A Dissertation Entitled Mapping and CRISPR/Cas9 Gene Editing For

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Mapping and CRISPR/Cas9 Gene Editing For A Dissertation entitled Mapping and CRISPR/Cas9 Gene Editing for Identifying Novel Genomic Factors Influencing Blood Pressure by Harshal Waghulde Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences _________________________________________ Bina Joe, PhD, Committee Chair _________________________________________ Guillermo Vazquez, PhD, Committee Member ________________________________________ Kathryn Eisenmann, PhD, Committee Member _________________________________________ Jennifer Hill, PhD, Committee Member _________________________________________ Jiang Tian, PhD, Committee Member _________________________________________ Amanda Bryant-Friedrich, PhD, Dean College of Graduate Studies The University of Toledo August 2016 Copyright 2016, Harshal Bhanudas Waghulde This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Mapping and CRISPR/Cas9 Gene Editing for Identifying Novel Genomic Factors Influencing Blood Pressure by Harshal Waghulde Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences Degree in Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo August 2016 Hypertension is a complex polygenic trait and a significant risk factor for cardiovascular and metabolic diseases. Rodent models serve as tools to identify causal genes for complex traits. This dissertation is comprised of two projects. Project 1 utilizes substitution mapping as an approach to locate blood pressure quantitative trait loci (BP QTLs) on rat chromosome 5 (RNO5) and project 2 utilizes Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR Associated proteins 9 (Cas9) genetic engineering as an approach to explore the physiological function of G-protein coupled estrogen receptor (Gper1) in a rat model of hypertension. Previously, using linkage analysis and substitution mapping, two closely-linked interactive blood pressure quantitative trait loci (QTLs), BP QTL1 and BP QTL2, have been defined within 117894038bp-131853815bp region (RGSC 3.4 version) on rat chromosome 5 (RNO5). This was done by using a series of congenic strains consisting of genomic segments of the Dahl salt-sensitive (S) rat substituted with that of the normotensive Lewis (LEW) rat. Through the construction and characterization of a panel of S.LEW bicongenic strains and corresponding S.LEW monocongenic strains, definitive iii evidence of epistasis (genetic interaction) between BP QTL 1 (7.77Mb) and BP QTL 2 (4.18Mb) has been documented. In order to further map these interacting QTLs, we constructed a new panel of 7 bicongenic strains and monitored their blood pressure by radiotelemetry. The data obtained from these new strains further resolved BP QTL1 from 7.77Mb to 2.93Mb. It was also evident that the QTL2 is not a single QTL, but consists of at least 3 QTLs (2.26Mb, 1.31Mb and 175kb) with contrasting effects on blood pressure. In the second project, we utilized CRISPR/Cas9 genetic engineering approach to study the physiological role of G-protein coupled estrogen receptor (Gper1) in the Dahl-salt sensitive (S) rat. A link between gut microbiota and blood pressure (BP) regulation was previously demonstrated in our laboratory. Gut microbiotal transplantation from Dahl-salt resistant (R) rats into genetically hypertensive Dahl-salt sensitive (S) rats caused an elevation in BP, which was associated with an increase in plasma acetate. Acetate is a short chain fatty acid, which is a known ligand for two of the G-protein coupled receptors, Gpr41 and Olfr78. Deletion of either Gpr41 or Olfr78 is reported to affect BP. Because S and R rats do not have allelic variations of Gpr41 and Olfr78, the observed increased plasma acetate being associated with elevated blood pressure cannot be attributed to these two receptors alone. This led us to hypothesize that yet unknown receptors of acetate exist on the rat genome to regulate BP. To test this hypothesis, we focused on a more recently discovered G-protein coupled estrogen receptor (Gper1) which belongs to the same class of orphan receptors as Gpr41. To completely disrupt Gper1 in S rats, we employed clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) approach with two gRNAs each targeting one end of the rat Gper1 gene. The resultant Gper1-/- rats had significantly iv lower BP and increased vasorelaxation to acetylcholine compared to wild type S rats. Further, to examine whether the presence or absence of Gper1 influence vascular response to short chain fatty acids (acetate, propionate and butyrate), wire myograph studies were conducted using small mesenteric arteries (SMAs). While a rapid contraction effect of acetate and butyrate in phenylephrine pre-contracted arteries were similar, the sustained relaxation following rapid contraction was significantly decreased in vessels from Gper1-/- rats. Because gut microbiota is the source of short chain fatty acids, we conducted microbiotal transplantation studies, data from which demonstrated that the observed BP lowering effect of Gper1-/- was abolished. Collectively, the results point to Gper1 as a novel short chain fatty acid receptor. v This dissertation is dedicated to my beloved parents who have been with me at every step of the way, through good and the bad times, for their unconditional love, guidance, and support, and for raising me to be the person that I am today. I also dedicate my work to my wife for instilling in me the confidence that I am capable of doing anything I put my mind to. Acknowledgements I am grateful to my mentor Dr. Bina Joe for accepting me as a student in her laboratory and giving me exciting projects to work on. It is worth-mentioning that her endless motivation, valuable guidance and meticulousness about every detail helped me develop a genuine interest in the subject and persistently encouraged me to do top notch research. Apart from research, I also learnt many other things from her that would be really helpful to me in the future. I would also like to thank my ex-colleague and best friend Dr. Resmi Pillai for helping me understand the difficult genomic concepts quickly and also for her unwavering support inside as well as outside the lab. I am deeply grateful to my advisory committee members Dr. Vazquez, Dr. Eisenmann, Dr. Hill and Dr. Tian for their valuable suggestions for my research. I further extend my utmost gratitude to our collaborators for their help in the generation of knock out rats. I also thank my past and present lab mates and the Department of Physiology and Pharmacology for all their help and support in this course of my scientific journey. My vote of thanks will be incomplete without mentioning my parents and my brother who have always been a source of encouragement and inspiration for me, as well as my in-laws for their support and understanding. Last but not the least I would like to thank my wife, Priya, for her undying love and support. She is always by my side and helped me find the right direction in every task I took in my hand. vi Table of Contents Abstract .............................................................................................................................. iii Acknowledgements ............................................................................................................ vi Table of Contents .............................................................................................................. vii List of Tables .................................................................................................................... xi List of Figures ................................................................................................................... xii List of Abbreviations .........................................................................................................xv 1 Introduction…. .........................................................................................................1 1.1 Complex traits and genetics ...............................................................................1 1.2 Missing heritability ............................................................................................2 1.2.1 Epistasis ..............................................................................................4 1.2.2 Yet undiscovered variants ...................................................................4 1.3 Hypertension as a complex polygenic trait ........................................................6 1.3.1 Why study the genetics of hypertension? ...........................................7 1.3.2 The rat as a physiological model of hypertension ..............................7 1.4 Genetic methods for analysis of inherited hypertension ....................................9 1.4.1 Genetic linkage analysis .....................................................................9 1.4.1.1 Genetic linkage analysis using rat models ...........................9 1.4.2 Substitution mapping using congenic strains ....................................11 1.4.3 Genome-wide association studies (GWAS)......................................14 vii 1.4.4 Genome editing as a tool to study hypertension ...............................15 1.4.4.1 CRISP/Cas9 .......................................................................17
Recommended publications
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • OSBPL9 (NM 148907) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221526L4V OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle Symbol: OSBPL9 Synonyms: ORP-9; ORP9 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) ACCN: NM_148907 ORF Size: 1878 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC221526). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_148907.1 RefSeq Size: 2694 bp RefSeq ORF: 1881 bp Locus ID: 114883 UniProt ID: Q96SU4 MW: 70.1 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle – RC221526L4V Gene Summary: This gene encodes a member of the oxysterol-binding protein (OSBP) family, a group of intracellular lipid receptors.
    [Show full text]
  • OSBPL9 (NM 148906) Human Tagged ORF Clone – RC221011L3
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221011L3 OSBPL9 (NM_148906) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: OSBPL9 (NM_148906) Human Tagged ORF Clone Tag: Myc-DDK Symbol: OSBPL9 Synonyms: ORP-9; ORP9 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC221011). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_148906 ORF Size: 1713 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OSBPL9 (NM_148906) Human Tagged ORF Clone – RC221011L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_148906.1, NP_683704.1 RefSeq Size: 2840 bp RefSeq ORF: 2160 bp Locus ID: 114883 UniProt ID: Q96SU4 MW: 63.7 kDa Gene Summary: This gene encodes a member of the oxysterol-binding protein (OSBP) family, a group of intracellular lipid receptors.
    [Show full text]
  • Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth
    ORIGINAL www.jpeds.com • THE JOURNAL OF PEDIATRICS ARTICLES Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth Joan Kaufman, PhD1,2,3, Janitza L. Montalvo-Ortiz, PhD3, Hannah Holbrook,BA4, Kerry O'Loughlin,BA4, Catherine Orr, PhD4, Catherine Kearney,MA1, Bao-Zhu Yang, PhD3, Tao Wang, PhD5,6, Hongyu Zhao, PhD5, Robert Althoff, MD, PhD4, Hugh Garavan, PhD4, Joel Gelernter,MD3,7, and James Hudziak,MD4 Objective To determine if measures of adverse childhood experiences and DNA methylation relate to indices of obesity in youth. Study design Participants were derived from a cohort of 321 8 to 15-year-old children recruited for an investi- gation examining risk and resilience and psychiatric outcomes in maltreated children. Assessments of obesity were collected as an add-on for a subset of 234 participants (56% female; 52% maltreated). Illumina arrays were used to examine whole genome epigenetic predictors of obesity in saliva DNA. For analytic purposes, the cohort ana- lyzed in the first batch comprised the discovery sample (n = 160), and the cohort analyzed in the second batch the replication sample (n = 74). Results After controlling for race, sex, age, cell heterogeneity, 3 principal components, and whole genome testing, 10 methylation sites were found to interact with adverse childhood experiences to predict cross-sectional mea- sures of body mass index, and an additional 6 sites were found to exert a main effect in predicting body mass index (P < 5.0 × 10−7, all comparisons). Eight of the methylation sites were in genes previously associated with obesity risk (eg, PCK2, CxCl10, BCAT1, HID1, PRDM16, MADD, PXDN, GALE), with several of the findings from the dis- covery data set replicated in the second cohort.
    [Show full text]
  • A SARS-Cov-2 Protein Interaction Map Reveals Targets for Drug Repurposing
    Article A SARS-CoV-2 protein interaction map reveals targets for drug repurposing https://doi.org/10.1038/s41586-020-2286-9 A list of authors and affiliations appears at the end of the paper Received: 23 March 2020 Accepted: 22 April 2020 A newly described coronavirus named severe acute respiratory syndrome Published online: 30 April 2020 coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than Check for updates 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efcacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and eforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identifed the human proteins that physically associated with each of the SARS-CoV-2 proteins using afnity-purifcation mass spectrometry, identifying 332 high-confdence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors.
    [Show full text]
  • Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease Alison M
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2010 Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease Alison M. Goate Washington University School of Medicine in St. Louis Carlos Cruchaga Washington University School of Medicine in St. Louis Petra Nowotny Washington University School of Medicine in St. Louis John C. Morris Washington University School of Medicine in St. Louis Kevin Mayo Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Goate, Alison M.; Cruchaga, Carlos; Nowotny, Petra; Morris, John C.; Mayo, Kevin; and et al., ,"Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease." PLoS One.,. e13950. (2010). https://digitalcommons.wustl.edu/open_access_pubs/1093 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Alison M. Goate, Carlos Cruchaga, Petra Nowotny, John C. Morris, Kevin Mayo, and et al. This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/1093 Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer’s Disease Lesley Jones1., Peter A. Holmans1., Marian L. Hamshere1, Denise Harold1, Valentina Moskvina1, Dobril Ivanov1, Andrew Pocklington1, Richard Abraham1, Paul Hollingworth1, Rebecca Sims1, Amy Gerrish1, Jaspreet Singh Pahwa1, Nicola Jones1, Alexandra Stretton1, Angharad R.
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Program in Human Neutrophils Fails To
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology Anaplasma phagocytophilum , 20 of which you can access for free at: 2005; 174:6364-6372; ; from submission to initial decision 4 weeks from acceptance to publication J Immunol doi: 10.4049/jimmunol.174.10.6364 http://www.jimmunol.org/content/174/10/6364 Insights into Pathogen Immune Evasion Mechanisms: Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils Dori L. Borjesson, Scott D. Kobayashi, Adeline R. Whitney, Jovanka M. Voyich, Cynthia M. Argue and Frank R. DeLeo cites 28 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2005/05/03/174.10.6364.DC1 This article http://www.jimmunol.org/content/174/10/6364.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Insights into Pathogen Immune Evasion Mechanisms: Anaplasma phagocytophilum Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils1 Dori L.
    [Show full text]
  • Transcription of Endogenous Retrovirus Group K Members and Their Neighboring Genes in Chicken Skeletal Muscle Myoblasts
    http://www.jstage.jst.go.jp/browse/jpsa doi:10.2141/ jpsa.0200021 Copyright Ⓒ 2021, Japan Poultry Science Association. Transcription of Endogenous Retrovirus Group K Members and Their Neighboring Genes in Chicken Skeletal Muscle Myoblasts Tomohide Takaya1, 2, 3, Yuma Nihashi1, Tamao Ono2 and Hiroshi Kagami2 1 Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 399-4598, Japan 2 Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan 3 Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano 399-4598, Japan Skeletal muscle myoblasts are myogenic precursor cells that generate myofibers during muscle development and growth. We recently reported that broiler myoblasts, compared to layer myoblasts, proliferate and differentiate more actively and promptly into myocytes, which corresponds well with the muscle phenotype of broilers. Furthermore, RNA sequencing (RNA-seq) revealed that numerous genes are differentially expressed between layer and broiler myoblasts during myogenic differentiation. Based on the RNA-seq data, we herein report that chicken myoblasts transcribe endogenous retrovirus group K member (ERVK) genes. In total, 16 ERVKs were highly expressed in layer myoblasts and two (termed BrK1 and BrK2) were significantly induced in broiler myoblasts. These transcribed ERVKs had a totalof 182 neighboring genes within ±100 kb on the chromosomes, of which 40% were concentrated within ±10 kb of the ERVKs. We further investigated whether the transcription of ERVKs affects the expression of their neighboring genes. BrK1 had two neighboring genes; LOC107052719 was overlapping with BrK1 and down- regulated in the broiler myoblasts, and FAM19A2 was upregulated in the broiler myoblasts as well as BrK1.
    [Show full text]
  • Detection of H3k4me3 Identifies Neurohiv Signatures, Genomic
    viruses Article Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis Liana Basova 1, Alexander Lindsey 1, Anne Marie McGovern 1, Ronald J. Ellis 2 and Maria Cecilia Garibaldi Marcondes 1,* 1 San Diego Biomedical Research Institute, San Diego, CA 92121, USA; [email protected] (L.B.); [email protected] (A.L.); [email protected] (A.M.M.) 2 Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA; [email protected] * Correspondence: [email protected] Abstract: Human postmortem specimens are extremely valuable resources for investigating trans- lational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic Citation: Basova, L.; Lindsey, A.; signatures would be more stable than RNA for assessing global changes associated with outcomes McGovern, A.M.; Ellis, R.J.; of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Marcondes, M.C.G. Detection of H3K4me3 Identifies NeuroHIV Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was Signatures, Genomic Effects of abundant and stable up to the 72 h postmortem. We tested our ability to use H3K4me3 in human Methamphetamine and Addiction prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not Pathways in Postmortem HIV+ Brain (Meth +/−) which exhibited poor RNA quality and were not suitable for transcriptional profiling.
    [Show full text]