Math. Student 2021-Part-1

Total Page:16

File Type:pdf, Size:1020Kb

Math. Student 2021-Part-1 ISSN: 0025-5742 THE MATHEMATICS STUDENT Volume 90, Nos. 1-2, January - June (2021) (Issued: April, 2021) Editor-in-Chief M. M. SHIKARE EDITORS Bruce C. Berndt George E. Andrews M. Ram Murty N. K. Thakare Satya Deo Gadadhar Misra B. Sury Kaushal Verma Krishnaswami Alladi ′ S. K. Tomar Clare D Cruz L. Sunil Chandran J. R. Patadia C. S. Aravinda A. S. Vasudeva Murthy Indranil Biswas Timothy Huber T. S. S. R. K. Rao Atul Dixit PUBLISHED BY THE INDIAN MATHEMATICAL SOCIETY www.indianmathsociety.org.in THE MATHEMATICS STUDENT Edited by M. M. SHIKARE In keeping with the current periodical policy, THE MATHEMATICS STUDENT will seek to publish material of interest not just to mathematicians with specialized interest but to the postgraduate students and teachers of mathematics in India. With this in view, it will ordinarily publish material of the following type: 1. research papers, 2. the texts (written in a way accessible to students) of the Presidential Addresses, the Plenary talks and the Award Lectures delivered at the Annual Conferences. 3. general survey articles, popular articles, expository papers and Book-Reviews. 4. problems and solutions of the problems, 5. new, clever proofs of theorems that graduate / undergraduate students might see in their course work, and 6. articles that arouse curiosity and interest for learning mathematics among readers and motivate them for doing mathematics. Articles of the above type are invited for publication in THE MATHEMATICS STUDENT. Manuscripts intended for publication should be submitted online in the A LTEX and .pdf file including figures and tables to the Editor M. M. Shikare on E-mail: [email protected] along with a Declaration form downloadable from our website. Manuscripts (including bibliographies, tables, etc.) should be typed double spaced on A A4 size paper with 1 inch (2.5 cm.) margins on all sides with font size 11 pt. in LTEX. Sections should appear in the following order: Title Page, Abstract, Text, Notes and References. Comments or replies to previously published articles should also follow this A format. In LTEX the following preamble be used as is required by the Press: \ documentclass[11 pt,a4paper,twoside,reqno]{amsart} \ usepackage {amsfonts, amssymb, amscd, amsmath, enumerate, verbatim, calc} \ renewcommand{\ baselinestretch}{1.2} \ textwidth=12.5 cm \ textheight=20 cm \ topmargin=0.5 cm \ oddsidemargin=1 cm \ evensidemargin=1 cm \ pagestyle{plain} The details are available on Society’s website: www.indianmathsociety.org.in Authors of articles / research papers printed in the the Mathematics Student as well as in the Journal shall be entitled to receive a soft copy (PDF file) of the paper published. There are no page charges for publication of articles in the journal. All business correspondence should be addressed to S. K. Nimbhorkar, Treasurer, Indian Mathematical Society, C/O Dr. Mrs. Prachi Kulkarni, Ankur Hospital, Tilaknagar, Aurangabad 431 001 (MS), India. E-mail: [email protected] or [email protected] In case of any query, one may contact the Editor through the e-mail. Copyright of the published articles lies with the Indian Mathematical Society. ISSN: 0025-5742 THE MATHEMATICS STUDENT Volume 90, Nos. 1-2, January - June (2021) (Issued: April, 2021) Editor-in-Chief M. M. SHIKARE EDITORS Bruce C. Berndt George E. Andrews M. Ram Murty N. K. Thakare Satya Deo Gadadhar Misra B. Sury Kaushal Verma Krishnaswami Alladi ′ S. K. Tomar Clare D Cruz L. Sunil Chandran J. R. Patadia C. S. Aravinda A. S. Vasudeva Murthy Indranil Biswas Timothy Huber T. S. S. R. K. Rao Atul Dixit PUBLISHED BY THE INDIAN MATHEMATICAL SOCIETY www.indianmathsociety.org.in ISSN: 0025-5742 ii c THE INDIAN MATHEMATICAL SOCIETY, 2021. This volume or any part thereof should not be reproduced in any form without the written permission of the publisher. This volume is not to be sold outside the Country to which it is consigned by the Indian Mathematical Society. Member’s copy is strictly for personal use. It is not intended for sale or circulation. Published by Prof. Satya Deo for the Indian Mathematical Society, type set by M. M. Shikare, “Krushnakali”, Survey No. 73/6/1, Gulmohar Colony, Jagtap Patil Estate, Pimple Gurav, Pune 411061 and printed by Dinesh Barve at Parashuram Process, Shed No. 1246/3, S. No. 129/5/2, Dalviwadi Road, Barangani Mala, Wadgaon Dhayari, Pune-411 041 (India). Printed in India. The Mathematics Student ISSN: 0025-5742 Vol. 90, Nos. 1-2, January-June (2021) CONTENTS 1. B. Sury View of mathematics by our society 1– 8 and what our role could be 2. B. Sury Linear algebraic groups over 9–31 global and local fields-some themes 3. Dinesh Khurana Some glimpses into noncommutative 33–44 ring theory 4. Sanoli Gun Large Fourier coefficients of modular forms 45–61 5. Mythily An invitation to differential equations 63–75 Ramaswamy 6. Khushbu Das Recursive subsequence of various 77– 84 Devbhadra Shah Fibonacci-type sequences 7. Rakesh Barai On decomposition of a rational prime 85–102 in a cubic field 8. A. D. Godase Hyperbolic k-Fibonacci and k-Lucas 103–116 quaternions 9. D. Barman Unique common fixed point results 117–132 K. Sarkar and of integral type contraction condition K. Tiwary in 2-Banach spaces 10. S. B. Patil and Initial value problem for nth order 133–141 D. S. Palimkar random differential inclusion 11. Amrik Singh Extensions of Ramanujan’s three series 143–153 1 Nimbran for π and related series 12. Arpita Ghosh and A contractible graph with eleven vertices 155–159 Surojit Ghosh and no gluable edge 13. N. A. Malik and A new approach to good matrices 161–175 H. Mahato 14. B. G. Khedkar Complex inversion formula for 177–182 S. B. Gaikwad modified - Stieltjes transform iv Problems and Solutions 15. - Problem Section 183– 192 ******* The Mathematics Student ISSN: 0025-5742 Vol. 90, Nos. 1-2, January-June (2021), 1–8 VIEW OF MATHEMATICS BY OUR SOCIETY AND WHAT OUR ROLE COULD BE* B SURY It is a great honor to have been elected to the office of the President of the Indian Mathematical Society. The genesis of the Indian Mathematical Soci- ety has the following interesting history. On April 4, 1907, V. Ramaswamy Aiyar and 20 founding members founded the ‘Analytic club’ on the lines of the Edinburgh Mathematical society. The idea was put forth in a letter in December 1906; note that Einstein’s theory of relativity and Ramanujan’s works came to the world’s notice in 1906 - a golden year indeed. The IMS is the oldest mathematical society of our country, and has had such luminaries as Vijayaraghavan, Vaidyanathaswamy, Hansraj Gupta and P L Bhatnagar among its Past Presidents. I am also grateful for the opportunity to ad- dress this august gathering. Even though the pandemic has not allowed us to meet in person, it could be a blessing in disguise as perhaps more people can virtually participate. I would like to share my thought about the following three aspects of Math- ematics: (i) How Indian society views mathematics, and what we should or could do to effectively create awareness among the public to the importance of this discipline; (ii) Ways and means of motivating students who are not particularly inter- ested in the subject due to the way it is being taught; and (iii) (This has to do with the mathematical community) What might the future scenario of research in mathematics look like. ∗ This article is based on the text of the Presidential Address (General) given by Prof. B. Sury at the 86th Annual Conference of the IMS-An International meet held at Vellore Inst. of Tech., Vellore (T. N.) using online mode during December 17-20, 2020. © Indian Mathematical Society, 2021 . 1 2 B SURY Before talking about these three points, let us recognize that mathematics is a social enterprise that is expected to further human goals and aspira- tions. A mathematical conference is not only about discussions that are mathematical, but the purpose is also to socialize, reinvigorate friendships, and engage in informal conversations. The point is to remind ourselves that it is about being part of a community that is united by its love for, and belief in, the importance of mathematics. Irrespective of whether our interest is in teaching, or research or reaching out to society, all of us are essential to the continued health of our discipline. In that aspect, an online meeting falls woefully short. The belief is that a good education in math- ematics benefits the individual as well as society, but the benefits should include empowerment of the individual, development of analytical/logical thinking and also gains that are practical such as the support of scientific and business aspirations. Aspect I : Our society’s view of mathematics The view of the mathematical layman towards practising mathematicians like us is based mainly on our holding positions in institutions rather than actual appreciation - this is understandable. It is akin to what many math- ematicians think of Ramanujan. Their appreciation is mostly based on reading encomiums about Ramanujan by some top mathematicians, cou- pled with personal aspects as to how he faced hardships, poverty etc. An appreciation of his original ideas and an understanding of what Ramanujan actually did and how fertile his mind was, is only by a small minority. Many people think of mathematicians as people who can do fast calcula- tions and always deal with numbers. My favorite reply to this often is that the only numbers I may come across in my research are page numbers of manuscripts! I am sure that most of us face the following experience. In any general get-together, when people hear about your profession, they say, “Oh, I was so bad at mathematics! I just managed to scrape through my exams." We are led to think that they perceive us as higher entities of some sort.
Recommended publications
  • Dishant M Pancholi
    Dishant M Pancholi Contact Chennai Mathematical Institute Phone: +91 44 67 48 09 59 Information H1 SIPCOT IT Park, Siruseri Fax: +91 44 27 47 02 25 Kelambakkam 603103 E-mail: [email protected] India Research • Contact and symplectic topology Interests Employment Assitant Professor June 2011 - Present Chennai Mathematical Institute, Kelambakkam, India Post doctoral Fellow (January 2008 - January 2010) International Centre for Theoratical physics,Trieste, Italy. Visiting Fellow, (October 2006 - December 2007) TIFR Centre, Bangalore, India. Education School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India. Ph.D, August 1999 - September 2006. Thesis title: Knots, mapping class groups and Kirby calculus. Department of Mathematics, M.S. University of Baroda, Vadodara, India. M.Sc (Mathematics), 1996 - 1998. M.S. University of Baroda, Vadodara, India B.Sc, 1993 - 1996. Awards and • Shree Ranchodlal Chotalal Shah gold medal for scoring highest marks in mathematics Scholarships at M S University of Baroda, Vadodara in M.Sc. (1998) • Research Scholarship at TIFR, Mumbai. (1999) • Best Thesis award TIFR, Mumbai (2007) Research • ( With Siddhartha Gadgil) Publications Homeomorphism and homology of non-orientable surfaces Proceedings of Indian Acad. of Sciences, 115 (2005), no. 3, 251{257. • ( With Siddhartha Gadgil) Non-orientable Thom-Pontryagin construction and Seifert surfaces. Journal of RMS 23 (2008), no. 2, 143{149. • ( With John Etnyre) On generalizing Lutz twists. Journal of the London Mathematical Society (84) 2011, Issue 3, p670{688 Preprints • (With Indranil Biswas and Mahan Mj) Homotopical height. arXiv:1302.0607v1 [math.GT] • (With Roger Casals and Francisco Presas) Almost contact 5{folds are contact. arXiv:1203.2166v3 [math.SG] (2012)(submitted) • (With Roger Casals and Francisco Presas) Contact blow-up.
    [Show full text]
  • Tata Institute of Fundamental Research Prof
    Annual Report 1988-89 Tata Institute of Fundamental Research Prof. M. G. K. Menon inaugurating the Pelletron Accelerator Facility at TIFR on December 30, 1988. Dr. S. S. Kapoor, Project Director, Pelletron Accelerator Facility, explaining salient features of \ Ion source to Prof. M. G. K. Menon, Dr. M. R. Srinivasan, and others. Annual Report 1988-89 Contents Council of Management 3 School of Physics 19 Homi Bhabha Centre for Science Education 80 Theoretical Physics l'j Honorary Fellows 3 Theoretical A strophysics 24 Astronomy 2') Basic Dental Research Unit 83 Gravitation 37 A wards and Distinctions 4 Cosmic Ray and Space Physics 38 Experimental High Energy Physics 41 Publications, Colloquia, Lectures, Seminars etc. 85 Introduction 5 Nuclear and Atomic Physics 43 Condensed Matter Physics 52 Chemical Physics 58 Obituaries 118 Faculty 9 Hydrology M Physics of Semi-Conductors and Solid State Electronics 64 Group Committees 10 Molecular Biology o5 Computer Science 71 Administration. Engineering Energy Research 7b and Auxiliary Services 12 Facilities 77 School of Mathematics 13 Library 79 Tata Institute of Fundamental Research Homi Bhabha Road. Colaba. Bombav 400005. India. Edited by J.D. hloor Published by Registrar. Tata Institute of Fundamental Research Homi Bhabha Road, Colaba. Bombay 400 005 Printed bv S.C. Nad'kar at TATA PRESS Limited. Bombay 400 025 Photo Credits Front Cover: Bharat Upadhyay Inside: Bharat Upadhyay & R.A. A chary a Design and Layout by M.M. Vajifdar and J.D. hloor Council of Management Honorary Fellows Shri J.R.D. Tata (Chairman) Prof. H. Alfven Chairman. Tata Sons Limited Prof. S. Chandrasekhar Prof.
    [Show full text]
  • Profile Book 2017
    MATH MEMBERS A. Raghuram Debargha Banerjee Neeraj Deshmukh Sneha Jondhale Abhinav Sahani Debarun Ghosh Neha Malik Soumen Maity Advait Phanse Deeksha Adil Neha Prabhu Souptik Chakraborty Ajith Nair Diganta Borah Omkar Manjarekar Steven Spallone Aman Jhinga Dileep Alla Onkar Kale Subham De Amit Hogadi Dilpreet Papia Bera Sudipa Mondal Anindya Goswami Garima Agarwal Prabhat Kushwaha Supriya Pisolkar Anisa Chorwadwala Girish Kulkarni Pralhad Shinde Surajprakash Yadav Anup Biswas Gunja Sachdeva Rabeya Basu Sushil Bhunia Anupam Kumar Singh Jyotirmoy Ganguly Rama Mishra Suvarna Gharat Ayan Mahalanobis Kalpesh Pednekar Ramya Nair Tathagata Mandal Ayesha Fatima Kaneenika Sinha Ratna Pal Tejas Kalelkar Baskar Balasubramanyam Kartik Roy Rijubrata Kundu Tian An Wong Basudev Pattanayak Krishna Kaipa Rohit Holkar Uday Bhaskar Sharma Chaitanya Ambi Krishna Kishore Rohit Joshi Uday Jagadale Chandrasheel Bhagwat Makarand Sarnobat Shane D'Mello Uttara Naik-Nimbalkar Chitrabhanu Chaudhuri Manidipa Pal Shashikant Ghanwat Varun Prasad Chris John Manish Mishra Shipra Kumar Venkata Krishna Debangana Mukherjee Milan Kumar Das Shuvamkant Tripathi Visakh Narayanan Debaprasanna Kar Mousomi Bhakta Sidharth Vivek Mohan Mallick Compiling, Editing and Design: Shanti Kalipatnapu, Kranthi Thiyyagura, Chandrasheel Bhagwat, Anisa Chorwadwala Art on the Cover: Sinjini Bhattacharjee, Arghya Rakshit Photo Courtesy: IISER Pune Math Members 2017 IISER Pune Math Book WELCOME MESSAGE BY COORDINATOR I have now completed over five years at IISER Pune, and am now in my sixth and possibly final year as Coordinator for Mathematics. I am going to resist the temptation of evaluating myself as to what I have or have not accomplished as head of mathematics, although I do believe that it’s always fruitful to take stock, to become aware of one’s strengths, and perhaps even more so of one’s weaknesses, especially when the goal we have set for ourselves is to become a strong force in the international world of Mathematics.
    [Show full text]
  • LIST of PUBLICATIONS (1) (With S. Ramanan), an Infinitesimal Study of the Moduli of Hitchin Pairs. Journal of the London Mathema
    LIST OF PUBLICATIONS INDRANIL BISWAS (1) (With S. Ramanan), An infinitesimal study of the moduli of Hitchin pairs. Journal of the London Mathematical Society, Vol. 49, No. 2, (1994), 219{231. (2) A remark on a deformation theory of Green and Lazarsfeld. Journal f¨urdie Reine und Angewandte Mathematik, Vol. 449 (1994), 103{124. (3) (With N. Raghavendra), Determinants of parabolic bundles on Riemann surfaces. Proceedings of the Indian Academy of Sciences (Math. Sci.), Vol. 103, No. 1, (1993), 41{71. (4) (With K. Guruprasad), Principal bundles on open surfaces and invariant functions on Lie groups. International Journal of Mathematics, Vol. 4, No. 4, (1993), 535{ 544. (5) Secondary invariants of Higgs bundles. International Journal of Mathematics, Vol. 6, No. 2, (1995), 193{204. (6) On the mapping class group action on the cohomology of the representation space of a surface. Proceedings of the American Mathematical Society, Vol. 124, No. 6, (1996), 1959{1965. (7) (With K. Guruprasad), On some geometric invariants associated to the space of flat connections on an open surface. Canadian Mathematical Bulletin, Vol. 39, No. 2, (1996), 169{177. (8) A remark on Hodge cycles on moduli spaces of rank 2 bundles over curves. Journal f¨urdie Reine und Angewandte Mathematik, Vol. 370 (1996), 143{152. (9) On Harder{Narasimhan filtration of the tangent bundle. Communications in Anal- ysis and Geometry, Vol. 3, No. 1, (1995), 1{10. (10) (With N. Raghavendra), Canonical generators of the cohomology of moduli of parabolic bundles on curves. Mathematische Annalen, Vol. 306, No. 1, (1996), 1{14. (11) (With M.
    [Show full text]
  • NONABELIAN HODGE THEORY for FUJIKI CLASS C MANIFOLDS Indranil Biswas, Sorin Dumitrescu
    NONABELIAN HODGE THEORY FOR FUJIKI CLASS C MANIFOLDS Indranil Biswas, Sorin Dumitrescu To cite this version: Indranil Biswas, Sorin Dumitrescu. NONABELIAN HODGE THEORY FOR FUJIKI CLASS C MANIFOLDS. 2020. hal-02869851 HAL Id: hal-02869851 https://hal.archives-ouvertes.fr/hal-02869851 Preprint submitted on 16 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NONABELIAN HODGE THEORY FOR FUJIKI CLASS C MANIFOLDS INDRANIL BISWAS AND SORIN DUMITRESCU Abstract. The nonabelian Hodge correspondence (Corlette-Simpson correspondence), be- tween the polystable Higgs bundles with vanishing Chern classes on a compact K¨ahlerman- ifold X and the completely reducible flat connections on X, is extended to the Fujiki class C manifolds. 1. Introduction Given a compact K¨ahlermanifold X, foundational works of Simpson and Corlette, [Si1], [Co] establish a natural equivalence between the category of local systems over X and the category of certain analytical objects called Higgs bundles that consist of a holomorphic 0 1 vector bundle V over X together with a holomorphic section θ 2 H (X; End(V ) ⊗ ΩX ) V 0 2 such that the section θ θ 2 H (X; End(V )⊗ΩX ) vanishes identically (see also [Si2]).
    [Show full text]
  • To View Abstract Book
    86th Annual Conference of e Indian Mathematical Society – An International Meet (Online Conference) December 17-20, 2020 Organized under the auspices of Department of Mathematics School of Advanced Sciences, VIT Vellore IMS 2020 - Committee IMS - Executive President Prof. B. Sury Indian Statistical Institute, Bangaluru General Secretary Prof. Satya Deo Harish-Chandra Research Institute, Allahabad. Editor, e Journal of the Prof. Sudhir R. Ghorpade Indian Mathematical Society Indian Institute of Technology - Bombay, Mumbai. Editor, e Mathematics Student Prof. M. M. Shikare Center for Advanced Study in Mathematics, Pune. Academic Secretary Prof. Peeyush Chandra Formerly, IIT Kanpur Administrative Secretary Prof. B. N. Waphare Center for Advanced Study in Mathematics, Pune. Treasurer Prof. S. K. Nimbhorkar Dr Baba Saheb Ambedkar Marathawada University, Aurangabad. Librarian Prof. M. Pitchaimani Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai. Organizing Committee Patron Dr. G. Viswanathan Chancellor, VIT Vellore Co-Patron Mr. G.V. Selvam Vice President, VIT Vellore Prof. Rambabu Kodali Vice Chancellor, VIT Vellore Prof. S. Narayanan Pro-Vice Chancellor, VIT Vellore Chair Person Prof. A. Mary Saral Dean, SAS, VIT Vellore Co-Chair Person Prof. K. Karthikeyan Head, Department of Mathematics, SAS, VIT Vellore Organising Secretary Prof. B. Rushi Kumar Associate Professor, Department of Mathematics, SAS, VIT Vellore Organising Committee Prof. Dinesh Kumar S Prof. Sri Rama Varaprasad Bhuvanagiri Prof. Sivaraj R Prof. Raja Das Prof. V Madhu Members (Faculty) Prof. Chandrasekaran V M Prof. Mubashir Unnissa M Prof. Murugusundaramoorthy G Prof. Easwaramoorthy D Prof. Selvakumar R Prof. Subramanyam Reddy A Prof. Natarajan G Prof. Yogalakshmi T Prof. Vijaya K Prof. Mokesh Rayalu G Prof.
    [Show full text]
  • Structurally Hyperbolic Algebras Dual to the Cayley-Dickson and Clifford
    Unspecified Journal Volume 00, Number 0, Pages 000–000 S ????-????(XX)0000-0 STRUCTURALLY-HYPERBOLIC ALGEBRAS DUAL TO THE CAYLEY-DICKSON AND CLIFFORD ALGEBRAS OR NESTED SNAKES BITE THEIR TAILS DIANE G. DEMERS For Elaine Yaw in honor of friendship Abstract. The imaginary unit i of C, the complex numbers, squares to −1; while the imaginary unit j of D, the double numbers (also called dual or split complex numbers), squares to +1. L.H. Kauffman expresses the double num- ber product in terms of the complex number product and vice-versa with two, formally identical, dualizing formulas. The usual sequence of (structurally- elliptic) Cayley-Dickson algebras is R, C, H,..., of which Hamilton’s quater- nions H generalize to the split quaternions H. Kauffman’s expressions are the key to recursively defining the dual sequence of structurally-hyperbolic Cayley- Dickson algebras, R, D, M,..., of which Macfarlane’s hyperbolic quaternions M generalize to the split hyperbolic quaternions M. Previously, the structurally- hyperbolic Cayley-Dickson algebras were defined by simply inverting the signs of the squares of the imaginary units of the structurally-elliptic Cayley-Dickson algebras from −1 to +1. Using the dual algebras C, D, H, H, M, M, and their further generalizations, we classify the Clifford algebras and their dual orienta- tion congruent algebras (Clifford-like, noncommutative Jordan algebras with physical applications) by their representations as tensor products of algebras. Received by the editors July 15, 2008. 2000 Mathematics Subject Classification. Primary 17D99; Secondary 06D30, 15A66, 15A78, 15A99, 17A15, 17A120, 20N05. For some relief from my duties at the East Lansing Food Coop, I thank my coworkers Lind- say Demaray, Liz Kersjes, and Connie Perkins, nee Summers.
    [Show full text]
  • Quaternions: a History of Complex Noncommutative Rotation Groups in Theoretical Physics
    QUATERNIONS: A HISTORY OF COMPLEX NONCOMMUTATIVE ROTATION GROUPS IN THEORETICAL PHYSICS by Johannes C. Familton A thesis submitted in partial fulfillment of the requirements for the degree of Ph.D Columbia University 2015 Approved by ______________________________________________________________________ Chairperson of Supervisory Committee _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Program Authorized to Offer Degree ___________________________________________________________________ Date _______________________________________________________________________________ COLUMBIA UNIVERSITY QUATERNIONS: A HISTORY OF COMPLEX NONCOMMUTATIVE ROTATION GROUPS IN THEORETICAL PHYSICS By Johannes C. Familton Chairperson of the Supervisory Committee: Dr. Bruce Vogeli and Dr Henry O. Pollak Department of Mathematics Education TABLE OF CONTENTS List of Figures......................................................................................................iv List of Tables .......................................................................................................vi Acknowledgements .......................................................................................... vii Chapter I: Introduction ......................................................................................... 1 A. Need for Study ........................................................................................
    [Show full text]
  • The Magic of Complex Numbers
    1 The Magic of Complex Numbers The notion of complex number is intimately related to the Fundamental Theorem of Algebra and is therefore at the very foundation of mathematical analysis. The development of complex algebra, however, has been far from straightforward.1 The human idea of ‘number’ has evolved together with human society. The natural numbers (1, 2,...∈ N) are straightforward to accept, and they have been used for counting in many cultures, irrespective of the actual base of the number system used. At a later stage, for sharing, people introduced fractions in order to answer a simple problem such as ‘if we catch U fish, I 2 U 3 U will have two parts 5 and you will have three parts 5 of the whole catch’. The acceptance of negative numbers and zero has been motivated by the emergence of economy, for dealing with profit and loss. It is rather√ impressive that ancient civilisations were aware of the need for irra- tional numbers such as 2 in the case of the Babylonians [77] and π in the case of the ancient Greeks.2 The concept of a new ‘number’ often came from the need to solve a specific practical problem. For instance, in the above example of sharing U number of fish caught, we need to solve for 2U = 5 and hence to introduce fractions, whereas to solve x2 = 2 (diagonal of a square) irrational numbers needed to be introduced. Complex numbers came from the necessity to solve equations such as x2 =−1. 1A classic reference which provides a comprehensive account of the development of numbers is Number: The Language of Science by Tobias Dantzig [57].
    [Show full text]
  • A Note on Hyperbolic Quaternions
    Universal Journal of Mathematics and Applications, 1 (3) (2018) 155-159 Universal Journal of Mathematics and Applications Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: http://dx.doi.org/10.32323/ujma.380645 A note on hyperbolic quaternions Is¸ıl Arda Kosal¨ a* aDepartment of Mathematics, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey *Corresponding author E-mail: [email protected] Article Info Abstract Keywords: Hyperbolic quaternion, Eu- In this work, we introduce hyperbolic quaternions and their algebraic properties. Moreover, ler’s formula, De Moivre’s formula we express Euler’s and De Moivre’s formulas for hyperbolic quaternions. 2010 AMS: 11R52, 20G20 Received: 18 January 2018 Accepted: 28 February 2018 Available online: 30 September 2018 1. Introduction Real quaternions were introduced by Hamilton (1805-1865) in 1843 as he looked for ways of extending complex numbers to higher spatial dimensions. So the set of real quaternions can be represented as [1] H = fq = a0 + a1i + a2 j + a3k : a0;a1;a2;a3 2 R and i; j;k 2= Rg; where i2 = j2 = k2 = −1; i j = k − ji; jk = i = −k j; ki = j = −ik: From these ruled it follows immediately that multiplication of real quaternions is not commutative. The roots of a real quaternions were given by Niven [7] and Brand [8] proved De Moivre’s theorem and used it to find nth roots of a real quaternion. Cho [2] generalized Euler’s formula and De Moivre’s formula for real quaternions. Also, he showed that there are uncountably many unit quaternions satisfying xn = 1 for n ≥ 3: Using De Moivre’s formula to find roots of real quaternion is more useful way.
    [Show full text]
  • Properties of K- Fibonacci and K- Lucas Octonions
    Indian J. Pure Appl. Math., 50(4): 979-998, December 2019 °c Indian National Science Academy DOI: 10.1007/s13226-019-0368-x PROPERTIES OF k-FIBONACCI AND k-LUCAS OCTONIONS A. D. Godase Department of Mathematics, V. P. College Vaijapur, Aurangabad 423 701, (MH), India e-mail: [email protected] (Received 9 April 2018; after final revision 18 July 2018; accepted 18 October 2018) We investigate some binomial and congruence properties for the k-Fibonacci and k-Lucas hyper- bolic octonions. In addition, we present several well-known identities such as Catalan’s, Cassini’s and d’Ocagne’s identities for k-Fibonacci and k-Lucas hyperbolic octonions. Key words : Fibonacci sequence; k-Fibonacci sequence; k-Lucas sequence. 1. INTRODUCTION The Fibonacci and Lucas sequences are generalised by changing the initial conditions or changing the recurrence relation. The k-Fibonacci sequence is the generalization of the Fibonacci sequence, which is first introduced by Falcon and Plaza [2]. The k-Fibonacci sequence is defined by the numbers which satisfy the second order recurrence relation Fk;n = kFk;n¡1+Fk;n¡2 with the initial conditions Fk;0 = 0 and Fk;1 = 1. Falcon [3] defined the k-Lucas sequence that is companion sequence of k- Fibonacci sequence defined with the k-Lucas numbers which are defined with the recurrence relation Lk;n = kLk;n¡1 + Lk;n¡2 with the initial conditions Lk;0 = 2 and Lk;1 = k. Binet’s formulas for the k-Fibonacci and k-Lucas numbers are n n r1 ¡ r2 Fk;n = r1 ¡ r2 and n n Lk;n = r1 + r2 p p k+ k2+4 k¡ k2+4 respectively, where r1 = 2 and r2 = 2 are the roots of the characteristic equation 2 x ¡ kx ¡ 1 = 0.
    [Show full text]
  • Aryasomayajula A., Et Al. Analytic and Algebraic Geometry (Springer and HBA, 2017)(ISBN 9789811056482)(O)(294S) Mag .Pdf
    Anilatmaja Aryasomayajula Indranil Biswas Archana S. Morye A.J. Parameswaran Editors Analytic and Algebraic Geometry Analytic and Algebraic Geometry Anilatmaja Aryasomayajula Indranil Biswas • Archana S. Morye A.J. Parameswaran Editors Analytic and Algebraic Geometry 123 Editors Anilatmaja Aryasomayajula Archana S. Morye Department of Mathematics School of Mathematics and Statistics IISER Tirupati University of Hyderabad Tirupati, Andhra Pradesh Hyderabad, Telangana India India Indranil Biswas A.J. Parameswaran School of Mathematics School of Mathematics Tata Institute of Fundamental Research Tata Institute of Fundamental Research Mumbai, Maharashtra Mumbai, Maharashtra India India ISBN 978-981-10-5648-2 (eBook) DOI 10.1007/978-981-10-5648-2 Library of Congress Control Number: 2017946031 This work is a co-publication with Hindustan Book Agency, New Delhi, licensed for sale in all countries in electronic form only. Sold and distributed in print across the world by Hindustan Book Agency, P-19 Green Park Extension, New Delhi 110016, India. ISBN: 978-93-86279-64-4 © Hindustan Book Agency 2017. © Springer Nature Singapore Pte Ltd. 2017 and Hindustan Book Agency 2017 This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]