPHEID CO Aur E. Antonello, L. Mantegazza 14 October 1983 2412 FLARE STARS IN TAURUS A.S. Hojaev 14 October 1983 2413 BVRI PHOTOMETRY OF THE ECLIPSING BINARY QX Cas Thomas J. Moffett, T.G. Barnes, III 17 October 1983 2414 THE ABSOLUTE MAGNITUDE OF AZ CANCRI William P. Bidelman, D. Hoffleit 17 October 1983 2415 NEW DATA ABOUT THE APSIDAL MOTION IN THE SYSTEM OF RU MONOCEROTIS D.Ya.
    [Show full text]
  • The Nearest Stars: a Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 5 - Spring 1986 © 1986, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Nearest Stars: A Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific A tour through our stellar neighborhood As evening twilight fades during April and early May, a brilliant, blue-white star can be seen low in the sky toward the southwest. That star is called Sirius, and it is the brightest star in Earth's nighttime sky. Sirius looks so bright in part because it is a relatively powerful light producer; if our Sun were suddenly replaced by Sirius, our daylight on Earth would be more than 20 times as bright as it is now! But the other reason Sirius is so brilliant in our nighttime sky is that it is so close; Sirius is the nearest neighbor star to the Sun that can be seen with the unaided eye from the Northern Hemisphere. "Close'' in the interstellar realm, though, is a very relative term. If you were to model the Sun as a basketball, then our planet Earth would be about the size of an apple seed 30 yards away from it — and even the nearest other star (alpha Centauri, visible from the Southern Hemisphere) would be 6,000 miles away. Distances among the stars are so large that it is helpful to express them using the light-year — the distance light travels in one year — as a measuring unit. In this way of expressing distances, alpha Centauri is about four light-years away, and Sirius is about eight and a half light- years distant.
    [Show full text]
  • R-Process Elements from Magnetorotational Hypernovae
    r-Process elements from magnetorotational hypernovae D. Yong1,2*, C. Kobayashi3,2, G. S. Da Costa1,2, M. S. Bessell1, A. Chiti4, A. Frebel4, K. Lind5, A. D. Mackey1,2, T. Nordlander1,2, M. Asplund6, A. R. Casey7,2, A. F. Marino8, S. J. Murphy9,1 & B. P. Schmidt1 1Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 6Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany 7School of Physics and Astronomy, Monash University, VIC 3800, Australia 8Istituto NaZionale di Astrofisica - Osservatorio Astronomico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze, Italy 9School of Science, The University of New South Wales, Canberra, ACT 2600, Australia Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1–3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4–6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7–13.
    [Show full text]
  • Prospects of Detecting the Polarimetric Signature of the Earth-Mass Planet Α Centauri B B with SPHERE/ZIMPOL
    A&A 556, A64 (2013) Astronomy DOI: 10.1051/0004-6361/201321881 & c ESO 2013 Astrophysics Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL J. Milli1,2, D. Mouillet1,D.Mawet2,H.M.Schmid3, A. Bazzon3, J. H. Girard2,K.Dohlen4, and R. Roelfsema3 1 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), University Joseph Fourier, CNRS, BP 53, 38041 Grenoble, France e-mail: [email protected] 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland 4 Laboratoire d’Astrophysique de Marseille (LAM),13388 Marseille, France Received 12 May 2013 / Accepted 4 June 2013 ABSTRACT Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propaga- tion code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument.
    [Show full text]
  • Pos(INTEGRAL 2010)091
    A candidate former companion star to the Magnetar CXOU J164710.2-455216 in the massive Galactic cluster Westerlund 1 PoS(INTEGRAL 2010)091 P.J. Kavanagh 1 School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] E.J.A. Meurs School of Cosmic Physics, DIAS, and School of Physical Sciences, DCU Glasnevin, Dublin 9, Ireland E-mail: [email protected] L. Norci School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] Besides carrying the distinction of being the most massive young star cluster in our Galaxy, Westerlund 1 contains the notable Magnetar CXOU J164710.2-455216. While this is the only collapsed stellar remnant known for this cluster, a further ~10² Supernovae may have occurred on the basis of the cluster Initial Mass Function, possibly all leaving Black Holes. We identify a candidate former companion to the Magnetar in view of its high proper motion directed away from the Magnetar region, viz. the Luminous Blue Variable W243. We discuss the properties of W243 and how they pertain to the former Magnetar companion hypothesis. Binary evolution arguments are employed to derive a progenitor mass for the Magnetar of 24-25 M Sun , just within the progenitor mass range for Neutron Star birth. We also draw attention to another candidate to be member of a former massive binary. 8th INTEGRAL Workshop “The Restless Gamma-ray Universe” Dublin, Ireland September 27-30, 2010 1 Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • Supernova 2007Bi Was a Pair-Instability Explosion
    Supernova 2007bi was a pair-instability explosion A. Gal-Yam, Benoziyo Center for Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100, Israel, P. Mazzali, Max-Planck-Institut f¨ur Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany, and Scuola Normale Superiore, Piazza Cavalieri 7, 56127 Pisa, Italy, E. O. Ofek, Department of Astronomy, 105-24, California Institute of Technology, Pasadena, CA 91125, USA, P. E. Nugent, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-3411, USA, S. R. Kulkarni, M. M. Kasliwal, R. M. Quimby, Department of Astronomy, 105-24, California Institute of Technology, Pasadena, CA 91125, USA, A. V. Filippenko, S. B. Cenko, R. Chornock, Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA, R. Waldman, The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel, D. Kasen, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA, M. Sullivan, Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK, arXiv:1001.1156v1 [astro-ph.CO] 7 Jan 2010 E. C. Beshore, Department of Planetary Sciences, Lunar and Planetary Laboratory, 1629 E. University Blvd, Tucson AZ 85721, USA, A. J. Drake, Department of Astronomy, 105-24, California Institute of Technology, Pasadena, CA 91125, USA, R. C. Thomas, Luis W. Alvarez Fellow, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-3411, USA, J. S. Bloom, D. Poznanski, A. A. Miller, Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA, R. J. Foley, Clay Fellow, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, J.
    [Show full text]