NON-LINEAR ASPECTS of BLACK HOLE PHYSICS Thesis Submitted

Total Page:16

File Type:pdf, Size:1020Kb

NON-LINEAR ASPECTS of BLACK HOLE PHYSICS Thesis Submitted NON-LINEAR ASPECTS OF BLACK HOLE PHYSICS Thesis submitted for the degree of Doctor of Philosophy (Sc.) In Physics (Theoretical) by Arindam Lala Department of Physics University of Calcutta 2015 To The memory of my uncle Anup Kumar Lala Acknowledgments This thesis is the outcome of the immense efforts that have been paid for the last four and half years during my stay at Satyendra Nath Bose National Centre for Basic Sciences, Salt Lake, Kolkata, India. I am happy to express my gratitude to those people who have constantly supported me from the very first day of my joining at the S. N. Bose Centre. I would like to covey my sincere thanks to all of them. First of all, I would like to thank Prof. Rabin Banerjee for giving me this nice opportunity to work under his supervision. The entire research work that I did for the last four and half years is based on the platform provided by Prof. Banerjee. I am indebted to the Council of Scientific and Industrial Research (C.S.I.R.), Government of India, for providing me financial support under grant no. 09/575 (0086)/2010-EMR-I. I am also thankful to Dr. Dibakar Roychowdhury, Dr. Sunandan Gangopadhyay, and Mr. Shirsendu Dey who have actively collaborated with me in various occasions and helped me to accomplish various projects in different courses of time. I am specially thankful to Mr. Subhajit Sarkar with whom I have discussed lots of basic physics as well as condensed matter physics in various occasions. Also, the discussions with Dr. Samir Kumar Paul and Dr. Debaprasad Maity helped me a lot in gaining insight into certain physical ideas. I am glad to thank my senior group members Dr. Bibhas Ranjan Majhi, Dr. Sujoy Kumar Modak, and Dr. Debraj Roy for some fruitful discussions. I am particularly thankful to my group mates Dr. Biswajit Paul, Mr. Arpan Kr- ishna Mitra, and Ms. Arpita Mitra for their active participation in various academic discussions. I also thank the organizers of the conference The String Theory Universe, held during 22-26 September, 2014 at the Johannes Gutenberg University Mainz for giving me the opportunity to present my work and for providing me an environment to discuss with people working in the direction of my research. Finally, I would like to convey my sincere thanks to my family members, espe- cially to my parents, in-laws, and my wife, for their constant support. 2 List of publications 1. \Ehrenfests scheme and thermodynamic geometry in Born-Infeld AdS black holes," Arindam Lala, D. Roychowdhury, Phys. Rev. D 86 (2012) 084027 [arXiv[hep-th:1111.5991]]. 2. \Critical phenomena in higher curvature charged AdS black holes," Arindam Lala, AHEP Vol. 2013, 918490 (2013) [arXiv[hep-th:1205.6121]]. 3. \Holographic s-wave condensate with non-linear electrodynamics: A non-trivial boundary value problem," R. Banerjee, S. Gangopadhyay, D. Roychowdhury, Arindam Lala, Phys. Rev. D 87 (2013) 104001 [arXiv[hep-th:1208.5902]]. 4. \Holographic s-wave condensation and Meissner-like effect in Gauss-Bonnet gravity with various non-linear corrections," S. Dey, Arindam Lala, Annals of Physics 354 (2015) 165-182 [arXiv[hep-th:1306.5167]]. 5. \Magnetic response of holographic Lifshitz superconductors: Vortex and Droplet solutions," Arindam Lala, Phys. Lett. B 735 (2014) 396-401 [arXiv[hep- th:1404.2774]]. This thesis is based on all the above mentioned papers whose reprints are at- tached at the end of the thesis. NON-LINEAR ASPECTS OF BLACK HOLE PHYSICS Contents 1 Introduction . 7 1.1 Overview . 7 1.2 Outline of the thesis . 24 2 Thermodynamic Phase Transition In Born-Infeld-AdS Black Holes 28 2.1 Overview . 28 2.2 Phase transitions and their classifications in ordinary thermodynamics 30 2.3 Thermodynamic phases of the Born-Infeld AdS black hole . 31 2.3.1 Geometric structure of the black hole . 31 2.3.2 Thermodynamic variables of the black hole . 32 2.4 Study of phase transition using the Ehrenfest's scheme . 36 2.5 Study of phase transition using state space geometry . 39 2.6 Conclusive remarks . 42 3 Critical Phenomena In Higher Curvature Charged AdS Black Holes . 44 3.1 Overview . 44 3.2 Geometric and thermodynamic properties of Lovelock-Born-Infeld- AdS black holes . 45 3.2.1 Gravity action and metric structure . 45 3.2.2 Thermodynamic quantities . 48 3.3 Phase structure and stability of third order LBI-AdS black hole . 52 3.4 Critical exponents and scaling hypothesis . 59 3.4.1 Critical exponents . 59 3.4.2 Scaling laws and scaling hypothesis . 66 3.4.3 Additional exponents . 68 3.5 Conclusive remarks . 69 4 Holographic s-wave Superconductors with Born-Infeld Correction 71 4.1 Overview . 71 4.2 Ingredients to construct holographic superconductors . 73 4.3 Critical temperature for condensation . 75 4.4 Order parameter for condensation . 78 4.5 Conclusive remarks . 81 5 CONTENTS 6 5 Gauge and Gravity Corrections to Holographic Superconductors: A Comparative Survey . 84 5.1 Overview and motivations . 84 5.2 Basic set up . 86 5.3 s-wave condensation without magnetic field . 89 5.4 Magnetic response: Meissner-like effect and critical magnetic field . 96 5.5 Conclusive remarks . 101 6 Holographic Lifshitz Superconductors and Their Magnetic Re- sponse . 104 6.1 Overview . 104 6.2 Lifshitz holographic superconductors: a brief review . 105 6.3 Vortex and droplet solutions in holographic Lifshitz superconductors . 108 6.3.1 Holographic vortex solution . 108 6.3.2 Holographic droplet solution . 112 6.4 Conclusive remarks . 116 7 Summary and Outlook . 118 Bibliography . 121 Chapter 1 Introduction 1.1 Overview We live in a universe surrounded by four types of forces: weak, strong, electro- magnetic, and gravitational. While there is considerable amount of theoretical and experimental data that enables us to understand the nature of first three of these forces, there remains substantial ambiguity in understanding the true nature of the gravitational force[1]-[3]. Gravity has puzzled scientific community for centuries, and still it is a rather challenging avenue to make unprecedented expeditions. In the beginning of the twentieth century, Albert Einstein proposed a new the- ory, the Special Theory of Relativity, which changed the age-old notion of space and time. Alike Newtonian mechanics, special relativity also depicts the structure of space-time, but the inconsistency of Newtonian mechanics with the Maxwell's elec- tromagnetism was removed in the latter. Nevertheless, there is an apparent subtlety in the formulation of special relativity, it is a theory formulated entirely in inertial (i.e. non-accelerating) frames of references and it involves flat space-times having no curvature and hence there is no gravity. The notion of gravity can easily be procured by shifting to the General Theory of Relativity (henceforth GTR). In this framework, gravity emerges quite naturally from the curvature of space-time which indeed implies that gravity is inherent to space-time. The core idea of GTR is encoded in the principle of equivalence which states that, the motion of freely falling particles are the same in a gravitational field and a uniformly accelerated frame in small enough regions of space-time. In this region, it is impossible to detect the existence of gravitational filed by means of local experiments[1]. Mathematically, the curvature of space-time is described by the metric tensor. The metric tensor encapsulates all the geometric and causal structure of space-time. In the classical GTR the dynamics of metric in the presence of matter fields is described by the celebrated Einstein's equations. These equations in fact relate the curvature of space-time with energy of matter fields[1]. The most fascinating thing about GTR is that it is not only a theory of gravity. There are more than that. This theory has been verified with success through ex- periments. On the other hand, with the thrill to understand Nature, many dazzling 7 1.1. Overview 8 theories such as String Theory[4], the Standard Model of particle physics[2], etc. have been proposed. While each one of them deserves appreciation in their own right, there are close connections among GTR and these theories. As a matter of fact, classical GTR is an indispensable tool to explain many of the features of these theories. Despite the tremendous successes of GTR, a genuine quantum theory of gravity is still missing. This makes gravity more enigmatic than other forces of Na- ture, although with the advancement of our knowledge even more exciting features are expected to be disclosed in the future. There are several useful applications of GTR such as, black holes, the early universe, gravitational waves, etc. While these fall into the regime of high energy physics and astrophysics, it is worth mentioning that GTR is being profoundly applied in modern technology, such as the Global Positioning System (GPS), and many more. However, this thesis is solely devoted to the study of several crucial aspects of black hole physics which are one of the striking outcomes of the solutions of the Einstein's equations[1]. Black holes are usually formed from the gravitational collapse of dying stars. Due to the immense gravitational pull, no information can escape from within a black hole while information can enter into it. A black hole is characterized by at least one gravitational trapping surface, known as the event horizon, surrounding the re- gion of intense gravitational field. Moreover, there exists a singularity of space-time within the event horizon, guaranteed by the Hawking-Penrose singularity theorem, which arises from the geodesic incompleteness of space-time[1]. Over the past sev- eral decades, different types of black hole solutions have been formulated.
Recommended publications
  • Evidence for a Sublattice Weak Gravity Conjecture
    Evidence for a Sublattice Weak Gravity Conjecture The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Heidenreich, Ben, Matthew Reece, and Tom Rudelius. 2017. Evidence for a Sublattice Weak Gravity Conjecture. Journal of High Energy Physics 2017, 25. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41392811 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Prepared for submission to JHEP Evidence for a Sublattice Weak Gravity Conjecture Ben Heidenreich,a;b Matthew Reece,a and Tom Rudeliusa aDepartment of Physics, Harvard University, Cambridge, MA 02138, USA bPerimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5 E-mail: [email protected], [email protected], [email protected] Abstract: The Weak Gravity Conjecture postulates the existence of superextremal charged particles, i.e. those with mass smaller than or equal to their charge in Planck units. We present further evidence for our recent observation that in known examples a much stronger statement is true: an infinite tower of superextremal particles of different charges exists. We show that effective Kaluza-Klein field theories and perturbative string vacua respect the Sublattice Weak Gravity Conjecture, namely that a finite index sublattice of the full charge lattice exists with a superextremal particle at each site. In perturbative string theory we show that this follows from modular invariance.
    [Show full text]
  • A Brief Introduction to the Weak Gravity Conjecture Eran Palti Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
    Letters in High Energy Physics LHEP-176, 2020 A Brief Introduction to the Weak Gravity Conjecture Eran Palti Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Abstract The Weak Gravity Conjecture proposes that a theory with a gauge field that is coupled to gravity must have charged matter on which gravity acts as the weakest force. It also proposes that there is an intrinsic cutoff on such an effective theory, which corresponds to a tower of charged states, that is set by the strength of the gauge coupling (in Planck units). This article is a brief introduction to the Weak Gravity Conjecture, covering aspects of the motivations for it as well as various extensions and refinements. Keywords: Swampland, Quantum Gravity, String Theory gauge fields for simplicity), with gauge coupling g, there must DOI: 10.31526/LHEP.2020.176 exist at least one particle with quantized charge q and mass m which satisfies the bound p 1. INTRODUCTION m ≤ 2gqMp . (4) There are four known forces in the universe: the strong and The bound (4) is termed the Electric WGC. This is to dif- weak forces, electromagnetism, and gravity. The known fun- ferentiate it from a related bound termed the Magnetic WGC. damental matter particles are all charged under at least two The simplest way to introduce this second bound is through the of these forces. For example, the right-handed electron carries electromagnetic dual of (4) [1]. Under electromagnetic duality electromagnetic charge and gravitational charge. These charges the gauge coupling g is exchanged for its inverse g−1, while the can be deduced from the Coulomb forces that two electrons feel electrically charged particle is exchanged for a monopole with when placed a distance r apart.
    [Show full text]
  • Antipodal Correlation on the Meron Wormhole and a Bang-Crunch Universe
    PHYSICAL REVIEW D 97, 126006 (2018) Antipodal correlation on the meron wormhole and a bang-crunch universe Panagiotis Betzios* Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece † Nava Gaddam Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, 3508 TD Utrecht, Netherlands ‡ Olga Papadoulaki Mathematical Sciences and STAG Research Centre, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom (Received 13 January 2018; published 11 June 2018) We present a covariant Euclidean wormhole solution to Einstein Yang-Mills system and study scalar perturbations analytically. The fluctuation operator has a positive definite spectrum. We compute the Euclidean Green’s function, which displays maximal antipodal correlation on the smallest three sphere at the center of the throat. Upon analytic continuation, it corresponds to the Feynman propagator on a compact bang-crunch universe. We present the connection matrix that relates past and future modes. We thoroughly discuss the physical implications of the antipodal map in both the Euclidean and Lorentzian geometries and give arguments on how to assign a physical probability to such solutions. DOI: 10.1103/PhysRevD.97.126006 I. INTRODUCTION whose few proposed resolutions suffer from closed time- like curves and other intricacies [10]. Euclidean wormholes [1–3] are extrema of the Euclidean Inspired by these questions, we
    [Show full text]
  • Pdf/10.1002/Andp.19053221004]
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Numerical general relativity and beyond formation of relativistic axion stars, boosting and colliding oscillotons, and gravitational collapse in khronometric theory Widdicombe, James Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Apr. 2021 Numerical General Relativity and Beyond Formation of Relativistic Axion Stars, Boosting and Colliding Oscillotons, and Gravitational Collapse in Khronometric Theory James Young Widdicombe Supervisor: Dr Eugene Lim Department of Physics King's College London A thesis presented for the degree of Doctor of Philosophy September 2019 Declaration I declare that this thesis has been composed solely by myself and that it has not been submitted, in whole or in part, in any previous application for a degree.
    [Show full text]
  • The Weak Gravity Conjecture the Weak Gravity Conjecture
    The Weak Gravity Conjecture The Weak Gravity Conjecture Arkani-Hamed et al. ‘06 • The conjecture: “Gravity is the Weakest Force” • For every long range gauge field there exists a particle of charge q and mass m, s.t. q M “1” m P ≥ M 1 P ⌘ The Weak Gravity Conjecture • Take a U(1) and a single family with q < m ( WGC ) F F F F e + g g + e M 1 P ⌘ The Weak Gravity Conjecture • Take a U(1) and a single family with q < m ( WGC ) F F F F e + g g + e BH • Form bound states Extremal ... ... BH 2m>M > 2q 3m>M3 > 3q Nm > MN >Nq M Q 2 1 ! 1 • All these (BH) states are stable. Trouble w/ remnants Susskind ‘95 M 1 P ⌘ The Weak Gravity Conjecture • Take a U(1) and a single family with q < m ( WGC ) F F F F e + g g + e BH • Form bound states Extremal ... ... BH 2m>M > 2q 3m>M3 > 3q Nm > MN >Nq M Q 2 1 ! 1 • All these (BH) states are stable. Trouble w/ remnants Susskind ‘95 • Need a light state into which they can decay q Q “1” Ext m ≥ ⌘ MExt The Weak Gravity Conjecture Arkani-Hamed et al. ‘06 • For bound states to decay, there must ∃ a particle w/ q QExt where QL is 22-dimensional vector and QR is 6-dimensional“1” vector. The charges are quan- tized, lying on the 28-dimensional even self-dualm lattice≥ with ⌘ MExt Q2 Q2 2 (21) Strong-WGC:L −satisfiedR ∈ by lightest charged particle Moving around in moduli space corresponds to making SO(22, 6) Lorentz transformations on the charges.
    [Show full text]
  • Warping the Weak Gravity Conjecture
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository Warping the Weak Gravity Conjecture Karta Kooner,1, ∗ Susha Parameswaran,2, y and Ivonne Zavala1, z 1Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK 2Department of Mathematical Sciences, University of Liverpool, Mathematical Sciences Building Liverpool, L69 7ZL, UK The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results. Keywords: String theory, cosmology, inflation, D-branes, warped geometries, large axion decay constants. I. INTRODUCTION to invoke a shift symmetry in the inflaton field, for in- stance by identifying the inflaton with a Goldstone boson, Cosmological inflation stands strong as the leading the axion. The classical example in this vein is Natural mechanism to provide the seeds that gave rise to the large Inflation [5], now tightly constrained by the latest CMB 1 structure we observe today in the Universe.
    [Show full text]
  • The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff
    Eur. Phys. J. C (2018) 78:337 https://doi.org/10.1140/epjc/s10052-018-5811-3 Regular Article - Theoretical Physics The Weak Gravity Conjecture and emergence from an ultraviolet cutoff Ben Heidenreich1,a, Matthew Reece2,b, Tom Rudelius3,c 1 Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada 2 Department of Physics, Harvard University, Cambridge, MA 02138, USA 3 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA Received: 12 March 2018 / Accepted: 16 April 2018 / Published online: 26 April 2018 © The Author(s) 2018 Abstract We study ultraviolet cutoffs associated with the ratio greater than or equal to that of a large semiclassical Weak Gravity Conjecture (WGC) and Sublattice Weak Grav- extremal black hole. ity Conjecture (sLWGC). There is a magnetic WGC cutoff at If quantum gravities exist which violate the Weak Grav- −1/2 the energy scale eGN with an associated sLWGC tower of ity Conjecture (WGC), they will have unusual properties. charged particles. A more fundamental cutoff is the scale at In particular, large near-extremal black holes in these theo- which gravity becomes strong and field theory breaks down ries cannot completely evaporate, but instead evolve slowly entirely. By clarifying the nature of the sLWGC for non- towards extremality, resulting in a tower of stable extremal abelian gauge groups we derive a parametric upper bound on black holes. However, unlike stable black hole remnants in this strong gravity scale for arbitrary gauge theories. Intrigu- theories with global symmetries, the mass of these stable ingly, we show that in theories approximately saturating the extremal black holes increases in proportion to their charge, sLWGC, the scales at which loop corrections from the tower hence the sharpest contradictions (e.g., an infinite density of charged particles to the gauge boson and graviton prop- of states in violation of the covariant entropy bound [4]) do agators become important are parametrically identical.
    [Show full text]
  • Scrambling and Decoding the Charged Quantum Information
    Scrambling and decoding the charged quantum information Junyu Liua;b aWalter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA bInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA Abstract: Some deep conjectures about quantum gravity are closely related to the role of symmetries in the gravitational background, especially for quantum black holes. In this paper, we systematically study the theory of quantum information for a charged, chaotic system. We show how the quantum information in the whole system has been represented by its charge sectors, using the theory of quantum chaos and quantum error correction, with concrete examples in the context of the complex SYK model. We discuss possible implications for black hole thought experiments and conjectures about quantum gravity in the dynamical setup. We believe this work will have poten- tial applications from theories of quantum gravity to quantum simulation in quantum devices. arXiv:2003.11425v3 [quant-ph] 13 Oct 2020 Contents 1 Overview1 2 Preliminaries4 3 Chaos 13 3.1 Form factor 14 3.1.1 General result 14 3.1.2 Haar randomness 16 3.2 OTOCs 16 3.2.1 General result 16 3.2.2 Haar randomness 18 3.2.3 k-invariant subspace 19 3.3 Frame potential 21 3.3.1 General result 21 3.3.2 Haar randomness 22 3.3.3 k-invariant subspace 23 3.4 Decoupling 24 4 Example: the complex SYK model 26 5 Codes 30 5.1 Quantum error correction for the Haar randomness 31 5.2 Error correction in
    [Show full text]
  • Can the Weak Gravity Conjecture Rule out Effective Field Theories?
    Can the Weak Gravity Conjecture Rule Out Effective Field Theories? Prashant Saraswat University of Maryland and Johns Hopkins University Conference on “The Weak Gravity Conjecture and Cosmology” at IFT UAM-CSIC Based on arXiv:1412.3457 and arXiv:1604.XXXX with Anton de la Fuente and Raman Sundrum Outline • Intro: Why EFT and WGC? • Review: Forms of the WGC and bottom-up motivations • Example: Higgsing to generate violation of WGC at low energies • Extremal black hole decay? • Magnetic monopoles? • Revisiting Extranatural Inflation: Minimality + WGC makes predictions • Proposed “ultimate” WGC: Bound on cutoff is logarithmic in the gauge coupling? The Weak Gravity Conjecture and Cosmology The Weak Gravity Conjecture and Cosmology Many different claims under this name, with two basic classes of arguments: • “ Top-down”: Explore candidate QG theories (e.g. examples string theory examples or emergent gauge fields) and check that constraints are satisfied. Can’t be exhaustive, only “looking under the lamppost.” • “Bottom-up”: Argue from universal, low-energy features of theories with gauge fields + gravity: charged black holes The Weak Gravity Conjecture and Cosmology Many open questions about the role of new physics to explain: • Inflation / Primordial density fluctuations • Dark matter • Dark energy (dynamical?) • Hierarchy problem (“cosmological relaxation”) Effective Field Theory The conventional wisdom: “You don’t need to know atomic physics to cook spaghetti” Effective Field Theory The conventional wisdom: describe low-energy quantum gravity physics “You don’t need to know atomic physics to cook spaghetti” Effective Field Theory The conventional wisdom: describe low-energy quantum gravity physics “You don’t need to know atomic physics to cook spaghetti” EFT: Describe systems at low energy, with UV effects suppressed by decoupling and/or symmetry.
    [Show full text]
  • Matters of Gravity, the Newsletter of the Division of Gravitational Physics of the American Physical Society, Volume 50, December 2017
    MATTERS OF GRAVITY The newsletter of the Division of Gravitational Physics of the American Physical Society Number 50 December 2017 Contents DGRAV News: we hear that . , by David Garfinkle ..................... 3 APS April Meeting, by David Garfinkle ................... 4 Town Hall Meeting, by Emanuele Berti ................... 7 Conference Reports: Hawking Conference, by Harvey Reall and Paul Shellard .......... 8 Benasque workshop 2017, by Mukund Rangamani .............. 10 QIQG 3, by Matt Headrick and Rob Myers ................. 12 arXiv:1712.09422v1 [gr-qc] 26 Dec 2017 Obituary: Remembering Cecile DeWitt-Morette, by Pierre Cartier ........... 15 Editor David Garfinkle Department of Physics Oakland University Rochester, MI 48309 Phone: (248) 370-3411 Internet: garfinkl-at-oakland.edu WWW: http://www.oakland.edu/physics/Faculty/david-garfinkle Associate Editor Greg Comer Department of Physics and Center for Fluids at All Scales, St. Louis University, St. Louis, MO 63103 Phone: (314) 977-8432 Internet: comergl-at-slu.edu WWW: http://www.slu.edu/arts-and-sciences/physics/faculty/comer-greg.php ISSN: 1527-3431 DISCLAIMER: The opinions expressed in the articles of this newsletter represent the views of the authors and are not necessarily the views of APS. The articles in this newsletter are not peer reviewed. 1 Editorial The next newsletter is due June 2018. Issues 28-50 are available on the web at https://files.oakland.edu/users/garfinkl/web/mog/ All issues before number 28 are available at http://www.phys.lsu.edu/mog Any ideas for topics that should be covered by the newsletter should be emailed to me, or Greg Comer, or the relevant correspondent. Any comments/questions/complaints about the newsletter should be emailed to me.
    [Show full text]
  • Jhep11(2020)008
    Published for SISSA by Springer Received: June 24, 2020 Accepted: September 30, 2020 Published: November 4, 2020 Duality and supersymmetry constraints on the weak JHEP11(2020)008 gravity conjecture Gregory J. Loges,a Toshifumi Noumib and Gary Shiua aDepartment of Physics, University of Wisconsin-Madison, Madison, WI 53706, U.S.A. bDepartment of Physics, Kobe University, Kobe 657-8501, Japan E-mail: [email protected], [email protected], [email protected] Abstract: Positivity bounds coming from consistency of UV scattering amplitudes are not always sufficient to prove the weak gravity conjecture for theories beyond Einstein- Maxwell. Additional ingredients about the UV may be necessary to exclude those regions of parameter space which are naïvely in conflict with the predictions of the weak gravity conjecture. In this paper we explore the consequences of imposing additional symmetries inherited from the UV theory on higher-derivative operators for Einstein-Maxwell-dilaton- axion theory. Using black hole thermodynamics, for a preserved SL(2, R) symmetry we find that the weak gravity conjecture then does follow from positivity bounds. For a preserved O(d, d; R) symmetry we find a simple condition on the two Wilson coefficients which ensures the positivity of corrections to the charge-to-mass ratio and that follows from the null energy condition alone. We find that imposing supersymmetry on top of either of these symmetries gives corrections which vanish identically, as expected for BPS states. Keywords: Black Holes, Black Holes in String Theory, String Duality, Supersymmetry and Duality ArXiv ePrint: 2006.06696 Open Access, c The Authors.
    [Show full text]
  • The Weak Gravity Conjecture in Three Dimensions Arxiv:1606.08438V1
    IFT-UAM/CSIC-16-060 FTUAM-16-25 MAD-TH-16-03 The Weak Gravity Conjecture in three dimensions Miguel Montero1;2, Gary Shiu3;4, Pablo Soler3;4 1 Departamento de F´ısicaTe´orica,Facultad de Ciencias Universidad Aut´onomade Madrid, 28049 Madrid, Spain 2 Instituto de F´ısicaTe´oricaIFT-UAM/CSIC, C/ Nicol´asCabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain 3 Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA 4 Department of Physics & Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Abstract We study weakly coupled U(1) theories in AdS3, their associated charged BTZ solutions, and their charged spectra. We find that modular invariance of the holographic dual two-dimensional CFT and compactness of the gauge group together imply the existence of charged operators with conformal dimension significantly below arXiv:1606.08438v1 [hep-th] 27 Jun 2016 the black hole threshold. We regard this as a form of the Weak Gravity Conjecture (WGC) in three dimensions. We also explore the constraints posed by modular invariance on a particular discrete ZN symmetry which arises in our discussion. In this case, modular invari- ance does not guarantee the existence of light ZN -charged states. We also highlight the differences between our discussion and the usual heuristic arguments for the WGC based on black hole remnants. Contents 1 Introduction 2 2 The WGC in d > 3 3 3 Gravity and gauge fields in three dimensions 5 3.1 3D U(1) gauge fields & Chern-Simons terms . .6 3.2 Consequences of compactness of the gauge group .
    [Show full text]