Synthesis of Novel Tröger's Base-Derived Helical Scaffolds

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Novel Tröger's Base-Derived Helical Scaffolds University of Pennsylvania ScholarlyCommons Master of Chemical Sciences Capstone Projects Department of Chemistry 5-2017 Synthesis of Novel Tröger’s Base-Derived Helical Scaffolds Rahul Goel University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/mcs_capstones Part of the Chemistry Commons Goel, Rahul, "Synthesis of Novel Tröger’s Base-Derived Helical Scaffolds" (2017). Master of Chemical Sciences Capstone Projects. 5. https://repository.upenn.edu/mcs_capstones/5 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mcs_capstones/5 For more information, please contact [email protected]. Synthesis of Novel Tröger’s Base-Derived Helical Scaffolds Abstract Tröger’s base (TB) is a chiral V-shaped molecule in which the aromatic rings are nearly perpendicular. The overarching goal of this project is to utilize the unique chirality and inherent shape of the Tröger’s base monomer to design, synthesize and study dimeric, tetrameric and octameric TB oligomers, which will form helical structures. We describe here the methodology for the synthesis of novel Tröger’s base diester monomer 13, which is highly soluble in most organic solvents compared to TB systems with methylene bridges. Chiral HPLC resolution of TB monomer 18, using a semiprep chiral AD-H column, gave access to pure enantiomers of the TB monomer. The (-)-enantiomer of 18 was used to synthesize the novel syn diester TB dimer 20, via double Buchwald-Hartwig coupling based phenazine formation. Energy minimization modeling of the syn dimer 20 using Web MO shows a potential binding cleft, which can ultimately be applied for the synthesis of desired tetrameric and octameric scaffolds. The chiral HPLC resolution of TB monomer 18 is expensive, time-consuming and has low scalability. This problem was solved by the synthesis of a menthone-based chiral auxiliary 27, which allows easy access to the enantiopure monomers of TB. The chirality of 27 was utilized to form the diastereomers of menthone TB 33, which were readily separable by column chromatography. These diastereomers were then hydrolyzed to give pure enantiomers of diol TB monomer 34. Keywords Tröger’s Base, TB, oligomers, Helical, Helical scaffolds, dimer, monomer, tetramer, octamer, menthone, chiral, auxiliary, Chiral resolution of Tröger’s Base Disciplines Chemistry Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. This capstone report is available at ScholarlyCommons: https://repository.upenn.edu/mcs_capstones/5 AN ABSTRACT OF THE CAPSTONE REPORT OF Rahul Goel for the degree of Master of Chemical Sciences Title: Synthesis of Novel Tröger’s Base-Derived Helical Scaffolds Project conducted at: Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, United States of America Supervisor: Jeffrey D. Winkler Dates of Project: May 6, 2016 to May 1, 2017 Abstract approved: Professor Jeffrey D. Winkler Tröger’s base (TB) is a chiral V-shaped molecule in which the aromatic rings are nearly perpendicular. The overarching goal of this project is to utilize the unique chirality and inherent shape of the Tröger’s base monomer to design, synthesize and study dimeric, tetrameric and octameric TB oligomers, which will form helical structures. We describe here the methodology for the synthesis of novel Tröger’s base diester monomer 13, which is highly soluble in most organic solvents compared to TB systems with methylene bridges. Chiral HPLC resolution of TB monomer 18, using a semiprep chiral AD-H column, gave access to pure enantiomers of the TB monomer. The (-)-enantiomer of 18 was used to synthesize the novel syn diester TB dimer 20, via double Buchwald-Hartwig coupling based phenazine formation. Energy minimization modeling of the syn dimer 20 using Web MO shows a potential binding cleft, which can ultimately be applied for the synthesis of desired tetrameric and octameric scaffolds. The chiral HPLC resolution of TB monomer 18 is expensive, time-consuming and has low scalability. This problem was solved by the synthesis of a menthone-based chiral auxiliary 27, which allows easy access to the enantiopure monomers of TB. The chirality of 27 was utilized to form the diastereomers of menthone TB 33, which were readily separable by column chromatography. These diastereomers were then hydrolyzed to give pure enantiomers of diol TB monomer 34. Synthesis of Novel Tröger’s Base-Derived Helical Scaffolds by Rahul Goel A CAPSTONE REPORT submitted to the University of Pennsylvania in partial fulfillment of the requirements for the degree of Master of Chemical Sciences Presented (May 1, 2017) Commencement (May 2017) ii Dedicated to my parents, Rajeev and Kavita Goel iv ACKNOWLEDGEMENTS I would first like to thank Professor Jeffrey D. Winkler for all the support and guidance that he has provided me over the last two years. His expert advice and encouragement has not only helped me evolve as a better chemist, but also as a better person. I will be forever grateful to Professor Winkler for giving me the opportunity to be a part of his research group, and learn the necessary skills that will help me during my entire career. I would also like to thank Dr. Ana-Rita Mayol for her continued support during my time at the University of Pennsylvania. From writing my capstone proposal to writing my final capstone report, Dr. Mayol has helped me during each step of the Master’s program. I would also like to thank Professor Donna Huryn for her valuable guidance, comments and feedback during the last two years. Next, I would like to thank the members of the Winkler group- Dr. Rosa Cookson. Dr. Michelle Estrada, Dr. Buddha Khatri, Dr. Sara Goldstein, Mike Nicastri, Katie Crocker and Tyler Higgins for being great mentors and friends. Without their patience and instruction, I would not have been able to come this far. I would also like to thank all my MCS friends, who made graduate school a memorable experience. Last but not the least, I would like to thank my parents, Rajeev and Kavita Goel, for their guidance, support, love and wisdom over the last 25 years. They have always been the constant source of my inspiration during everything that I have ever been a part of. None of this would have been possible without them being there to encourage and motivate me at every step of my journey. I would also like to thank my brother Sahil for always cheering me up during stressful times and being a constant pillar of support throughout. v TABLE OF CONTENTS Abstract…………………………...………………………………………………...........i Title page…………………………………………………………………...……………ii Approval page………………...………………………………………………………...iii Dedication……………………....…………………………………………………….…iv Acknowledgements……………....……………………..…………....………………..v Table of contents…………………...…………………………………………………..vi List of figures…………………….......…………………………………………………vii List of schemes……………...………………………………………………………...viii List of tables……………………...……………………………………………………..ix List of appendices……………………...…………………………………………….…x Introduction………………………………...…………………………………………....1 Materials and methods………………………...……………………………………....7 Results and Discussion……………………………...……………………………….17 Synthesis of TB helical scaffolds……………...…………………………..…17 Preliminary binding studies with Hydroquinone…………………………….23 Menthone-based chiral auxiliary for better separation of enantiomers……………………………………………………………….……25 Conclusion…………………………...………………………………………………...29 References……………...………………...…………………………………………...30 Appendices………………..……………..……...……………………………………..32 vi LIST OF FIGURES Figure 1. Tröger’s base………………………………………………………….….....1 Figure 2. Existing helical systems by Hamilton, Boger and Arora………………...2 Figure 3. TB monomer 1, extended pseudo-dimers syn 2 and 3, and anti 4…………..…………………………………………………………...…3 Figure 4. The ABA problem associated with conventional TB synthesis…………3 Figure 5. Double Buchwald- Hartwig coupling based synthesis of phenazine 5………………………..………………………………………...4 Figure 6. Energy minimized space-filling models (MM2) of the TB monomer 1.............................................................................................4 Figure 7. Energy minimized space-filling models of A) 6’, syn diastereomer of the TB dimer 6; C) 7’, anti diastereomer of the TB dimer 7……..………...……………………………………………...4 Figure 8. Energy minimized space filling models of A) 8’, side view of TB Tetramer 8; B) 8’’, top view of 8; C) 9’, side view of TB octamer 9; D) 9’’, top view of 9…....……………….……………………...5 Figure 9. TB monomer 10 and the syn TB phenazine dimer 6…………………....6 Figure 10. Energy minimized Web MO model of the TB dimer 14……..………..18 Figure 11. Energy minimized Web MO models of A) 15’, top view of diester TB tetramer 15; B) 15’’, side view of 15…………………........19 Figure 12. Energy minimized Web MO models of A) 16’, top view of diester TB octamer 16 and B) 16’’, side view of 16…………….….….20 Figure 13. 1H NMR peak shifts for syn dimer (graph 1,2,3 and 4) and hydroquinone (graph 5), with the increasing concentration of hydroquinone in 2:1 THF-d8/D2O………………………………………..24 vii LIST OF SCHEMES Scheme 1. Proposed synthesis showing the formation of more soluble monomer, which will be used to synthesize the syn TB oligomers…………….......................................................................…7 Scheme 2. Synthesis of methylene TB 11, diazocine 12 and Diester TB monomer 13..……………...…………………………………………18 Scheme 3. Synthesis of Diester TB monomer 17 and 18, and chiral resolution of diester
Recommended publications
  • Biocatalytic Process Design and Reaction Engineering* This Work Is Licensed Under a ** Creative Commons Attribution 4.0 R
    R. Wohlgemuth, Biocatalytic Process Design and Reaction Engineering, Chem. Biochem. Eng. Q., 31 (2) 131–138 (2017) 131 Biocatalytic Process Design and Reaction Engineering* This work is licensed under a ** Creative Commons Attribution 4.0 R. Wohlgemuth International License Sigma-Aldrich, Member of Merck Group, doi: 10.15255/CABEQ.2016.1029 Industriestrasse 25, CH-9470 Buchs, Switzerland Review Received: November 2, 2016 Accepted: May 31, 2017 Biocatalytic processes occurring in nature provide a wealth of inspiration for manu- facturing processes with high molecular economy. The molecular and engineering as- pects of bioprocesses converting available raw materials into valuable products are there- fore of much industrial interest. Modular reaction platforms and straightforward working paths, from the fundamental understanding of biocatalytic systems in nature to the design and reaction engineering of novel biocatalytic processes, have been important for short- ening development times. Building on broadly applicable reaction platforms and tools for designing biocatalytic processes and their reaction engineering are key success factors. Process integration and intensification aspects are illustrated with biocatalytic processes to numerous small-molecular weight compounds, which have been prepared by novel and highly selective routes, for applications in the life sciences and biomedical sciences. Key words: molecular economy, retrosynthetic analysis, route selection, biocatalytic asymmetric synthesis, biocatalysts, biocatalytic process assembly,
    [Show full text]
  • Chiral Resolution Screening and Purification Kits Brochure
    Maybridge Chiral Resolution Screening and Purification Kits Offering rapid access to optically pure chiral compounds Maybridge Chiral Resolution Screening and Purification Kits Introduction Diastereomeric crystallization is a commonly used effective process to obtain optically pure chiral compounds from their racemic mixtures. However, choosing the optimal conditions for the process; e.g., combination of resolving agents and solvents, is time-consuming, tedious and labor-intensive. Maybridge Chiral Resolution Screening and Purification kits provide scientists with a quick and systematic approach to find the best separation conditions under which the target compound can be isolated with the highest yield and optical purity. Key features and benefits • Rapid Screening – the kits include 384 different combinations of resolving agents and solvents, increasing the chances of finding the optimal separation conditions • High Performance – development time reduced to one day • Efficient – as little as 0.4mmol of racemate required • Ready to Use – resolving agents and solvents are pre-dispensed in 96-well plates • Convenient – the screening kits provide positive results identifiable by a quick visual or optical inspection, and the purification and recovery kit allows easy recovery and purification of the enantiomers Types of Chiral Resolution Screening and Purification Kits Amount Plate Product name Description Selection guide racemate Product code type required Maybridge Chiral • 4 x 96 plates containing 32 different acidic Identifies optimal
    [Show full text]
  • Cross-Linked Protein Crystal Technology in Bioseparation and Biocatalytic Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Helsinki University of Technology, Department of Chemical Technology Technical Biochemistry Report 1/2004 Espoo 2004 TKK-BE-8 CROSS-LINKED PROTEIN CRYSTAL TECHNOLOGY IN BIOSEPARATION AND BIOCATALYTIC APPLICATIONS Antti Vuolanto Dissertation for the degree of Doctor in Science in Technology to be presented with due permission of the Department of Chemical Technology for public examination and debate in Auditorium KE 2 (Komppa Auditorium) at Helsinki University of Technology (Espoo, Finland) on the 20th of August, 2004, at 12 noon. Helsinki University of Technology Department of Chemical Technology Laboratory of Bioprocess Engineering Teknillinen korkeakoulu Kemian osasto Bioprosessitekniikan laboratorio Distribution: Helsinki University of Technology Laboratory of Bioprocess Engineering P.O. Box 6100 FIN-02015 HUT Tel. +358-9-4512541 Fax. +358-9-462373 E-mail: [email protected] ©Antti Vuolanto ISBN 951-22-7176-1 (printed) ISBN 951-22-7177-X (pdf) ISSN 0359-6621 Espoo 2004 Vuolanto, Antti. Cross-linked protein crystal technology in bioseparation and biocatalytic applications. Espoo 2004, Helsinki University of Technology. Abstract Chemical cross-linking of protein crystals form an insoluble and active protein matrix. Cross-linked protein crystals (CLPCs) have many excellent properties including high volumetric activity and stability. In this thesis CLPC technology was studied in bioseparation and biocatalytic applications. A novel immunoaffinity separation material, cross-linked antibody crystals (CLAC), was developed in this thesis for enantiospecific separation of a chiral drug, finrozole. Previously, the preparation of an antibody Fab fragment ENA5His capable of enantiospecific affinity separation of the chiral drug has been described.
    [Show full text]
  • Enzyme Supported Crystallization of Chiral Amino Acids
    ISBN 978-3-89336-715-3 40 Band /Volume Gesundheit /Health 40 Gesundheit Enzyme supported crystallization Health Kerstin Würges of chiral amino acids Mitglied der Helmholtz-Gemeinschaft Kerstin Würges Kerstin aminoacids Enzyme supported ofchiral crystallization Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences (IBG) Biotechnology (IBG-1) Enzyme supported crystallization of chiral amino acids Kerstin Würges Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 ISSN 1866-1785 ISBN 978-3-89336-715-3 Bibliographic information published by the Deutsche Nationalbibliothek. The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Publisher and Forschungszentrum Jülich GmbH Distributor: Zentralbibliothek 52425 Jülich Phone +49 (0) 24 61 61-53 68 · Fax +49 (0) 24 61 61-61 03 e-mail: [email protected] Internet: http://www.fz-juelich.de/zb Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH Printer: Grafische Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2011 Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 D 61 (Diss. Düsseldorf, Univ., 2011) ISSN 1866-1785 ISBN 978-3-89336-715-3 The complete volume ist freely available on the Internet on the Jülicher Open Access Server (JUWEL) at http://www.fz-juelich.de/zb/juwel Neither this book nor any part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • APPLICATIONS in ASYMMETRIC SYNTHESIS Carlos
    324 SYNTHESIS OF OCTAHYDROBENZO - 1, 2,3 - DIAZAPHOSPHOLIDINE - 2 - OXIDES AND THEIR DERIVATIVES: APPLICATIONS IN ASYMMETRIC SYNTHESIS DOI: http://dx.medra.org/ 10.17374/targets.2020.23.324 Carlos Cruz - Hernández a , José M. Landeros a , Eusebio Juaristi * a,b a Departamento de Química, Centro de Investigación y de E studios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico b El Colegio Nacional, Luis González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico (e - mail: [email protected]; [email protected]) Abstract. This chapter outlines recent efforts devoted to the synthesis of heterocycles that include the octahydrobenzo - 1,3,2 - diazaphospholidine - 2 - oxide fragment, as well as their application in asymmetri c synthesis. The first part of this review provides a brief discussion of the general structural characteristics of this phosphorus - containing heterocyclic scaffold. The second part describes the synthetic paths that were undertaken to synthesize the desir ed heterocycles , as well as some relevant considerations pertaining the spectroscopic characterization of the phosphorus - containing heterocycles of interest . The third part provides several illustrative examples where the novel chiral heterocycles were employed in ena ntioselective synthesis. The new phosphorus - containing heterocycles proved useful : i) as chiral auxiliaries in nucleophilic addition reactions, as well as as imine activators in electrophilic addition reactions; ii ) as c hiral ligands i n nucleophilic allylation and crotonylation of prochiral aldehydes , and iii) as c hiral organocatalysts in enantioselective aldol, Michael, and cascade reactions. Contents 1. Introduction 2. Synthesis of the octahydrobenzo - 1,3,2 - diazaphospho lidine - 2 - oxide s 2.1 . Conformational and configurational assignments 3 .
    [Show full text]
  • Enantiomeric Resolution and Absolute Configuration of a Chiral Δ-Lactam
    molecules Article Enantiomeric Resolution and Absolute Configuration of a Chiral δ-Lactam, Useful Intermediate for the Synthesis of Bioactive Compounds 1, 1, 1 1 Roberta Listro y, Giacomo Rossino y, Serena Della Volpe , Rita Stabile , Massimo Boiocchi 2 , Lorenzo Malavasi 3, Daniela Rossi 1,* and Simona Collina 1 1 Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] (R.L.); [email protected] (G.R.); [email protected] (S.D.V.); [email protected] (R.S.); [email protected] (S.C.) 2 Centro Grandi Strumenti, University of Pavia, via Bassi 21, 27100 Pavia, Italy; [email protected] 3 Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Academic Editor: Józef Drabowicz Received: 2 December 2020; Accepted: 18 December 2020; Published: 19 December 2020 Abstract: During the past several years, the frequency of discovery of new molecular entities based on γ- or δ-lactam scaffolds has increased continuously. Most of them are characterized by the presence of at least one chiral center. Herein, we present the preparation, isolation and the absolute configuration assignment of enantiomeric 2-(4-bromophenyl)-1-isobutyl-6-oxopiperidin-3-carboxylic acid (trans-1). For the preparation of racemic trans-1, the Castagnoli-Cushman reaction was employed. (Semi)-preparative enantioselective HPLC allowed to obtain enantiomerically pure trans-1 whose absolute configuration was assigned by X-ray diffractometry. Compound (+)-(2R,3R)-1 represents a reference compound for the configurational study of structurally related lactams.
    [Show full text]
  • Spherezymes: a Novel Structured Self-Immobilisation Enzyme
    BMC Biotechnology BioMed Central Research article Open Access Spherezymes: A novel structured self-immobilisation enzyme technology Dean Brady*1, Justin Jordaan1, Clinton Simpson1, Avashnee Chetty2, Cherise Arumugam2 and Francis S Moolman2 Address: 1CSIR Biosciences, Ardeer Road, Modderfontein, 1645 South Africa and 2CSIR Materials Science and Manufacturing, Meiring Naudé Road, Brummeria, Pretoria, 0001 South Africa Email: Dean Brady* - [email protected]; Justin Jordaan - [email protected]; Clinton Simpson - [email protected]; Avashnee Chetty - [email protected]; Cherise Arumugam - [email protected]; Francis S Moolman - [email protected] * Corresponding author Published: 31 January 2008 Received: 8 May 2007 Accepted: 31 January 2008 BMC Biotechnology 2008, 8:8 doi:10.1186/1472-6750-8-8 This article is available from: http://www.biomedcentral.com/1472-6750/8/8 © 2008 Brady et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Enzymes have found extensive and growing application in the field of chemical organic synthesis and resolution of chiral intermediates. In order to stabilise the enzymes and to facilitate their recovery and recycle, they are frequently immobilised. However, immobilisation onto solid supports greatly reduces the volumetric and specific activity of the biocatalysts. An alternative is to form self-immobilised enzyme particles. Results: Through addition of protein cross-linking agents to a water-in-oil emulsion of an aqueous enzyme solution, structured self-immobilised spherical enzyme particles of Pseudomonas fluorescens lipase were formed.
    [Show full text]
  • Distinction of Enantiomers by NMR
    REVIEWS Disinction of enantiomers by NMR spectroscopy using chiral orienting media Burkhard Luy Abstract | NMR spectroscopy is a very important analytical tool in modern organic and inorganic chemistry. Next to the identification of molecules and their structure determination, it is also used for the distinction of enantiomers and the measurement of enantiomeric purity. This article gives a brief review of the techniques being developed for enantiomeric differentiation by virtue of chiral alignment media and their induction of enantiomerically dependent anisotropic NMR parameters like residual dipolar couplings. An overview of existing chiral alignment media, a brief introduction into the basic theory and measurement of the various anisotropic parameters, and several example applications are given. 1. Introduction valuable compounds one doesn’t necessarily want to NMR spectroscopy is one of the most important irreversibly modify the substance. analytical tools in modern organic and inorganic Another possibility for the distinction of chemistry as it is the only tool that allows the enantiomers is the orientation of the molecule of determination of molecular structures at atomic interest in a so-called chiral alignment medium. resolution in solution. It is used to identify the In this case, the molecule is partially aligned constitution, conformation and configuration and anisotropic NMR parameters like residual of countless molecules every day. However, the quadrupolar couplings, residual dipolar couplings magnetic field used for the induction of the Zeeman and residual chemical shift anisotropy can be splitting is per se achiral so that enantiomers measured2–4. As the orientation in a chiral have identical properties and therefore identical alignment medium is different for the two NMR spectra.
    [Show full text]
  • Identifying a Diastereomeric Salt for a Challenging Chiral Resolution
    APPLICATION NOTE Identifying a diastereomeric salt for a challenging chiral resolution Advancing a therapeutic for MMV used Unchained Lab’s high-throughput malaria using the Big Kahuna techniques to deliver successful results in system approximately two weeks to a problem that Researchers at the Medicines for Malaria Ven- they had been trying to solve for more than one year using traditional methods. ture were pursuing a promising candidate for the treatment of malaria when they ran into a road- block. For over a year they attempted to develop a more direct method for isolating a key chiral The mission of MMV is to reduce the burden of intermediate. Until this challenge was overcome, malaria in disease-endemic countries by dis- the program was stalled and could not progress. covering, developing and facilitating the delivery Leveraging the power of Unchained Labs' Big Kahuna of new, effective and affordable anti-malarial system configured for preformulation, they over- drugs. They envision a world in which innovative came this roadblock by identifying and scaling-up medicines will cure and protect the vulnerable a viable chiral resolution method in just two and under-served populations at risk of malar- weeks. ia, and help to ultimately eradicate this terrible disease. In 1999, there were no compounds in the MMV portfolio. Ten years later, MMV had a The Medicines for Malaria robust portfolio consisting of 42 development Venture programs, including four anti-malarial com- Worldwide, 3.3 billion people are at risk for pounds in Phase 3 clinical trials and three com- malaria, which is prevalent in tropical and pounds in registration—all funded solely by MMV.
    [Show full text]
  • The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts
    S S symmetry Article The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts Dorottya Fruzsina Bánhegyi and Emese Pálovics * Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] * Correspondence: [email protected] Abstract: Knowing the eutectic composition of the binary melting point phase diagrams of the diastereomeric salts formed during the given resolution, the achievable F (F = eeDia*Y) value can be calculated. The same value can also be calculated and predicted by knowing the eutectic compositions of the binary melting point phase diagrams of enantiomeric mixtures of the racemic compound or the resolving agent. An explanation was sought as to why and how the crystalline precipitated diastereomeric salt—formed in the solution between a racemic compound and the corresponding resolving agent—may be formed. According to our idea, the self-disproportionation of enantiomers (SDE) has a decisive role when the enantiomers form two nonequal ratios of conformers in solution. The self-organized enantiomers form supramolecular associations having M and P helicity, and double helices are formed. Between these double spirals, with the formation of new double spirals, a dynamic equilibrium is achieved and the salt crystallizes. During this process between acids and bases, chelate structures may also be formed. Acids appear to have a crucial impact on these structures. It is assumed that the behavior of each chiral molecule is determined by its own code. This code validates the combined effect of constituent atoms, bonds, spatial structure, charge distribution, flexibility and complementarity. Citation: Bánhegyi, D.F.; Pálovics, E.
    [Show full text]
  • Chromatographic Studies of Protein-Based Chiral Separations
    separations Review Chromatographic Studies of Protein-Based Chiral Separations Cong Bi, Xiwei Zheng, Shiden Azaria, Sandya Beeram, Zhao Li and David S. Hage * Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; [email protected] (C.B.); [email protected] (X.Z.); [email protected] (S.A.); [email protected] (S.B.); [email protected] (Z.L.) * Correspondence: [email protected]; Tel.: +1-402-472-2744; Fax: +1-402-472-9402 Academic Editor: W John Lough Received: 12 June 2016; Accepted: 12 August 2016; Published: 5 September 2016 Abstract: The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations.
    [Show full text]
  • Inherently Chiral Calixarenes; Methodology and Applications
    Inherently chiral calixarenes; methodology and applications by Dominic Christian Castell Submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy at Stellenbosch University Department of Chemistry and Polymer Science Faculty of Science Supervisor: Dr. G. E. Arnott Date: August 2016 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly stated otherwise) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. ______________________ Signature ______________________ Name in full ______/_____/__________ Date Copyright © 2016 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract The use of chiral directing groups has provided an efficient route to meta-functionalised inherently chiral calixarenes. Previously reported ortholithiation methods, incorporating chiral oxazolines have been reexamined, with the aim of revising the individual roles of the three major components of the reaction. The potential mechanistic ramifications of the solvent, additive and alkyllithium structure on the reaction outcomes were individually evaluated. The overarching complexity inherent in this chemistry, coupled with a wide scope of experimental results, point to a number of substrate, solvent and also reagent dependent reaction mechanisms. In addition to the oxazolines, the tert-butyl sulfoxide functional group has also been established as an effective chiral auxiliary for this ortholithiation strategy, yielding enriched diastereomeric mixtures of inherently chiral sulfoxide calixarenes. The absolute stereochemistry of these major and minor products were determined crystallographically.
    [Show full text]