LNCS 7674, Pp

Total Page:16

File Type:pdf, Size:1020Kb

LNCS 7674, Pp Kinect-Based Easy 3D Object Reconstruction Di Xu1, Jianfei Cai2,TatJenCham2, Philip Fu2, and Juyong Zhang1 1 BeingThere Centre, Institute for Media Innovation, Nanyang Technological University, Singapore 2 School of Computer Engineering, Nanyang Technological University, Singapore Abstract. Inspired by the recently developed KinectFusion technique, which is able to reconstruct a 3D scene in real time through moving Kinect, we consider improving KinectFusion for 3D reconstruction of a real object. We make some adaptations to KinectFusion so as to identify the object-of-interest and separate the 3D object model from the entire 3D scene. Moreover, considering that the 3D object model generated by KinectFusion often contains some clearly visible outliers due to the noisy Kinect data, we propose a refinement scheme to remove the outliers. Our basic idea is to make use of the existing powerful 2D segmentation tool to refine the silhouette in each color image and then form visual hull via the refined dense silhouettes to improve the 3D object model. Experimental results show improved performance. Keywords: 3D reconstruction, Kinect, 2D segmentation, visual hull. 1 Introduction It is of great practical values to enable easy creation of 3D models of real objects. Main technologies have been developed towards this goal. Among them, the multi-view stereo (MVS) [1] is the most popular one, which builds 3D models of real objects from multi-view images. Despite the great advance, most of the MVS systems are still in the prototype level, limited to lab environment, not user-friendly, often require a few hours computation, and have some impractical assumptions such as assuming the silhouettes of the object are known. In 2010, Microsoft has launched the Kinect sensor for game applications. Kinect is equipped with an infrared camera and a RGB camera. The infrared camera can generate the depth information easily by capturing the continuously- projected infrared structured light. With the assistance of this additional depth information, many challenging computer vision problems can now be simplified and tackled in an efficient manner. Kinect has been used in 3D reconstruction recently [2–6]. In particular, in [2], multiple fixed kinects are used for fully dynamic real-time 3D scene capture for room-based telepresence systems. The depth data from each Kinect is being denoised first and then merged together weighted according to the angle and the distance to the camera. Although the 3D model of the entire scene can be W. Lin et al. (Eds.): PCM 2012, LNCS 7674, pp. 476–483, 2012. c Springer-Verlag Berlin Heidelberg 2012 Kinect-Based Easy 3D Object Reconstruction 477 generated in real time, the reconstruction is not of good quality. In [4], Cui and Stricker proposed a 3D object scanning scheme, where a Kinect is slowly moved around an object to capture different views. Super-resolution technique is applied to improve the quality of the raw data from Kinect. The method can achieve high-quality object reconstruction at the cost of high computation complexity and long processing time. The recent developed KinectFusion [5] is a system for accurate real-time map- ping of indoor scenes, using only a moving low-cost depth camera and commodity graphics hardware. The robustness of this system lies in that it fuses all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real-time. Similar to other techniques, they first de-noise the input raw data with a bilateral filter and a multi-resolution method. Then the truncated signed distance function (TSDF) is used as the data struc- ture for later processing. The global fusion of all depth maps is formed by the weighted average of all individual TSDFs. The resulted 3D model from Kinect- Fusion is of reasonable quality. In this paper, we apply KinectFusion for easy 3D construction of real objects. First, considering that KinectFusion is designed for scene reconstruction, we make some adaptations to KinectFusion so as to identify the object-of-interest and separate the 3D object model from the entire 3D scene. Second, due to the noisy Kinect data, the 3D object model generated by KinectFusion often contains some clearly visible outliers. We propose a refinement scheme to remove the outliers. Our basic idea is to make use of the existing powerful 2D segmentation tool to refine the silhouette in each color image and then form visual hull via the refined dense silhouettes to improve the 3D object model. Experimental results show improved performance. The rest of the paper is organized as follows. We describe the proposed sys- tem in Section 2. The experimental results are shown in Section 3. Finally, we conclude the paper in Section 4. 2ProposedSystem Fig. 1 shows the proposed easy 3D object reconstruction system. The primary inputs to the system are the color and depth videos captured by Kinect, and the output of the system is the reconstructed 3D model. In this first stage, con- sidering the real-time 3D reconstruction capability of KinectFusion, we choose it to generate an initial 3D object model. Since Kinect data is very noisy and KinectFusion only makes use of the depth information, the reconstructed 3D ob- ject models is of limited quality and often contains clearly visible errors. Thus, in the second stage, we propose to obtain dense and accurate silhouettes in color images via a powerful 2D segmentation technique to remove the outliers in the initial 3D object model generated by KinectFusion. The second stage consists of three iterative steps: 3D to 2D projection, silhouette refinement by 2D cut, and 478 D. Xu et al. Fig. 1. The system diagram of the proposed easy 3D object reconstruction 3D model refinement by visual hull. The iteration is to ensure the 2D segmenta- tion performed in each individual image are consistent and converged with the visual hull projections. In the following, we elaborate the two main stages in detail. 2.1 3D Object Reconstruction Using KinectFusion KinectFusion in it original form cannot be directly used for 3D object recon- struction since it is designed for reconstructing the entire scene. One common solution is to assume that the object is always the closest one to the viewer and use some thresholding to separate its 3D construction from the background 3D reconstruction. However, in this way, the object is hard to be separated from its supporting entity since the object has to be place on top of an entity such as ground or table. In the KinectFusion paper [5], it suggests another solution, i.e. obtaining the 3D object model by subtracting the 3D reconstructions with and without the object. But no implementation detail is provided. In this research, we follow the idea in [5] to generate an initial 3D object model. In particular, the object-of-interest is first placed in the scene and the user holding a Kinect scans the scene to obtain the entire 3D scene reconstruction using KinectFusion. Later, after some repeating scene scanning, the user removes the object from the scene and the final KinectFusion reconstruction is the 3D scene without the object. By subtracting the final 3D reconstruction from the initial one containing the 3D object, we obtain the 3D object model we want. Note that the scanning is a non-stop process till the end so as to ensure the same global coordination system between the two reconstructions and avoid the alignment problem. Fig.2 shows an example of the initial 3D object model generation. 2.2 3DModelRefinementvia2DSegmentation The initial 3D object model obtained by KinectFusion often contains some out- liers due to the noisy depth data. Thus, in this second stage, we make use some powerful 2D segmentation tool to generate dense silhouettes to help remove the outliers of the 3D model. Kinect-Based Easy 3D Object Reconstruction 479 (a) (b) Fig. 2. An illustration of generating the initial 3D object model using KinectFusion. We produce the mesh of the whole scene on (a). After the Robot being removed, another 3D model is generated as in (b). By subtracting the model of (a) by that in (b), we can get the initial model of the robot. Since the 2D object segmentation requires some initial contour, we first per- form 3D-to-2D projection. The initial 3D mesh is projected to each of the 2D images using the corresponding projection matrices generated by KinectFusion, which results in a binary mask in each image. As expected, because of the inaccu- rate initial 3D model as well as the inaccurate projection matrices, the generated initial 2D contours typically suffers a segmentation error up to 20 pixels for an image with a size of 640x480. This can be observed in Fig. 3(c), where the boundary of the binary mask is not snapped with the silhouette of the object. Therefore, next we apply our recently developed robust convex active contour tool [7] for the silhouette refinement. The tool has strong ability to evolve the initial contour to snap to the geometry features/edges in an image. Besides, it has fast processing speed since it can be solved by convex optimization. The convex active contour model can be expressed as min ( gb|∇u|dx + λ1 hrudx), (1) 0≤u≤1 Ω Ω where u is a function on image domain Ω and receives a value between 0 and 1 at each pixel location x in the image, function gb is typically an edge detection function, and function hr is a region function that measures the coherence of the inside and outside regions. (1) consists of two terms, where the first term is a boundary term and the second term is a region term.
Recommended publications
  • Image-Based 3D Reconstruction: Neural Networks Vs. Multiview Geometry
    Image-based 3D Reconstruction: Neural Networks vs. Multiview Geometry Julius Schoning¨ and Gunther Heidemann Institute of Cognitive Science, Osnabruck¨ University, Osnabruck,¨ Germany Email: fjuschoening,[email protected] Abstract—Methods using multiple view geometry (MVG), like algorithms, guarantee linear processing time, even in cases Structure from Motion (SfM), are still the dominant approaches where the number and resolution of the input images make for image-based 3D reconstruction. These reconstruction methods MVG-based approaches infeasible. have become quite robust and accurate. However, how robust and accurate can artificial neural networks (ANNs) reconstruct For the research if the underlying mathematical principle a priori unknown 3D objects? Exceed the restriction of object of MVG can be learned by ANNs, datasets like ShapeNet categories this paper evaluates ANNs for reconstructing arbitrary [9] and ModelNet40 [10] cannot be used hence they en- 3D objects. With the use of a synthetic scalable cube dataset for code object categories such as planes, chairs, tables. The training, testing and validating ANNs, it is shown that ANNs are needed dataset must not have shape priors of object cat- capable of learning mathematical principles of 3D reconstruction. As inspiration for the design of the different ANNs architectures, egories, and also, it must be scalable in its complexity the global, hierarchical, and incremental key-point matching for providing a large body of samples with ground truth strategies of SfM approaches were taken into account. Based data, ensuring the learning of even deep ANN. For this on these benchmarks and a review of the used dataset, it is reason, we are using the synthetic scalable cube dataset [11], shown that voxel-based 3D reconstruction cannot be scaled.
    [Show full text]
  • Amodal 3D Reconstruction for Robotic Manipulation Via Stability and Connectivity
    Amodal 3D Reconstruction for Robotic Manipulation via Stability and Connectivity William Agnew, Christopher Xie, Aaron Walsman, Octavian Murad, Caelen Wang, Pedro Domingos, Siddhartha Srinivasa University of Washington fwagnew3, chrisxie, awalsman, ovmurad, wangc21, pedrod, [email protected] Abstract: Learning-based 3D object reconstruction enables single- or few-shot estimation of 3D object models. For robotics, this holds the potential to allow model-based methods to rapidly adapt to novel objects and scenes. Existing 3D re- construction techniques optimize for visual reconstruction fidelity, typically mea- sured by chamfer distance or voxel IOU. We find that when applied to realis- tic, cluttered robotics environments, these systems produce reconstructions with low physical realism, resulting in poor task performance when used for model- based control. We propose ARM, an amodal 3D reconstruction system that in- troduces (1) a stability prior over object shapes, (2) a connectivity prior, and (3) a multi-channel input representation that allows for reasoning over relationships between groups of objects. By using these priors over the physical properties of objects, our system improves reconstruction quality not just by standard vi- sual metrics, but also performance of model-based control on a variety of robotics manipulation tasks in challenging, cluttered environments. Code is available at github.com/wagnew3/ARM. Keywords: 3D Reconstruction, 3D Vision, Model-Based 1 Introduction Manipulating previously unseen objects is a critical functionality for robots to ubiquitously function in unstructured environments. One solution to this problem is to use methods that do not rely on explicit 3D object models, such as model-free reinforcement learning [1,2]. However, quickly generalizing learned policies across wide ranges of tasks and objects remains an open problem.
    [Show full text]
  • Stereoscopic Vision System for Reconstruction of 3D Objects
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 18 (2018) pp. 13762-13766 © Research India Publications. http://www.ripublication.com Stereoscopic Vision System for reconstruction of 3D objects Robinson Jimenez-Moreno Professor, Department of Mechatronics Engineering, Nueva Granada Military University, Bogotá, Colombia. Javier O. Pinzón-Arenas Research Assistant, Department of Mechatronics Engineering, Nueva Granada Military University, Bogotá, Colombia. César G. Pachón-Suescún Research Assistant, Department of Mechatronics Engineering, Nueva Granada Military University, Bogotá, Colombia. Abstract applications of mobile robotics, for autonomous anthropomorphic agents [9] or not, require reducing costs and The present work details the implementation of a stereoscopic using free software for their development. Which, by means of 3D vision system, by means of two digital cameras of similar laser systems or mono-camera, does not allow to obtain a characteristics. This system is based on the calibration of the reduction in price or analysis of adequate depth. two cameras to find the intrinsic and extrinsic parameters of the same in order to use projective geometry to find the disparity The system proposed in this article presents a system of between the images taken by each camera with respect to the reconstruction with stereoscopic pair, i.e. two cameras that will same scene. From the disparity, it is obtained the depth map capture the scene from their own perspective allowing, by that will allow to find the 3D points that are part of the means of projective geometry, to establish point reconstruction of the scene and to recognize an object clearly correspondences in the scene to find the calibration matrices of in it.
    [Show full text]
  • Configurable 3D Scene Synthesis and 2D Image Rendering with Per-Pixel Ground Truth Using Stochastic Grammars
    International Journal of Computer Vision https://doi.org/10.1007/s11263-018-1103-5 Configurable 3D Scene Synthesis and 2D Image Rendering with Per-pixel Ground Truth Using Stochastic Grammars Chenfanfu Jiang1 · Siyuan Qi2 · Yixin Zhu2 · Siyuan Huang2 · Jenny Lin2 · Lap-Fai Yu3 · Demetri Terzopoulos4 · Song-Chun Zhu2 Received: 30 July 2017 / Accepted: 20 June 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract We propose a systematic learning-based approach to the generation of massive quantities of synthetic 3D scenes and arbitrary numbers of photorealistic 2D images thereof, with associated ground truth information, for the purposes of training, bench- marking, and diagnosing learning-based computer vision and robotics algorithms. In particular, we devise a learning-based pipeline of algorithms capable of automatically generating and rendering a potentially infinite variety of indoor scenes by using a stochastic grammar, represented as an attributed Spatial And-Or Graph, in conjunction with state-of-the-art physics- based rendering. Our pipeline is capable of synthesizing scene layouts with high diversity, and it is configurable inasmuch as it enables the precise customization and control of important attributes of the generated scenes. It renders photorealistic RGB images of the generated scenes while automatically synthesizing detailed, per-pixel ground truth data, including visible surface depth and normal, object identity, and material information (detailed to object parts), as well as environments (e.g., illuminations and camera viewpoints). We demonstrate the value of our synthesized dataset, by improving performance in certain machine-learning-based scene understanding tasks—depth and surface normal prediction, semantic segmentation, reconstruction, etc.—and by providing benchmarks for and diagnostics of trained models by modifying object attributes and scene properties in a controllable manner.
    [Show full text]
  • 3D Scene Reconstruction from Multiple Uncalibrated Views
    3D Scene Reconstruction from Multiple Uncalibrated Views Li Tao Xuerong Xiao [email protected] [email protected] Abstract aerial photo filming. The 3D scene reconstruction applications such as Google Earth allow people to In this project, we focus on the problem of 3D take flight over entire metropolitan areas in a vir- scene reconstruction from multiple uncalibrated tually real 3D world, explore 3D tours of build- views. We have studied different 3D scene recon- ings, cities and famous landmarks, as well as take struction methods, including Structure from Mo- a virtual walk around natural and cultural land- tion (SFM) and volumetric stereo (space carv- marks without having to be physically there. A ing and voxel coloring). Here we report the re- computer vision based reconstruction method also sults of applying these methods to different scenes, allows the use of rich image resources from the in- ranging from simple geometric structures to com- ternet. plicated buildings, and will compare the perfor- In this project, we have studied different 3D mances of different methods. scene reconstruction methods, including Struc- ture from Motion (SFM) method and volumetric 1. Introduction stereo (space carving and voxel coloring). Here we report the results of applying these methods to 3D reconstruction from multiple images is the different scenes, ranging from simple geometric creation of three-dimensional models from a set of structures to complicated buildings, and will com- images. It is the reverse process of obtaining 2D pare the performances of different methods. images from 3D scenes. In recent decades, there is an important demand for 3D content for com- 2.
    [Show full text]
  • 3D Shape Reconstruction from Vision and Touch
    3D Shape Reconstruction from Vision and Touch Edward J. Smith1;2∗ Roberto Calandra1 Adriana Romero1;2 Georgia Gkioxari1 David Meger2 Jitendra Malik1;3 Michal Drozdzal1 1 Facebook AI Research 2 McGill University 3 University of California, Berkeley Abstract When a toddler is presented a new toy, their instinctual behaviour is to pick it up and inspect it with their hand and eyes in tandem, clearly searching over its surface to properly understand what they are playing with. At any instance here, touch provides high fidelity localized information while vision provides complementary global context. However, in 3D shape reconstruction, the complementary fusion of visual and haptic modalities remains largely unexplored. In this paper, we study this problem and present an effective chart-based approach to multi-modal shape understanding which encourages a similar fusion vision and touch information. To do so, we introduce a dataset of simulated touch and vision signals from the interaction between a robotic hand and a large array of 3D objects. Our results show that (1) leveraging both vision and touch signals consistently improves single- modality baselines; (2) our approach outperforms alternative modality fusion methods and strongly benefits from the proposed chart-based structure; (3) the reconstruction quality increases with the number of grasps provided; and (4) the touch information not only enhances the reconstruction at the touch site but also extrapolates to its local neighborhood. 1 Introduction From an early age children clearly and often loudly demonstrate that they need to both look and touch any new object that has peaked their interest. The instinctual behavior of inspecting with both their eyes and hands in tandem demonstrates the importance of fusing vision and touch information for 3D object understanding.
    [Show full text]
  • 3D Reconstruction Is Not Just a Low-Level Task: Retrospect and Survey
    3D reconstruction is not just a low-level task: retrospect and survey Jianxiong Xiao Massachusetts Institute of Technology [email protected] Abstract 3D reconstruction is in obtaining more accurate depth maps [44, 45, 55] or 3D point clouds [47, 48, 58, 50]. We now Although an image is a 2D array, we live in a 3D world. have reliable techniques [47, 48] for accurately computing The desire to recover the 3D structure of the world from 2D a partial 3D model of an environment from thousands of images is the key that distinguished computer vision from partially overlapping photographs (using keypoint match- the already existing field of image processing 50 years ago. ing and structure from motion). Given a large enough set of For the past two decades, the dominant research focus for views of a particular object, we can create accurate dense 3D reconstruction is in obtaining more accurate depth maps 3D surface models (using stereo matching and surface fit- or 3D point clouds. However, even when a robot has a depth ting [44, 45, 55, 58, 50, 59]). In particular, using Microsoft map, it still cannot manipulate an object, because there is Kinect (also Primesense and Asus Xtion), a reliable depth no high-level representation of the 3D world. Essentially, map can be obtained straightly out of box. 3D reconstruction is not just a low-level task. Obtaining However, despite all of these advances, the dream of hav- a depth map to capture a distance at each pixel is analo- ing a computer interpret an image at the same level as a two- gous to inventing a digital camera to capture the color value year old (for example, counting all of the objects in a pic- at each pixel.
    [Show full text]
  • Automatic Reconstruction of Textured 3D Models of Textured 3Dmodels Automatic Reconstruction Dipl.-Ing
    Dipl.-Ing. Benjamin Pitzer Automatic Reconstruction of Textured 3D Models Automatic Reconstruction of Textured 3D Models Automatic Reconstruction of Textured Benjamin Pitzer 020 Benjamin Pitzer Automatic Reconstruction of Textured 3D Models Schriftenreihe Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie (KIT) Band 020 Eine Übersicht über alle bisher in dieser Schriftenreihe erschienenen Bände finden Sie am Ende des Buchs. Automatic Reconstruction of Textured 3D Models by Benjamin Pitzer Dissertation, Karlsruher Institut für Technologie (KIT) Fakultät für Maschinenbau Tag der mündlichen Prüfung: 22. Februar 2011 Referenten: Prof. Dr.-Ing. C. Stiller, Adj. Prof. Dr.-Ing. M. Brünig Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover – is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ The cover page is licensed under the Creative Commons Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): http://creativecommons.org/licenses/by-nd/3.0/de/ Print on Demand 2014 ISSN 1613-4214 ISBN 978-3-86644-805-6 DOI: 10.5445/KSP/1000025619 Automatic Reconstruction of Textured 3D Models Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften von der Fakultät für Maschinenbau der Universität Karlsruhe (TH) genehmigte Dissertation von DIPL.-ING.BENJAMIN PITZER aus Menlo Park, CA Hauptreferent: Prof. Dr.-Ing. C. Stiller Korreferent: Adj.
    [Show full text]
  • Image-Based Synthesis and Re-Synthesis of Viewpoints Guided by 3D Models
    Image-based Synthesis and Re-Synthesis of Viewpoints Guided by 3D Models Konstantinos Rematas1, Tobias Ritschel2,3, Mario Fritz2, and Tinne Tuytelaars1 1KU Leuven, iMinds 2Max Planck Institute for Informatics 2Saarland University Abstract tinely by artists to convey presence, most well-known as the Ken Burn’s effect [15]. We propose a technique to use the structural informa- In contrast, the predominant paradigm in computer vi- tion extracted from a set of 3D models of an object class to sion is to present all possible viewpoints in order to arrive improve novel-view synthesis for images showing unknown at a model that is robust to out-of-plane rotations. The most instances of this class. These novel views can be used to prominent detection models lack the domain knowledge “amplify” training image collections that typically contain that would give them an understanding of how generaliza- only a low number of views or lack certain classes of views tion across viewpoints can be achieved from a single-view entirely (e. g. top views). example. A dense sampling across viewpoints and intra- We extract the correlation of position, normal, re- category variation is tedious to achieve. Recent analysis of flectance and appearance from computer-generated images such detectors has pointed out that rare cases in viewpoint is of a few exemplars and use this information to infer new indeed one of the frontiers on which there is still significant appearance for new instances. We show that our approach room to push the state-of-the-art in object detection [14]. can improve performance of state-of-the-art detectors using In this work, we show how to improve novel view syn- real-world training data.
    [Show full text]
  • 3D Reconstruction and Recognition Acknowledgement
    EE290T : 3D Reconstruction and Recognition Acknowledgement Courtesy of Prof. Silvio Savarese. Introduction “There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it.” “The table was a large one, but the three were all crowded together at one corner of it …” From “A M a d Tea-Party” Alice's Adventures in W onderla n by Lewis Ca rroll “There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it.” “The table was a large one, but the three were all crowded together at one corner of it …” From “A M a d Tea-Party” Alice's Adventures in W onderla n by Lewis Ca rroll Illustra tion by Arthur Ra ck ha m Computer vision Image/ video Object 1 Object N - semantic -semantic … Computer vision Image/ video Object 1 Object N - semantic … -semantic -geometry -geometry Computer vision Image/ video Object 1 Object N - semantic … -semantic -geometry -geometry spatial & temporal relations Computer vision Image/ video Object 1 Object N - semantic … -semantic -geometry -geometry spatial & temporal relations Scene -Sema ntic - geometry Computer vision • Informatio n extraction Sensing device Computational • Interpretation device 1. Information extraction: features, 3D structure, motion flows, etc… 2. Interpretation: recognize objects, scenes, actions, events Computer vision and Applications EosSystems 1990 2000 2010 21 Fingerprint biometrics Augmentation with 3D computer graphics 23 3D object prototyping EosSystems Photomodeler 24 Computer vision and Applications EosSystems Autostich 1990 2000 2010 25 Face detection Face detection Web applications Photometria 28 Panoramic Photography kolor 3D modeling of landmarks 30 Computer vision and Applications • Efficient SLAM/SFM • Large scale image repositories • Deep learning (e.g.
    [Show full text]
  • Bayesian Reconstruction of 3D Human Motion from Single-Camera Video
    Bayesian Reconstruction of 3D Human Motion from Single-Camera Video Nicholas R. Howe Michael E. Leventon Department of Computer Science Artificial Intelligence Lab Cornell University Massachusetts Institute of Technology Ithaca, NY 14850 Cambridge, MA 02139 [email protected] [email protected] William T. Freeman MERL - a Mitsubishi Electric Research Lab 201 Broadway Cambridge, MA 02139 [email protected] Abstract The three-dimensional motion of humans is underdetermined when the observation is limited to a single camera, due to the inherent 3D ambi­ guity of 2D video. We present a system that reconstructs the 3D motion of human subjects from single-camera video, relying on prior knowledge about human motion, learned from training data, to resolve those am­ biguities. After initialization in 2D, the tracking and 3D reconstruction is automatic; we show results for several video sequences. The results show the power of treating 3D body tracking as an inference problem. 1 Introduction We seek to capture the 3D motions of humans from video sequences. The potential appli­ cations are broad, including industrial computer graphics, virtual reality, and improved human-computer interaction. Recent research attention has focused on unencumbered tracking techniques that don't require attaching markers to the subject's body [4, 5], see [12] for a survey. Typically, these methods require simultaneous views from multiple cam­ eras. Motion capture from a single camera is important for several reasons. First, though under­ determined, it is a problem people can solve easily, as anyone viewing a dancer in a movie can confirm. Single camera shots are the most convenient to obtain, and, of course, apply to the world's film and video archives.
    [Show full text]
  • Arxiv:2001.05613V2 [Cs.CV] 14 Oct 2020 Mental Results Demonstrate That the Mean Per Joint Position I.E., Parts Or All of the Body Must Not Be Lost at Any Time
    Synergetic Reconstruction from 2D Pose and 3D Motion for Wide-Space Multi-Person Video Motion Capture in the Wild Takuya Ohashi1,2 Yosuke Ikegami2 Yoshihiko Nakamura2 1NTT DOCOMO 2The University of Tokyo [email protected] [email protected] [email protected] Figure 1: All futsal players’ motions were captured using 12 video cameras surrounding the court. (left) Input images and reprojected joint position. (right) Bone CG drawing based on the calculated joint angles. Abstract diagnosis, behavioral understanding, and even humanoid robot operation [43, 32, 37]. Various motion capture meth- Although many studies have investigated markerless mo- ods have been developed to obtain such data, e.g., opti- tion capture, the technology has not been applied to real cal motion capture, where reflective markers are attached sports or concerts. In this paper, we propose a marker- to characteristic parts of the body, and these 3D positions less motion capture method with spatiotemporal accuracy are then measured [1,5]. Inertial motion capture uses IMU and smoothness from multiple cameras in wide-space and sensors attached to body parts, and then, the positions are multi-person environments. The proposed method predicts calculated using sensor speed [6,2]. Markerless motion each person’s 3D pose and determines the bounding box capture uses a depth camera or single/multiple RGB video of multi-camera images small enough. This prediction and cameras [34, 38,3,4]. However, although various methods spatiotemporal filtering based on human skeletal model en- for using motion data exist, this technology is only used in ables 3D reconstruction of the person and demonstrates limited locations.
    [Show full text]