Louis Nirenberg: 2015 Abel Prize for His Contributions to the Theory of Pdes

Total Page:16

File Type:pdf, Size:1020Kb

Louis Nirenberg: 2015 Abel Prize for His Contributions to the Theory of Pdes Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs Abel Prize 2015 to the American mathematicians John F. Nash, Jr. and Louis Nirenberg ''for striking and seminal contributions to the theory of nonlinear partial differential equations and its applications to geometric analysis'' Xavier Cabré ICREA Research Professor at the UPC 06/05/2015 FME-UPC Louis Nirenberg: ● Born Feb. 28, 1925 in Hamilton, Ontario, Canada, in a Jewish family ● Master and Graduate School at New York University ● Ph.D. 1949 under the direction of James Stoker ● Since then, Faculty at the Courant Institute of Mathematical Sciences, New York University. He retired 1999 L. Nirenberg: B.Sc. from McGill University (Canada), 1945. "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Richard Courant at the Courant Institute of Mathematical Sciences (New York University) Founded: 1935 Current Building: 1965 "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Courant Institute Directors after Richard Courant: http://cims.nyu.edu/webapps/cont ent/about/history http://www.cims.nyu.edu/gallery/ Kurt O. Friedrichs L. Nirenberg (left) and Jürgen Moser Peter Lax (right; Abel Prize 2005) S.R. Snirivasa Varadhan (Abel Prize 2007) Allyn Jackson, 2002, “Interview with Louis Nirenberg” "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré James J. Stoker (PhD advisor) and Louis Nirenberg Kurt O. Friedrichs (left) and Richard Courant (right) "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré L. Nirenberg's main awards and honors: ● the American Mathematical Society’s Bôcher Prize in 1959 ● the Jeffrey-Williams Prize of the Canadian Mathematical Society in 1987 ● the Steele Prize of the AMS in 1994 for Lifetime Achievement ● First recipient in mathematics of the Crafoord Prize, in 1982, established by the Royal Swedish Academy of Sciences in areas not covered by the Nobel Prizes. He shared the award with Vladimir Arnold ● Inaugural Chern Medal, in 2010, given by the International Mathematical Union and the Chern Medal Foundation ● Abel Prize 2015, with John F. Nash, Jr. Receiving the Crafoord Prize, Stockholm 1982, with Mrs. Crafoord and the King of Sweden "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Some important mathematical contributions of L. Nirenberg: ● Differential Geometry: The Weyl problem; the Minkowski problem ● Complex Analysis: Newlander-Nirenberg theorem; complex Monge-Ampère equations ● Real Analysis: The BMO space; degree of VMO maps ● Theory of PDEs: Regularity theory (inequalities and estimates); Monge-Ampère and fully nonlinear equations; free boundaries; Navier-Stokes equations; symmetry theorems (the moving planes and sliding methods); maximum principles; front propagation; etc, etc. "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Partial Differential Equations. Types : 1. Elliptic : Laplace equation: 2. Parabolic : ● Heat or diffusion equation: ● Navier-Stokes (or 1 million $) equations (incompressible viscous fluids) 3. Hyperbolic : ● Wave equation (acoustics, sound-waves) ● Schrödinger equation (quantum mechanics) ● Euler's equations (incompressible fluids) "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Nirenberg's PhD Thesis (published in the above paper) solves an Open Problem of H. Weyl from 1916: Given a smooth metric g of positive curvature on the sphere S², is there an embedding X: S² R³ such that the metric induced on S² by this embedding is g? "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Soap films = Minimal surfaces "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Soap films = Minimal surfaces Dirichlet integral "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Soap films = Minimal surfaces Dirichlet integral "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré The Laplacian coming from physics: heat, concentrations, gravitational and electrical potentials, viscous fluids, etc. Fourier law for heat The heat equation Stationary solutions Pierre-Simon, Jean-Baptiste marquis de Laplace Joseph Fourier (1749-1827) (1768-1830) "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré The Laplacian coming from Finance and Probability: what is your expected gain when, starting always from the same given tile in your living room, you walk randomly and you get 30€ only when you hit a radiator on the first time that you hit your living room's walls (otherwise you get 0€)? 0€ 30€ 0€ 0€ 30€ 30€ 0€ "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré How to solve the problem: ● make a squared lattice of very small step-size h ● Move from a point to either East, West, North, or South, each one with probability 1/4 N W E 0€ 30€ C 0€ S C = starting point of the walk 0€ u(C) = expected gain starting from C 30€ (average) 30€ 0€ "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré h = step size of the lattice The LAPLACIAN of u = 0 ● X. Cabré, Partial differential equations, geometry and stochastic control, in Catalan. Butl. Soc. Catalana Mat. 15 (2000), 7-27 ● X. Cabré, Elliptic PDEs in Probability and Geometry. Symmetry and regularity of solutions. Discrete Contin. Dyn. Syst. 20 (2008), 425-457 "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Existence theorems come from estimates, which give compactness: Poincaré inequality: Rellich–Kondrachov theorem, an extension of Arzelà-Ascoli theorem: "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Poincaré inequality: "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Poincaré inequality: "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Poincaré inequality: "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré + initial (and boundary) conditions "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Sobolev-Gagliardo-Nirenberg inequalities (u=0 on boundary of B_r): if n=2 if n=3 "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Back to Geometry: Area functional of films, graphs: Minimal surface equation for graphs: "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Back to Geometry: K(x) = scalar curvature u(x) = conformal factor The Yamabe problem K(x) = Gauss curvature Surface = graph of u "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré solves an Open Problem of H. Weyl from 1916: Given a smooth metric g of positive curvature on the sphere S², is there an embedding X: S² R³ such that the metric induced on S² by this embedding is g? ● Continuity method and IFT (implicit function theorem) ● Need estimates (regularity) for solutions of Monge- Ampère type equations in dimension 2. This gives that the linearized problem is an isopmorphism (IFT ok) but in HÖLDER or SOBOLEV spaces, NOT from C² to C⁰ : with zero Dirichlet boundary conditions is not an isomorphism if n > 1 "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré solves an Open Problem of H. Weyl from 1916: Given a smooth metric g of positive curvature on the sphere S², is there an embedding X: S² R³ such that the metric induced on S² by this embedding is g? ● Continuity method and IFT (implicit function theorem) ● Need estimates (regularity) for solutions of Monge-Ampère type equations in dimension 2. This gives that the linearized problem is an isopmorphism (IFT ok) ● Similarity with Perelman's proof of the Poincaré conjecture: Homotopy with a nonlinear geometric heat equation: the Ricci flow + estimates for analysis of singularities ● Estimates easier in dim 2 (complex variables, harmonic and analytic functions, quasiconformal mappings): work of C. B. Morrey "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré Towards estimates and regularity: differentiating the equation (or making difference quotients: Nirenberg's method) ● Quasilinear equations: "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré L. Nirenberg's modesty and sense of humor: "Louis Nirenberg: 2015 Abel Prize for his contributions to the theory of PDEs” Xavier Cabré De Giorgi-Nash-Moser Theorem: Hölder regularity of solutions of with a_{ij} uniformly elliptic (positive definite matrices) but only bounded and measurable as a function of x in R^n. ● Nash, J. Parabolic equations. Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 754-758. ● Nash, J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958), 931-954. ''A gold mine'', in Nirenberg's words. Nash work retaken and presented in: ● Fabes, E. B.; Stroock, D. W. A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal. 96 (1986), no. 4, 327-338. Independently proved by: ● De Giorgi, Ennio.
Recommended publications
  • Symmetric Products of Surfaces; a Unifying Theme for Topology
    Symmetric products of surfaces; a unifying theme for topology and physics Pavle Blagojevi´c Mathematics Institute SANU, Belgrade Vladimir Gruji´c Faculty of Mathematics, Belgrade Rade Zivaljevi´cˇ Mathematics Institute SANU, Belgrade Abstract This is a review paper about symmetric products of spaces SP n(X) := n X /Sn. We focus our attention on the case of 2-manifolds X and make a journey through selected topics of algebraic topology, algebraic geometry, mathematical physics, theoretical mechanics etc. where these objects play an important role, demonstrating along the way the fundamental unity of diverse fields of physics and mathematics. 1 Introduction In recent years we have all witnessed a remarkable and extremely stimulating exchange of deep and sophisticated ideas between Geometry and Physics and in particular between quantum physics and topology. The student or a young scientist in one of these fields is often urged to master elements of the other field as quickly as possible, and to develop basic skills and intuition necessary for understanding the contemporary research in both disciplines. The topology and geometry of manifolds plays a central role in mathematics and likewise in physics. The understanding of duality phenomena for manifolds, mastering the calculus of characteristic classes, as well as understanding the role of fundamental invariants like the signature or Euler characteristic are just examples of what is on the beginning of the growing list of prerequisites for a student in these areas. arXiv:math/0408417v1 [math.AT] 30 Aug 2004 A graduate student of mathematics alone is often in position to take many spe- cialized courses covering different aspects of manifold theory and related areas before an unified picture emerges and she or he reaches the necessary level of maturity.
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Discurso De Investidura Como Doctor “Honoris Causa” Del Excmo. Sr
    Discurso de investidura como Doctor “Honoris Causa” del Excmo. Sr. Simon Kirwan Donaldson 20 de enero de 2017 Your Excellency Rector Andradas, Ladies and Gentlemen: It is great honour for me to receive the degree of Doctor Honoris Causa from Complutense University and I thank the University most sincerely for this and for the splendid ceremony that we are enjoying today. This University is an ancient institution and it is wonderful privilege to feel linked, through this honorary degree, to a long line of scholars reaching back seven and a half centuries. I would like to mention four names, all from comparatively recent times. First, Eduardo Caballe, a mathematician born in 1847 who was awarded a doctorate of Science by Complutense in 1873. Later, he was a professor in the University and, through his work and his students, had a profound influence in the development of mathematics in Spain, and worldwide. Second, a name that is familiar to all of us: Albert Einstein, who was awarded a doctorate Honoris Causa in 1923. Last, two great mathematicians from our era: Vladimir Arnold (Doctor Honoris Causa 1994) and Jean- Pierre Serre (2006). These are giants of the generation before my own from whom, at whose feet---metaphorically—I have learnt. Besides the huge honour of joining such a group, it is interesting to trace one grand theme running the work of all these four people named. The theme I have in mind is the interplay between notions of Geometry, Algebra and Space. Of course Geometry begins with the exploration of the space we live in—the space of everyday experience.
    [Show full text]
  • Memories of Vladimir Arnold Boris Khesin and Serge Tabachnikov, Coordinating Editors
    Memories of Vladimir Arnold Boris Khesin and Serge Tabachnikov, Coordinating Editors Vladimir Arnold, an eminent mathematician of functions of two variables. Dima presented a two- our time, passed away on June 3, 2010, nine days hour talk at a weekly meeting of the Moscow before his seventy-third birthday. This article, Mathematical Society; it was very uncommon along with one in the previous issue of the Notices, for the society to have such a young speaker. touches on his outstanding personality and his Everybody ad- great contribution to mathematics. mired him, and he certainly de- Dmitry Fuchs served that. Still there was some- thing that kept Dima Arnold in My Life me at a distance Unfortunately, I have never been Arnold’s student, from him. although as a mathematician, I owe him a lot. He I belonged to was just two years older than I, and according to a tiny group of the University records, the time distance between students, led by us was still less: when I was admitted to the Sergei Novikov, Moscow State university as a freshman, he was a which studied al- sophomore. We knew each other but did not com- gebraic topology. municate much. Once, I invited him to participate Just a decade in a ski hiking trip (we used to travel during the before, Pontrya- winter breaks in the almost unpopulated northern gin’s seminar in Russia), but he said that Kolmogorov wanted him Moscow was a to stay in Moscow during the break: they were true center of the going to work together.
    [Show full text]
  • 1914 Martin Gardner
    ΠME Journal, Vol. 13, No. 10, pp 577–609, 2014. 577 THE PI MU EPSILON 100TH ANNIVERSARY PROBLEMS: PART II STEVEN J. MILLER∗, JAMES M. ANDREWS†, AND AVERY T. CARR‡ As 2014 marks the 100th anniversary of Pi Mu Epsilon, we thought it would be fun to celebrate with 100 problems related to important mathematics milestones of the past century. The problems and notes below are meant to provide a brief tour through some of the most exciting and influential moments in recent mathematics. No list can be complete, and of course there are far too many items to celebrate. This list must painfully miss many people’s favorites. As the goal is to introduce students to some of the history of mathematics, ac- cessibility counted far more than importance in breaking ties, and thus the list below is populated with many problems that are more recreational. Many others are well known and extensively studied in the literature; however, as our goal is to introduce people to what can be done in and with mathematics, we’ve decided to include many of these as exercises since attacking them is a great way to learn. We have tried to include some background text before each problem framing it, and references for further reading. This has led to a very long document, so for space issues we split it into four parts (based on the congruence of the year modulo 4). That said: Enjoy! 1914 Martin Gardner Few twentieth-century mathematical authors have written on such diverse sub- jects as Martin Gardner (1914–2010), whose books, numbering over seventy, cover not only numerous fields of mathematics but also literature, philosophy, pseudoscience, religion, and magic.
    [Show full text]
  • Program of the Sessions San Diego, California, January 9–12, 2013
    Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes.
    [Show full text]
  • Luis Caffarelli Lecture Notes
    Luis Caffarelli Lecture Notes Broddie often melodizes stunningly when tautological Robert misforms robustiously and christens her irade. Stuffed Wojciech manoeuvre palatially, he overcrop his antibodies very sorrowfully. Sopping Giffy mystifies oracularly. The sponsors and was a review team, lecture notes that reflects exceptional mathematical analysis this item to seeing people around topics discussed are lipschitz Dirección de correo verificada de sissa. Communications on homeland and Applied Mathematics. The stamp problem it the biharmonic operator. The wreck of this lecture is void discuss three problems in homogenization and their interplay. Nirenberg should phone to study theoretical physics. Walter was a highly regarded researcher in analysis and control theory. Fundamental solutions of homogeneous fully nonlinear elliptic equations. Regularity of news free accident with application to the Pompeiu problem. Talks were uniformly excellent. Proceedings of the International Congress of Mathematicians. The nonlinear character while the equations is used in gravel essential way, whatsoever he obtains results because are the nonlinearity not slate it. Caffarelli, Luis; Silvestre, Luis. Don worked with luis caffarelli lecture notes in many years ago with students, avner variational problems in any book contains the error has had three stellar researchers. The smoothness of separate free surface tablet a filtration problem. Nike sneaker in above one week. The continuity of the temperature in the Stefan problem. Axially symmetric infinite cavities. The subtle problem every two fluids. On the regularity of reflector antennas. Nav start or be logged at this place although if instant is NOT progressively loaded. Laplacian and the water obstacle problem. Growing up with luis caffarelli lecture notes in.
    [Show full text]
  • UT Austin Professor, Luis Caffarelli, Wins Prestigious Wolf Prize Porto Students Conduct Exploratory Visits
    JANUARY//2012 NUMBER//41 UT Austin Professor, Luis Caffarelli, wins prestigious Wolf Prize Luis Caffarelli, a mathematician, Caffarelli’s research interests include Professor at the Institute for Compu- nonlinear analysis, partial differential tational Engineering and Sciences equations and their applications, (ICES) at the University of Texas at calculus of variations and optimiza- Austin and Director of CoLab tion. The ICES Professor is also widely Mathematics Program, has been recognized as the world’s leading named a winner of Israel’s prestigious specialist in free-boundary problems Wolf Prize, in the mathematics for nonlinear partial differential category. equations. This prize, which consists of a cer- Each year this prize is awarded to tificate and a monetary award of specialists in the fields of agriculture, $100,000, “is further evidence of chemistry, mathematics, physics Luis’ huge impact”, according to and the arts. Caffarelli will share the Alan Reid (Chair of the Department 2012 mathematics prize with of Mathematics). “I feel deeply Michael Aschbacher, a professor at honored”, states Caffarelli, who joins the California Institute of Technology. the UT Austin professors John Tate (Mathematics, 2002) and Allen Bard Link for Institute for Computational UT Austin Professor, Luis Caffarelli (Chemistry, 2008) as a Wolf Prize Engineering and Sciences: winner. http://www.ices.utexas.edu/ Porto Students Conduct Exploratory Visits UT Austin welcomed several visitors at the end of the Fall animation. Bastos felt he benefited greatly from the visit, 2011 semester, including Digital Media doctoral students commenting, “The time I spent in Austin and in College Pedro Bastos, Rui Dias, Filipe Lopes, and George Siorios of Station was everything I expected and more.
    [Show full text]
  • November 2014
    LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 441 November 2014 Society Meetings ELECTIONS TO COUNCIL AND and Events NOMINATING COMMITTEE 2014 Members should now have for the election can be found on 2014 received a communication from the LMS website at www.lms. Friday the Electoral Reform Society (ERS) ac.uk/about/council/lms-elections. 14 November for both e-voting and paper ballot. For both electronic and postal LMS AGM For online voting, members may voting the deadline for receipt Naylor Lecture cast a vote by going to www. of votes is Thursday 6 November. London votebyinternet.com/LMS2014 and Members may still cast a vote in page 7 using the two part security code person at the AGM, although an Wednesday on the email sent by the ERS and in-person vote must be cast via a 17 December also on their ballot paper. paper ballot. 1 SW & South Wales All members are asked to look Members may like to note that Regional Meeting out for communication from an LMS Election blog, moderated Plymouth page 27 the ERS. We hope that as many by the Scrutineers, can be members as possible will cast their found at http://discussions.lms. 2015 vote. If you have not received ac.uk/elections2014. ballot material, please contact Friday 16 January [email protected], con- Future Elections 150th Anniversary firming the address (post or email) Members are invited to make sug- Launch, London page 9 to which you would like material gestions for nominees for future sent. election to Council. These should Friday 27 February With respect to the election itself, be addressed to the Nominat- Mary Cartwright there are ten candidates proposed ing Committee (nominations@ Lecture, London for six vacancies for Member-at- lms.ac.uk).
    [Show full text]
  • WANG-DISSERTATION-2018.Pdf
    Some properties of closed hypersurfaces of small entropy and the topology of hypersurfaces through singularities of mean curvature flow by Shengwen Wang A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland May 2018 ⃝c Shengwen Wang All Rights Reserved Abstract We record in this thesis three results concerning entropy and singularities in mean curvature flow (MCF). The first result is a stability result of round spheres under small-entropy perturbation. The round spheres are minimizer of the entropy functional and we show that in all dimensions a closed hypersurface must be close to a round sphere in Hausdorff distance if the entropy is close to that of a round sphere. This generalizes a result of Bernstein-Wang in dimension 2. The second result gives a sharp entropy lower bound for disconnection to happen in mean curva- ture flow of hypersurfaces in R4. And it's related to the first result in that it sharpens the condition of a uniform continuity estimate of Hausdorff distance over time. The non-sharp version of this uniform continuity was used as a key lemma in the proof of the first result. This second result is joint work with J. Benstein. The third result is a rigidity result in the singularity models of mean curvature flow. Self-shrinkers are singularity models in mean curvature flow by Huisken's monotonicity formula. And by using techniques from minimal surfaces, we showed that a self-shrinking torus must be unknotted. This third result is joint work with A.
    [Show full text]
  • Arxiv:2105.10149V2 [Math.HO] 27 May 2021
    Extended English version of the paper / Versión extendida en inglés del artículo 1 La Gaceta de la RSME, Vol. 23 (2020), Núm. 2, Págs. 243–261 Remembering Louis Nirenberg and his mathematics Juan Luis Vázquez, Real Academia de Ciencias, Spain Abstract. The article is dedicated to recalling the life and mathematics of Louis Nirenberg, a distinguished Canadian mathematician who recently died in New York, where he lived. An emblematic figure of analysis and partial differential equations in the last century, he was awarded the Abel Prize in 2015. From his watchtower at the Courant Institute in New York, he was for many years a global teacher and master. He was a good friend of Spain. arXiv:2105.10149v2 [math.HO] 27 May 2021 One of the wonders of mathematics is you go somewhere in the world and you meet other mathematicians, and it is like one big family. This large family is a wonderful joy.1 1. Introduction This article is dedicated to remembering the life and work of the prestigious Canadian mathematician Louis Nirenberg, born in Hamilton, Ontario, in 1925, who died in New York on January 26, 2020, at the age of 94. Professor for much of his life at the mythical Courant Institute of New York University, he was considered one of the best mathematical analysts of the 20th century, a specialist in the analysis of partial differential equations (PDEs for short). 1From an interview with Louis Nirenberg appeared in Notices of the AMS, 2002, [43] 2 Louis Nirenberg When the news of his death was received, it was a very sad moment for many mathematicians, but it was also the opportunity of reviewing an exemplary life and underlining some of its landmarks.
    [Show full text]
  • October 2008
    THE LONDON MATHEMATICAL SOCIETY NEWSLETTER No. 374 October 2008 Society THE PROPOSAL FOR A NEW SOCIETY Meetings In all likelihood you will now have present form fulfil many of the and Events received a copy of the proposal hopes and expectations of their for a new society, combining the members, times are changing and 2008 present London Mathematical the need for mathematics as a uni- Friday 21 November Society and Institute of Mathe- fied activity to hold and defend AGM, London matics and its Applications. For its position in the public sphere [page 3] a new society to be formed, the grows constantly greater. IMA and the LMS must both vote As the Presidents’ letter which 12–13 December separately in favour of the accompanies the report makes Joint Meeting with proposal. clear, there is a pressing need to the Edinburgh There has been debate about engage effectively with govern- Mathematical Society this for several years but mem- ment, with external bodies, with Edinburgh [page 7] bers could be forgiven for think- the media and with the public. ing that, despite progress reports A society that represents the 2009 appearing in Mathematics Today broad spectrum of the mathemat- Friday 27 February and the Newsletter, things had ical community and has a larger Mary Cartwright ‘gone quiet’. The process leading membership must inevitably carry Lecture, London up to the present proposal has greater weight. been protracted not because the Your view is important and you 31 March – 4 April two societies disagree with one will soon have an opportunity to LMS Invited Lectures another, which they do not, but take part in this important deci- Edinburgh because those developing the new sion.
    [Show full text]