The Consequences of Trait Variation and Covariation for Individual Plant Performance and Species Coexistence in South African Proteaceae

Total Page:16

File Type:pdf, Size:1020Kb

The Consequences of Trait Variation and Covariation for Individual Plant Performance and Species Coexistence in South African Proteaceae University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 5-8-2020 What Makes a ‘Biodiversity Hotspot’ Hot? The Consequences of Trait Variation and Covariation for Individual Plant Performance and Species Coexistence in South African Proteaceae Kristen Nolting University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Nolting, Kristen, "What Makes a ‘Biodiversity Hotspot’ Hot? The Consequences of Trait Variation and Covariation for Individual Plant Performance and Species Coexistence in South African Proteaceae" (2020). Doctoral Dissertations. 2520. https://opencommons.uconn.edu/dissertations/2520 What Makes a ‘Biodiversity Hotspot’ Hot? The Consequences of Trait Variation and Covariation for Individual Plant Performance and Species Coexistence in South African Proteaceae Kristen M. Nolting, PhD University of Connecticut, 2020 The Cape Floristic Region (CFR) in southwestern South Africa is a ‘biodiversity hotspot,’ hosting ~9,000 plant species in an area just over 90,000 km2. What is especially extraordinary about the CFR is that diversity here rivals that in many tropical forests, but it is not located in the highly diverse equatorial regions, making it difficult to identify the ecological and evolutionary processes that generate diversity and maintain it today. One way to better understand variation in species diversity across communities is to evaluate the distribution of the traits species’ possess. Specifically, trait variation within and across species can indicate how organisms interact with both their abiotic and biotic environments. For my dissertation I take a trait-based approach to identify how trait variation could influence the performance of plants in the CFR, and how traits might mediate ecological interactions so as to minimize competition and promote coexistence. I focus on fynbos communities dominated by plants in the family Proteaceae, a family that represents much of the species diversity and abundance in local communities. I identify functional relationships between plant traits, performance, and fitness in a multivariate framework. I find that within species Kristen M. Nolting – University of Connecticut, 2020 variation in traits related to performance might minimize fitness inequalities among co-occurring species, and that the covariance structure of traits might be important in leading to this outcome. Lastly, I show that trait differences among neighboring individuals are important for predicting performance in local neighborhoods by possibly minimizing competitive effects and also promoting adaptation to the local environment. What Makes a ‘Biodiversity Hotspot’ Hot? The Consequences of Trait Variation and Covariation for Individual Plant Performance and Species Coexistence in South African Proteaceae Kristen M. Nolting B.S., University of Evansville, 2010 M.S., Michigan State University, 2014 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2020 Copyright by Kristen M. Nolting 2020 ii APPROVAL PAGE Doctor of Philosophy Dissertation What Makes a ‘Biodiversity Hotspot’ Hot? The Consequences of Trait Variation and Covariation for Individual Plant Performance and Species Coexistence in South African Proteaceae Presented by Kristen M. Nolting, B.S., M.S. Major Advisor ______________________________________________________________ Kent E. Holsinger Associate Advisor ______________________________________________________________ Robert Bagchi Associate Advisor ______________________________________________________________ Cynthia S. Jones Associate Advisor ______________________________________________________________ John A. Silander Jr. Associate Advisor ______________________________________________________________ Mark C. Urban University of Connecticut 2020 iii Acknowledgements I want to first thank my family, who despite not fully understanding my desire to become a ‘plant doctor,’ has nonetheless supported me on this journey. To my mom, Michaele Nolting: thank you for always being my biggest supporter and cheerleader (I am sorry this journey took me so physically far from home!), and absolutely a fantastic field assistant (completing 1,500 stomatal peels is no easy task!). You are the strongest person I know, and from your example, I have learned that the best way to do a hard thing is to wake up, make some coffee, make a plan, and get to work. To my Dad, Jon Nolting: thank you for encouraging from a young age, my love for reading, writing, and story telling. To my brother, Jason Nolting: thank you for sharing my love of travel and desire to go on adventures and get to know the world. To my sister, Katy Nolting: thank you for your constant love and support, and for being the first to inspire my love of science. To my brother, Josh Nolting: thank you for always, always believing in me, and for sharing my love of nature (especially big, old trees!). To my nieces and nephews, thank you for being a bright spot for me during challenging times. I want to thank those, past and present, in the EEB department at UConn. From you I have received tremendous mentorship, scholarship, and friendship. I especially need to thank Elizabeth Jockusch, Carl Schlichting, Morgan Tingley, Paul Lewis, Louise Lewis, Sarah Knutie, and Erin Kuprewicz, who while not on my committee nevertheless were tremendously important for me reaching the finish line and staying somewhat sane along the way. I would also like to highlight the all star administrative team (Pat Anderson, you will always be a magical unicorn in my eyes, not just for your ability to solve any problem I might have, but for always having a hug, smile, and kind word for me on the most difficult days), the awesome students, faculty, and staff iv with whom I collaborated on teaching (special thanks to Miranda Davis, Susan Herrick, Mary Brescia, and Mary Ellen Petersen), the incredible greenhouse staff, and the super hero tech support team. I also want to thank my lab family and the friends that became family along the way. Nora Mitchell, thank you for always having an answer to any question I had (especially early on, when I was learning the ropes), being ever supportive and encouraging, and always down for a ‘lunch beer’ on a bad day. Katie Taylor, Kaitlin Gallagher, and Lauren Stanley: thank you for the often-needed ice cream breaks, dinners, walks around campus, and constant support and love over the last several years. I have to especially thank Tanisha Williams who I first got to know as my brilliant, dedicated, and awesome lab sister, but who I am fortunate to have since gotten to know as a ‘bad ass’ field assistant, housemate, and the best friend I could have made during my time here in Storrs. I could not have done any of this without you and ‘our boys’ (#Monte #Carlo #BayesCats). Thank you to my “fr-amily” who I got to know and love from my time in Michigan: Emily Dittmar, Heather Stadden, and Carina Baskett you are the best friends I could have or know. I look forward to being able to take a vacation with you all now that I am [hopefully] going to be less stressed and more open to fun and laughter. Thank you to my colleagues and friends in South Africa, who not only made this research possible, but who helped make my field work an [mostly] enjoyable and always a tremendously fun experience. I have to especially thank Tony Rebelo, Pat Holmes, Guy Midgley, Martina Treurnicht, Jasper Slingsby, Karen Esler, and other colleagues and support staff at the University of Cape Town, Stellenbosch University, SANBI, and Cape Nature. Guy, particularly, I could not have done this work without your support: both with respect to loaning me lab space and equipment, teaching me how to trouble-shoot using said equipment (I will forever remember v how you walked me through LiCor ‘surgery’ on ‘Pandora’ over the phone during my first real week of field work), and also just being tremendously supportive and encouraging along the way. Your energy and enthusiasm for all things science, and especially fynbos, is contagious. Lastly, I need to thank my committee. Cindi Jones, thank you for teaching me SO many amazing things about plants that I had never considered. Because of your teaching and mentorship, I finally feel confident owning the #iamabotanist label, and I love passing on what I have learned from you both in and out of the classroom to other aspiring botanists. To John Silander, thank you for being my ‘Devil’s Advocate,’ but always in a way that pushed my science farther, even if I found it frustrating in the moment. To Robi Bagchi and Mark Urban: thank you for always being willing to talk through difficult conceptual problems, quantitative problems, and challenging me to bring my research into the context of the broader literature. Finally, I have to thank my advisor, Kent Holsinger. I often joke that I decided to come to UConn for the basketball (and I have sure loved being able to support the UConn women’s basketball team in person the last six years!), but in actuality, I came specifically because I wanted to work with Kent. Kent, you are one of the most brilliant people that I have ever met, but also have the rare phenotype of simultaneously being incredibly humble, kind, and generous. You have taught me so much. You taught me that I don’t actually hate math, models, statistics, and theory (you tricked me into this, I
Recommended publications
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • Sand Mine Near Robertson, Western Cape Province
    SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this
    [Show full text]
  • Field Guide for Wild Flower Harvesting
    FIELD GUIDE FOR WILD FLOWER HARVESTING 1 Contents Introducing the Field Guide for Wild Flower Harvesting 3 Glossary 4 Introducing The Field Guide Fynbos 6 for Wild Flower Harvesting What is fynbos? 7 The Cape Floral Kingdom 7 Many people in the Overberg earn a living from the region’s wild flowers, known as South African plants 8 fynbos. Some pick flowers for markets to sell, some remove invasive alien plants, and Threats to fynbos 8 others are involved in conservation and nature tourism. It is important that people The value of fynbos 9 who work in the veld know about fynbos plants. This Field Guide for Wild Flower Harvesting describes 41 of the most popular types of fynbos plants that are picked from Fynbos and fire 9 our region for the wild flower market. It also provides useful information to support Classification of plants 9 sustainable harvesting in particular and fynbos conservation in general. Naming of plants 10 Picking flowers has an effect or impact on the veld. If we are not careful, we can Market for fynbos 10 damage, or even kill, plants. So, before picking flowers, it is important to ask: Picking fynbos with care 11 • What can be picked? The Sustainable Harvesting Programme 12 • How much can be picked? • How should flowers be picked? The SHP Code of Best Practice for Wild Harvesters 12 Ten principles of good harvesting 13 This guide aims to help people understand: The Vulnerability Index and the Red Data List 13 • the differences between the many types of fynbos plants that grow in the veld; and Know how much fynbos you have 14 • which fynbos plants can be picked, and which are scarce and should rather be Fynbos plants of the Agulhas Plain and beyond 14 left in the veld.
    [Show full text]
  • CHAPTER 1 INTRODUCTION the Proteaceae Benth. & Hook. F. Is One
    CHAPTER 1 INTRODUCTION The Proteaceae Benth. & Hook. f. is one of the most prominent flowering plants in the southern hemisphere. It is an ancient family made up of two subfamilies (the Proteoideae and Grevilleoideae), which existed before Gondwana began to break up some 140 million years ago. There are about 1,400 species, in more than 60 genera. Leucospermum (Lsp.), Leucadendron (Lcd.), Banksia and Protea are the genera that are widely used in floriculture. The name Protea, given by Linnaeus in 1753, referred to the Greek mythical god, Proteus, who could change his shape at will. It is an apt name due to the diversity of this genus (Rebelo, 1995). The worldwide development of Protea has established them as a horticultural crop, with a world sale of approximately 8 million flowering stems per year (Coetzee & Littlejohn, 2001). The Proteaceae industry in Zimbabwe was founded by a few flower producers in the Eastern Highlands, who began growing proteas in the early 1970’s (Archer, 2000). As the industry grew, production areas spread to include Centenary, Chimanimani, Karoi, Makonde, Mvurwi, Norton and Ruwa. In 2001 there was 290 Ha of Proteaceae being grown (Percival, 2002). By 2003, this area had increased to an excess of 350 Ha. There are over 200 growers with plantations ranging from a couple of hundred plants, to 70 hectares in size (Percival, 2004). Between 1997 and 2001 the Proteaceae population in Zimbabwe had doubled to 1,36 million protea plants; of which 42 % was comprised of Leucadendron, 39 % Leucospermum, 14 % Protea and 5 % of other Proteaceae genus, such as Banksia and Grevillea (Percival, 2002).
    [Show full text]
  • TC MF Working Document
    Tokai Cecilia Management Framework: 1 INTRODUCTION . .2 1.1 Management ...................................................................... .2 1.2 Alien plant control . .2 1.3 Preparation after harvesting . .3 1.4 Fire management . .3 1.5 Restoration in terrestrial areas .................................................................................................... 5 1.6 Restoration in wetland and riparian areas ........................................................................... .6 1.7 Long-term planning for a restored vegetation network in Tokai . .7 1.8 Replanting . .8 TABLE 1. LIST OF INAPPROPRIATE ALIEN SPECIES AND SUGGESTED METHODS O F CONTROL. .9 TABLE 2. LIST OF LOCAL INDIGENOUS HIGHER PLANT SPECIES FOR TERRESTRIAL (SANDPLAIN & FOOTHILL) AND WETLAND/ RIPARIAN HABITATS IN T HE TOKAI AREA. .1 1 1 Tokai Cecilia Management Framework: 1 Introduction The following guidelines are applicable to restoration and rehabilitation initiatives of the sand-plain Fynbos in the lower Tokai area. The guidelines are based on: 1) Dr. Patricia M. Holmes, 2003. Management and Restoration Plan for an Area of Tokai Plantation East of Orpen Road and between the Two Car Park Areas. 2) Dr. Patricia M. Holmes, 2004. Management Plan for the Extension of the Core Cape Flats Flora Conservation Site in the Lower Tokai Forest. 3) De Villiers et al, 2005. Ecosystem Guidelines for Environmental Assessment in the Western Cape, 4) Forestry Industry Environmental Committee, 2002. Environmental Guidelines for Commercial Forestry Plantations in South Africa. 5) Conservation of Agricultural Resources Act (Act No. 43 of 1983). 6) National Water Act (Act No. 36 of 1998). 1.1 Management It should be appreciated that restoration is a process that does not happen in one step, but rather in several steps of recovery along a course of natural repair, with occasional interventions being required to redirect this trajectory along the desired path.
    [Show full text]
  • Species of Botryosphaeriaceae Occurring on Proteaceae
    Persoonia 21, 2008: 111–118 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X372387 Species of Botryosphaeriaceae occurring on Proteaceae S. Marincowitz1, J.Z. Groenewald 2, M.J. Wingfield1, P.W. Crous1,2 Key words Abstract The Botryosphaeriaceae includes several species that are serious canker and leaf pathogens of Pro-­ teaceae. In the present study, sequence data for the ITS nrDNA region were used in conjunction with morphological Botryosphaeria observations to resolve the taxonomy of species of Botryosphaeriaceae associated with Proteaceae. Neofusicoccum Fusicoccum luteum was confirmed from Buckinghamia and Banksia in Australia, and on Protea cynaroides in South Africa. Neofusicoccum A major pathogen of Banksia coccinea in Australia was shown to be N. australe and not N. luteum as previously Saccharata reported. Neofusicoccum protearum was previously reported on Proteaceae from Australia, Madeira, Portugal and South Africa, and is shown here to also occur in Hawaii and Tenerife (Canary Islands). Furthermore, several previous records of N. ribis on Proteaceae were shown to be N. parvum. Saccharata capensis is described as a new species that is morphologically similar to S. proteae. There is no information currently available regarding its potential importance as plant pathogen and pathogenicity tests should be conducted with it in the future. Article info Received: 4 September 2008; Accepted: 25 September 2008; Published: 1 October 2008. INTRODUCTION recently added lineage representing the anamorph genus Aplosporella (Damm et al. 2007b). Botryosphaeria spp. and The Proteaceae (proteas) is a prominent Southern Hemisphere similar species are prevalent on proteas under environmental plant family consisting of approximately seven subfamilies, 60 stress, causing stem cankers, dieback or leaf blight (Crous et genera and 1 400 species (Rebelo 2001).
    [Show full text]
  • Rife What Seeds Are to the Earth
    1'ou say you donJt 6efieve? Wfiat do you caffit when you sow a tiny seedandare convincedthat a pfant wiffgrow? - Elizabeth York- Contents Abstract . , .. vii Declaration .. ,,., , ,........... .. ix Acknowledgements ,, ,, , .. , x Publications from this Thesis ,, , ", .. ,., , xii Patents from this Thesis ,,,'' ,, .. ',. xii Conference Contributions ' xiii Related Publications .................................................... .. xiv List of Figures , xv List of Tables , ,,,. xviii List of Abbreviations ,,, ,, ,,, ,. xix 1 Introduction ,,,, 1 1.1 SMOKE AS A GERMINATION CUE .. ,,,, .. ,,,,, .. , .. , , . , 1 1.2 AIMS AND OBJECTIVES , '.. , , . 1 1.3 GENERAL OVERVIEW ,, " , .. , .. , 2 2 Literature Review ,",,,,", 4 2.1 THE ROLE OF FIRE IN SEED GERMINATION .. ,,,,.,,,,. ,4 2.1.1 Fire in mediterranean-type regions ', .. ,, , , 4 2,1.2 Post-fire regeneration. ,,,, .. , , . , , , , 5 2,1.3 Effects of fire on germination .,,, , , . 7 2,1,3.1 Physical effects of fire on germination .. ,," .. ,.,. 8 2.1,3.2 Chemical effects of fire on germination ., ,, .. ,., 11 2.2 GERMINATION RESPONSES TO SMOKE., , '" ., , 16 2.2.1 The discovery of smoke as a germination cue, ,,., .. , , .. ,, 16 2.2.2 Studies on South African species. ,.,, .. , ,,,,., 17 2.2,3 Studies on Australian species "",., ,"," ".,." 20 2.2.4 StUdies on species from other regions. , ,,.,, 22 2.2.5 Responses of vegetable seeds ., .. ' .. , ,', , , 23 2.2.6 Responses of weed species .. ,,,.,, 24 2.2.7 General comments and considerations ., .. ,,, .. , .. ,,, 25 2.2.7.1 Concentration effects .. ,", ,., 25 2.2.7.2 Experimental considerations ,,,,,,, 26 2.2,7.3 Physiological and environmental effects ,,, .. ,, 27 2.2.8 The interaction of smoke and heat, ,, ,,,,,,, 29 \ 2.3 SOURCES OF SMOKE ., , .. , .. ,, .. ,., .. ,, 35 2.3,1 Chemical components of smoke ,, .. " ,, 35 iii Contents 2.3.2 Methods of smoke treatments 36 2.3.2.1 Aerosol smoke and smoked media .
    [Show full text]
  • Norrie's Plant Descriptions - Index of Common Names a Key to Finding Plants by Their Common Names (Note: Not All Plants in This Document Have Common Names Listed)
    UC Santa Cruz Arboretum & Botanic Garden Plant Descriptions A little help in finding what you’re looking for - basic information on some of the plants offered for sale in our nursery This guide contains descriptions of some of plants that have been offered for sale at the UC Santa Cruz Arboretum & Botanic Garden. This is an evolving document and may contain errors or omissions. New plants are added to inventory frequently. Many of those are not (yet) included in this collection. Please contact the Arboretum office with any questions or suggestions: [email protected] Contents copyright © 2019, 2020 UC Santa Cruz Arboretum & Botanic Gardens printed 27 February 2020 Norrie's Plant Descriptions - Index of common names A key to finding plants by their common names (Note: not all plants in this document have common names listed) Angel’s Trumpet Brown Boronia Brugmansia sp. Boronia megastigma Aster Boronia megastigma - Dark Maroon Flower Symphyotrichum chilense 'Purple Haze' Bull Banksia Australian Fuchsia Banksia grandis Correa reflexa Banksia grandis - compact coastal form Ball, everlasting, sago flower Bush Anemone Ozothamnus diosmifolius Carpenteria californica Ozothamnus diosmifolius - white flowers Carpenteria californica 'Elizabeth' Barrier Range Wattle California aster Acacia beckleri Corethrogyne filaginifolia - prostrate Bat Faced Cuphea California Fuchsia Cuphea llavea Epilobium 'Hummingbird Suite' Beach Strawberry Epilobium canum 'Silver Select' Fragaria chiloensis 'Aulon' California Pipe Vine Beard Tongue Aristolochia californica Penstemon 'Hidalgo' Cat Thyme Bird’s Nest Banksia Teucrium marum Banksia baxteri Catchfly Black Coral Pea Silene laciniata Kennedia nigricans Catmint Black Sage Nepeta × faassenii 'Blue Wonder' Salvia mellifera 'Terra Seca' Nepeta × faassenii 'Six Hills Giant' Black Sage Chilean Guava Salvia mellifera Ugni molinae Salvia mellifera 'Steve's' Chinquapin Blue Fanflower Chrysolepis chrysophylla var.
    [Show full text]
  • Plants for Windy, Sandy Gardens with Alkaline Soil
    Plants suited to Strandveld Gardens and Cape Flats Gardens, with windy, sandy conditions and alkaline (or acidic) soil. (plants that do well in alkaline soil will also grow in acidic soil, but plants that need acidic soil will not grow in alkaline soil) Plants listed are water-wise in the Western Cape, i.e. needing little or no additional water during summer, once established. Proteaceae Protea subulifolia Adenandra gummifera Diastella proteoides Protea susannae Adenandra obtusata Leucadendron coniferum Serruria adscendens Adenandra odoratissima Leucadendron flexuosum Serruria aemula Adenandra rotundifolia Leucadendron floridum Serruria brownii Agathosma ‘San Sebastian’ Leucadendron galpinii Serruria furcellata Agathosma apiculata Leucadendron laureolum Serruria glomerata Agathosma cerefolium Leucadendron laxum Serruria nervosa Agathosma ciliaris Leucadendron levisanus Serruria pinnata Agathosma collina Leucadendron linifolium Serruria trilopha Agathosma glabrata Leucadendron meridianum Agathosma gonaquensis Leucadendron modestum Ericaceae Agathosma imbricata Leucadendron salicifolium Erica abietina Agathosma ovata Leucadendron salignum Erica baueri Agathosma serpyllacea Leucadendron stellare Erica bolusiae Coleonema pulchellum Leucadendron stelligerum Erica caffra Diosma haelkraalensis Leucadendron thymifolium Erica calycina Diosma hirsuta Leucadendron verticillatum Erica capitata Euchaetis meridionalis Leucospermum ‘Thomson’s Erica cerinthoides Gift’ Erica coccinea Restios Leucospermum arenarium Erica corifolia Askidiosperma capitatum
    [Show full text]
  • The Potential of South African Indigenous Plants for the International Cut flower Trade ⁎ E.Y
    Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 934–946 www.elsevier.com/locate/sajb The potential of South African indigenous plants for the international cut flower trade ⁎ E.Y. Reinten a, J.H. Coetzee b, B.-E. van Wyk c, a Department of Agronomy, Stellenbosch University, Private Bag, Matieland 7606, South Africa b P.O. Box 2086, Dennesig 7601, South Africa c Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa Abstract A broad review is presented of recent developments in the commercialization of southern Africa indigenous flora for the cut flower trade, in- cluding potted flowers and foliages (“greens”). The botany, horticultural traits and potential for commercialization of several indigenous plants have been reported in several publications. The contribution of species indigenous and/or endemic to southern Africa in the development of cut flower crop plants is widely acknowledged. These include what is known in the trade as gladiolus, freesia, gerbera, ornithogalum, clivia, agapan- thus, strelitzia, plumbago and protea. Despite the wealth of South African flower bulb species, relatively few have become commercially important in the international bulb industry. Trade figures on the international markets also reflect the importance of a few species of southern African origin. The development of new research tools are contributing to the commercialization of South African plants, although propagation, cultivation and post-harvest handling need to be improved. A list of commercially relevant southern African cut flowers (including those used for fresh flowers, dried flowers, foliage and potted flowers) is presented, together with a subjective evaluation of several genera and species with perceived potential for the development of new crops for the florist trade.
    [Show full text]
  • Cape Town's Unique Biodiversity
    * Supplementary document to a series of 8 biodiversity fact sheets * Important taxa of the six endemic vegetation types 1. Cape Flats Sand Fynbos Tall Shrubs: Metalasia densa, Morella cordifolia, M. serrata, Passerina corymbosa, Protea burchellii, P. repens, Psoralea pinnata, Pterocelastrus tricuspidatus, Rhus lucida, Wiborgia obcordata. Low Shrubs: Diastella proteoides, Diosma hirsuta, Erica lasciva, E. muscosa, Phylica cephalantha, Senecio halimifolius, Serruria glomerata, Stoebe plumosa, Anthospermum aethiopicum, Aspalathus callosa, A. hispida, A. quinquefolia subsp. quinquefolia, A. sericea, A. spinosa subsp. spinosa, A. ternata, Berzelia abrotanoides, Chrysanthemoides incana, Cliffortia eriocephalina, C. juniperina, C. polygonifolia, Erica articularis, E. axillaris, E. capitata, E. corifolia, E. ferrea, E. imbricata, E. mammosa, E. plumosa, E. pulchella, Eriocephalus africanus var. africanus, Galenia africana, Gnidia spicata, Helichrysum cymosum, Leucadendron floridum, L. salignum, Leucospermum hypophyllocarpodendron subsp. canaliculatum, Metalasia adunca, M. pulchella, Morella quercifolia, Passerina ericoides, Pharnaceum lanatum, Phylica parviflora, Plecostachys polifolia, P. serpyllifolia, Polpoda capensis, Protea scolymocephala, Serruria fasciflora, S. trilopha, Staavia radiata, Stilbe albiflora, Stoebe cinerea, Syncarpha vestita, Trichocephalus stipularis. Succulent Shrub: Crassula flava. Herbs: Berkheya rigida, Conyza pinnatifida, Edmondia sesamoides, Helichrysum tinctum, Indigofera procumbens, Knowltonia vesicatoria. Geophytic
    [Show full text]
  • Proteas with Altitude Report 2017
    proteas With Altitude Annual report 2017 Robbie Blackhall-Miles and Ben Ram Abstract This report aims to show how the ‘proteas With Altitude’ project has progressed over the past 12 months. It is an opportunity to review the ongoing process of setting up the nursery site, analyse data gathered about the species grown and set aims for the year ahead. Background ‘proteas With Altitude’ is an ongoing research project studying the horticulture of Proteaceae in the UK. In 2015, an initial expedition was undertaken to study in-situ plants and collect seeds of Proteaceae, growing at high altitude, in the Western Cape of South Africa. One hundred and fifteen separate observations covering fifty-five distinct species were made, of which thirty species were collected as seed. A further collecting trip was made during December 2017 which will be discussed as part of this report. A full report detailing progress up to the beginning of 2017 can be found in the 2016 annual report. Nursery Infrastructure During 2017 several essential pieces of infrastructure were invested in for the nursery. These include the installation of an electricity supply to the nursery which in turn has allowed the installation of a weather station at the site. Fans have also been installed inside the Keder greenhouse to increase air circulation and reduce instances of disease. Winning the RHS Bursaries report prize during 2015 allowed investment in a Dew-point propagator which will enable propagation of plants more efficiently from cuttings, this is particularly important for species with just a single individual in the collection and will give increased security in the form of back up plants in the event of disease or death of these individuals.
    [Show full text]