Acoustic Resonance in a High-Speed Axial Compressor

Total Page:16

File Type:pdf, Size:1020Kb

Acoustic Resonance in a High-Speed Axial Compressor ACOUSTIC RESONANCE IN A HIGH -SPEED AXIAL COMPRESSOR ACOUSTIC RESONANCE IN A HIGH- SPEED AXIAL COMPRESSOR Der Fakultät für Maschinenbau der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Phys. Bernd Hellmich geboren am 23.11.1970 in Rahden/Westfalen, Deutschland 2008 I ACOUSTIC RESONANCE IN A HIGH -SPEED AXIAL COMPRESSOR Referent: Prof. Dr.-Ing. Jörg Seume Korreferent: Prof. Dr.-Ing. Wolfgang Neise Vorsitzender: Prof. Dr.-Ing. Peter Nyhuis Tag der Promotion: 12.11.2007 II ACOUSTIC RESONANCE IN A HIGH -SPEED AXIAL COMPRESSOR „Das Chaos ist aufgebraucht, es war die beste Zeit“ B. Brecht Für Bettina III ACOUSTIC RESONANCE IN A HIGH -SPEED AXIAL COMPRESSOR IV ACOUSTIC RESONANCE IN A HIGH -SPEED AXIAL COMPRESSOR 1. Abstract 1. Abstract Non-harmonic acoustic resonance was detected in the static pressure and sound signals in a four-stage high-speed axial compressor when the compressor was operating close to the surge limit. The amplitudes of the resonant acoustic mode are in a range comparable to the normally dominating blade passing frequency. This has led to blade cracks in the inlet guided vanes of the compressor where the normal mechanical and aerodynamic load is low. The present measurements were obtained with a dynamic four-hole pneumatic probe and an array of dynamic pressure transducers in the compressor casing. For signal decomposition and analysis of signal components with high signal-to-noise ratio, estimator functions such as Auto Power Spectral Density and Cross Power Spectral Density were used. Based on measurements of the resonance frequency and the axial and circumferential phase shift of the pressure signal during resonance, it is shown that the acoustic resonance is an axial standing wave of a spinning acoustic mode with three periods around the circumference of the compressor. This phenomenon occurs only if the aerodynamic load in the compressor is high, because the mode needs a relative low axial Mach number at a high rotor speed for resonance conditions. The low Mach number is needed to fit the axial wave length of the acoustic mode to the axial spacing of the rotors in the compressor. The high rotor speed is needed to satisfy the reflection conditions at the rotor blades needed for the acoustic resonance. The present work provides suitable, physically based simplifications of the existing mathematical models which are applicable for modes with circumferential wavelengths of more than two blade pitches and resonance frequencies considerably higher than the rotor speed. The reflection and transmission of the acoustic waves at the blade rows is treated with a qualitative model. Reflection and transmission coefficients are calculated for certain angles of attack only, but qualitative results are shown for the modes of interest. Behind the rotor rows the transmission is high while in front of the rotor rows the reflection is dominating. Because the modes are trapped in each stage of the compressor by the rotor rows acoustic resonance like this could appear in multi stage axial machines only. Different actions taken on the compressor to shift the stability limit to lower mass flow like dihedral blades and air injection at the rotor tips did not succeed. Hence, it is assumed that the acoustic resonance is dominating the inception of rotating stall at high rotor speeds. A modal wave as rotating stall pre cursor was detected with a frequency related to the acoustic resonance frequency. In addition the acoustic resonance is modulated in amplitude by this modal wave. The acoustic waves are propagating nearly perpendicular to the mean flow, so that they are causing temporally an extra incidence of the mean flow on the highly loaded blades, but it could not be proved if this triggers the stall. A positive effect of the acoustic resonance on the stability limit due to the stabilization of the boundary layers on the blades by the acoustic field is also not excluded. Keywords: acoustic resonance, axial compressor, rotating stall V ACOUSTIC RESONANCE IN A HIGH -SPEED AXIAL COMPRESSOR 1. Abstract Kurzfassung Nicht drehzahlharmonische akustische Resonanzen sind in den statischen Drucksignalen in einem vierstufigen Hochgeschwindigkeitsaxialverdichter gemessen worden, als dieser nahe der Pumpgrenze betrieben worden ist. Die Amplituden der resonanten Moden lagen in derselben Größenordnung wie die Schaufelpassier- frequenz. Das führte zu Rissen in den Schaufeln im Vorleitapparat des Kompressors, wo die normale mechanisch und aerodynamisch Belastung niedrig ist. Die vorliegenden Messungen sind mit einer dynamischen Vierloch-Sonde und einem Feld von dynamischen Drucksensoren im Kompressorgehäuse durchgeführt worden. Zur Signalzerlegung und Analyse mit hohem Signal zu Rauschverhältnis sind Schätzfunktionen wie Autospektrale Leistungsdichte und Kreuzspektrale Leistungsdichte verwendet worden. Aufgrund von Messungen der Resonanzfrequenz sowie des axialen und peripheren Phasenversatzes der Drucksignale unter resonanten Bedingungen ist gezeigt worden, dass die akustische Resonanz in axialer Richtung eine stehende Welle ist mit drei Perioden um den Umfang. Das Phänomen tritt nur auf, wenn die aerodynamische Belastung des Kompressors hoch ist, da die Resonanzbedingungen für die Mode eine niedrige axiale Machzahl bei hoher Rotordrehzahl erfordern. Die relativ niedrige axiale Machzahl ist nötig, damit die axiale Wellenlänge zum axialen Abstand der Rotoren passt. Die hohe Drehzahl ist notwendig, um die Reflektionsbedingungen an den Rotorschaufeln zu erfüllen. Die vorliegende Arbeit verwendet physikalisch basierte Vereinfachungen von existierenden Modellen, die anwendbar sind auf Moden mit einer Wellenlänge in Umfangsrichtung, die größer als zwei Schaufelteilungen sind und eine Resonanzfrequenz haben, die über der Rotordrehzahl liegt. Die Reflektion und Transmission von akustischen Wellen ist mit einem qualitativen Modell behandelt worden. Die Reflektions- und Transmissionskoeffizienten sind nur für bestimmte Einfallswinkel berechnet worden, aber die Ergebnisse zeigen, dass für die relevanten Moden die Transmission hinter den Rotoren hoch ist während vor den Rotoren die Reflexion dominiert. Weil die Moden zwischen den Rotoren eingeschlossen sind, können akustische Resonanzen wie diese nur in mehrstufigen Axialmaschinen auftreten. Verschiedene Maßnahmen, die an dem Kompressor durchgeführt worden sind, wie dreidimensionale Schaufelgeometrien oder Einblasung an den Rotorspitzen, haben zu keiner Verschiebung der Stabilitätsgrenze zu niedrigeren Massenströmen geführt. Deshalb wird angenommen, dass die akustische Resonanz die Entstehung einer rotierenden Ablösung (Rotating Stall) herbeiführt. Eine Modalwelle als Vorzeichen für den Rotating Stall ist gemessen worden, dessen Frequenz ein ganzzahliger Bruchteil der Frequenz der akustischen Resonanz ist. Außerdem ist die Amplitude der akustischen Resonanz von der Modalwelle moduliert. Die akustischen Wellen laufen nahezu senkrecht zur Strömungsrichtung, so dass sie kurzzeitig eine zusätzliche Fehlanströmung der hoch belasteten Schaufeln verursachen, aber es konnte nicht bewiesen werden, dass dies die Ablösung auslöst. Ein positiver Einfluss der akustischen Resonanz auf die Stabilität des Verdichters durch die Stabilisierung der Grenzschichten auf den Verdichterschaufeln ist ebenso nicht ausgeschlossen. Schlagwörter: Akustische Resonanz, Axialverdichter, Rotierende Ablösung VI ACOUSTIC RESONANCE IN A HIGH -SPEED AXIAL COMPRESSOR 2. Contents 2. Contents 1. Abstract...................................................................................................................V 2. Contents................................................................................................................VII 3. Nomenclature ........................................................................................................IX 4. Introduction ............................................................................................................ 1 4.1. Compressors...................................................................................................... 1 4.2. Flow distortions in compressors ......................................................................... 3 5. Literature Review ................................................................................................... 5 6. Test facility.............................................................................................................. 8 6.1. The test rig ......................................................................................................... 8 6.2. Sensors, Signal Conditioning and Data Acquisition.......................................... 10 7. Signal processing methods ................................................................................ 12 7.1. Auto Power Spectral Density (APSD)............................................................... 12 7.2. APSD estimation by periodogram averaging method....................................... 13 7.3. Cross power spectral density (CPSD), phase, and coherence......................... 15 7.4. Coherent transfer functions.............................................................................. 17 7.5. Statistical Errors of coherence, power and phase spectra ............................... 18 7.6. Spectral leakage............................................................................................... 20 8. The Phenomenon ................................................................................................
Recommended publications
  • Acoustic Resonance Lab 1 Introduction 2 Sound Generation
    Summer Music Technology 2013 Acoustic Resonance Lab 1 Introduction This activity introduces several concepts that are fundamental to understanding how sound is produced in musical instruments. We'll be measuring audio produced from acoustic tubes. General Notes • Work in groups of 2 or 3 • Divide up the tasks amongst your group members so everyone contributes Equipment Check Make sure you have the following: • (2) iPads • (1) Microphone • (1) Tape Measure • (1) Adjustable PVC tube with speaker • (1) Amplifier • (1) RCA to 1/8" audio cable • (1) iRig Pre-Amp • (2) Pieces of speaker wire • (1) XLR cable • (1) Pair of Alligator clips 2 Sound Generation Setup We will use one iPad to generate tones that will play through our tube. However, the iPad can't provide enough power to drive the speaker, so we need to connect it to an amplifier. From here on, we'll refer to this iPad as the Synthesizer. 1. Plug the Amplifier’s power cord into an outlet. DO NOT TURN IT ON. 2. Plug one end of the 1/8" audio cable to the iPad's headphone output jack. Plug the other end into the Amplifier’s Input jack. 3. Attach the alligator clips to the speaker wires on the Amplifier’s Output jack. Attach the other end of the clips to the speaker terminals (the speaker should be mounted to the tube). MET-lab 1 Drexel University Summer Music Technology 2013 3 Sound Analysis Setup In order to measure the audio, we need to record audio from a microphone. The other iPad will be used to record sound.
    [Show full text]
  • Nuclear Acoustic Resonance Investigations of the Longitudinal and Transverse Electron-Lattice Interaction in Transition Metals and Alloys V
    NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer To cite this version: V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer. NUCLEAR ACOUSTIC RESONANCE INVES- TIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERAC- TION IN TRANSITION METALS AND ALLOYS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-389-C6-391. 10.1051/jphyscol:19816113. jpa-00221175 HAL Id: jpa-00221175 https://hal.archives-ouvertes.fr/jpa-00221175 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE CoZZoque C6, suppZe'ment au no 22, Tome 42, de'cembre 1981 page C6-389 NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Miiller, G. Schanz, E.-J. Unterhorst and D. Maurer &eie Universit8G Berlin, Fachbereich Physik, Kiinigin-Luise-Str.28-30, 0-1000 Berlin 33, Gemany Abstract.- In metals the conduction electrons contribute significantly to the acoustic-wave-induced electric-field-gradient-tensor (DEFG) at the nuclear positions. Since nuclear electric quadrupole coupling to the DEFG is sensi- tive to acoustic shear modes only, nuclear acoustic resonance (NAR) is a par- ticularly useful tool in studying the coup1 ing of electrons to shear modes without being affected by volume dilatations.
    [Show full text]
  • THE SPECIAL RELATIONSHIP BETWEEN SOUND and LIGHT, with IMPLICATIONS for SOUND and LIGHT THERAPY John Stuart Reid ABSTRACT
    Theoretical THE SPECIAL RELATIONSHIP BETWEEN SOUND AND LIGHT, WITH IMPLICATIONS FOR SOUND AND LIGHT THERAPY John Stuart Reid ABSTRACT In this paper we explore the nature of sound and light and the special relationship that exists between these two seemingly unrelated forms of energy. The terms 'sound waves' and 'electromagnetic waves' are examined. These commonly used expressions, it is held, misrepresent science and may have delayed new discoveries. A hypothetical model is proposed for the mechanism that creaIL'S electromagnetism. named "Sonic Propagation of Electromagnetic Energy Components" (SPEEC). The SPEEC hypothesis states that all sounds have an electromagnetic component and that all electromagnetism is created as a consequence of sound. SPEEC also predicts that the electromagnetism created by sound propagation through air will be modulated by the same sound periodicities that created the electromagnetism. The implications for SPEEC are discussed within the context of therapeutic sound and light. KEYWORDS: Sound, Light, SPEEC, Sound and Light Therapy Subtle Energies &- Energy Medicine • Volume 17 • Number 3 • Page 215 THE NATURE OF SOUND ound traveling through air may be defined as the transfer of periodic vibrations between colliding atoms or molecules. This energetic S phenomenon typically expands away from the epicenter of the sound event as a bubble-shaped emanation. As the sound bubble rapidly increases in diameter its surface is in a state of radial oscillation. These periodic movements follow the same expansions and contractions as the air bubble surrounding the initiating sound event. DE IUPlIUlIEPIESEITInU IF ..... mBIY II m DE TEll '..... "'EI' II lIED, WIIIH DE FAlSE 111101111 DAT ..... IUYEIJ AS I lAVE.
    [Show full text]
  • A Comparison of Viola Strings with Harmonic Frequency Analysis
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research, Creative Activity, and Performance - School of Music Music, School of 5-2011 A Comparison of Viola Strings with Harmonic Frequency Analysis Jonathan Paul Crosmer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/musicstudent Part of the Music Commons Crosmer, Jonathan Paul, "A Comparison of Viola Strings with Harmonic Frequency Analysis" (2011). Student Research, Creative Activity, and Performance - School of Music. 33. https://digitalcommons.unl.edu/musicstudent/33 This Article is brought to you for free and open access by the Music, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research, Creative Activity, and Performance - School of Music by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS by Jonathan P. Crosmer A DOCTORAL DOCUMENT Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Musical Arts Major: Music Under the Supervision of Professor Clark E. Potter Lincoln, Nebraska May, 2011 A COMPARISON OF VIOLA STRINGS WITH HARMONIC FREQUENCY ANALYSIS Jonathan P. Crosmer, D.M.A. University of Nebraska, 2011 Adviser: Clark E. Potter Many brands of viola strings are available today. Different materials used result in varying timbres. This study compares 12 popular brands of strings. Each set of strings was tested and recorded on four violas. We allowed two weeks after installation for each string set to settle, and we were careful to control as many factors as possible in the recording process.
    [Show full text]
  • Musical Acoustics - Wikipedia, the Free Encyclopedia 11/07/13 17:28 Musical Acoustics from Wikipedia, the Free Encyclopedia
    Musical acoustics - Wikipedia, the free encyclopedia 11/07/13 17:28 Musical acoustics From Wikipedia, the free encyclopedia Musical acoustics or music acoustics is the branch of acoustics concerned with researching and describing the physics of music – how sounds employed as music work. Examples of areas of study are the function of musical instruments, the human voice (the physics of speech and singing), computer analysis of melody, and in the clinical use of music in music therapy. Contents 1 Methods and fields of study 2 Physical aspects 3 Subjective aspects 4 Pitch ranges of musical instruments 5 Harmonics, partials, and overtones 6 Harmonics and non-linearities 7 Harmony 8 Scales 9 See also 10 External links Methods and fields of study Frequency range of music Frequency analysis Computer analysis of musical structure Synthesis of musical sounds Music cognition, based on physics (also known as psychoacoustics) Physical aspects Whenever two different pitches are played at the same time, their sound waves interact with each other – the highs and lows in the air pressure reinforce each other to produce a different sound wave. As a result, any given sound wave which is more complicated than a sine wave can be modelled by many different sine waves of the appropriate frequencies and amplitudes (a frequency spectrum). In humans the hearing apparatus (composed of the ears and brain) can usually isolate these tones and hear them distinctly. When two or more tones are played at once, a variation of air pressure at the ear "contains" the pitches of each, and the ear and/or brain isolate and decode them into distinct tones.
    [Show full text]
  • Acoustic Resonance Between Ground and Thermosphere
    Data Science Journal, Volume 8, 30 March 2009 ACOUSTIC RESONANCE BETWEEN GROUND AND THERMOSPHERE 1 1 2 3 1 1 4 Matsumura, M., * Iyemori, T., Tanaka, Y., Han, D., Nose, M., Utsugi, M., Oshiman, N., 5 1 6 Shinagawa, H., Odagi, Y. and Tabata, Y. *1 Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan E-mail: [email protected] 2 Faculty of Engineering, Setsunan University, Neyagawa 572-8508, Japan 3 Polar Research Institute of China, Pudong, Jinqiao Road 451, Shanghai 200136, China 4 Disaster Prevention Research Institute, Kyoto University, Uji 611-0011, Japan 5 National Institute of Information and Communications Technology, Koganei 184-8795, Japan 6Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan ABSTRACT Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data.
    [Show full text]
  • Musical Acoustics Timbre / Tone Quality I
    Musical Acoustics Lecture 13 Timbre / Tone quality I Musical Acoustics, C. Bertulani 1 Waves: review distance x (m) At a given time t: y = A sin(2πx/λ) A time t (s) -A At a given position x: y = A sin(2πt/T) Musical Acoustics, C. Bertulani 2 Perfect Tuning Fork: Pure Tone • As the tuning fork vibrates, a succession of compressions and rarefactions spread out from the fork • A harmonic (sinusoidal) curve can be used to represent the longitudinal wave • Crests correspond to compressions and troughs to rarefactions • only one single harmonic (pure tone) is needed to describe the wave Musical Acoustics, C. Bertulani 3 Phase δ $ x ' % x ( y = Asin& 2π ) y = Asin' 2π + δ* % λ( & λ ) Musical Acoustics, C. Bertulani 4 € € Adding waves: Beats Superposition of 2 waves with slightly different frequency The amplitude changes as a function of time, so the intensity of sound changes as a function of time. The beat frequency (number of intensity maxima/minima per second): fbeat = |fa-fb| Musical Acoustics, C. Bertulani 5 The perceived frequency is the average of the two frequencies: f + f f = 1 2 perceived 2 The beat frequency (rate of the throbbing) is the difference€ of the two frequencies: fbeats = f1 − f 2 € Musical Acoustics, C. Bertulani 6 Factors Affecting Timbre 1. Amplitudes of harmonics 2. Transients (A sudden and brief fluctuation in a sound. The sound of a crack on a record, for example.) 3. Inharmonicities 4. Formants 5. Vibrato 6. Chorus Effect Two or more sounds are said to be in unison when they are at the same pitch, although often an OCTAVE may exist between them.
    [Show full text]
  • Sine Waves and Simple Acoustic Phenomena in Experimental Music - with Special Reference to the Work of La Monte Young and Alvin Lucier
    Sine Waves and Simple Acoustic Phenomena in Experimental Music - with Special Reference to the Work of La Monte Young and Alvin Lucier Peter John Blamey Doctor of Philosophy University of Western Sydney 2008 Acknowledgements I would like to thank my principal supervisor Dr Chris Fleming for his generosity, guidance, good humour and invaluable assistance in researching and writing this thesis (and also for his willingness to participate in productive digressions on just about any subject). I would also like to thank the other members of my supervisory panel - Dr Caleb Kelly and Professor Julian Knowles - for all of their encouragement and advice. Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. .......................................................... (Signature) Table of Contents Abstract..................................................................................................................iii Introduction: Simple sounds, simple shapes, complex notions.............................1 Signs of sines....................................................................................................................4 Acoustics, aesthetics, and transduction........................................................................6 The acoustic and the auditory......................................................................................10
    [Show full text]
  • Harmonic Template Neurons in Primate Auditory Cortex Underlying Complex Sound Processing
    Harmonic template neurons in primate auditory cortex underlying complex sound processing Lei Fenga,1 and Xiaoqin Wanga,2 aLaboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Edited by Dale Purves, Duke University, Durham, NC, and approved December 7, 2016 (received for review May 10, 2016) Harmonicity is a fundamental element of music, speech, and animal role in harmonic integration in processing complex sounds. Pa- vocalizations. How the auditory system extracts harmonic structures tients with unilateral temporal lobe excision showed poorer embedded in complex sounds and uses them to form a coherent performance in a missing fundamental pitch perception task than unitary entity is not fully understood. Despite the prevalence of normal listeners but performed as normal in the task when the f0 sounds rich in harmonic structures in our everyday hearing envi- was presented (21). Auditory cortex lesions could impair complex ronment, it has remained largely unknown what neural mechanisms sound discrimination, such as animal vocalizations, and vowel-like are used by the primate auditory cortex to extract these biologically sounds without affecting responses to relative simple stimuli, like important acoustic structures. In this study, we discovered a unique pure tones (22–24). class of harmonic template neurons in the core region of auditory Primate auditory cortex is subdivided into a “core” region, cortex of a highly vocal New World primate, the common marmoset consisting of A1 and the neighboring primary-like rostral (R) and (Callithrix jacchus), across the entire hearing frequency range. Mar- rostral–temporal areas, surrounded by a belt region, which contains mosets have a rich vocal repertoire and a similar hearing range to multiple distinct secondary fields (Fig.
    [Show full text]
  • Lecture 38 Quantum Theory of Light
    Lecture 38 Quantum Theory of Light 38.1 Quantum Theory of Light 38.1.1 Historical Background Quantum theory is a major intellectual achievement of the twentieth century, even though we are still discovering new knowledge in it. Several major experimental findings led to the revelation of quantum theory or quantum mechanics of nature. In nature, we know that many things are not infinitely divisible. Matter is not infinitely divisible as vindicated by the atomic theory of John Dalton (1766-1844) [221]. So fluid is not infinitely divisible: as when water is divided into smaller pieces, we will eventually arrive at water molecule, H2O, which is the fundamental building block of water. In turns out that electromagnetic energy is not infinitely divisible either. The electromag- netic radiation out of a heated cavity would obey a very different spectrum if electromagnetic energy is infinitely divisible. In order to fit experimental observation of radiation from a heated electromagnetic cavity, Max Planck (1900s) [222] proposed that electromagnetic en- ergy comes in packets or is quantized. Each packet of energy or a quantum of energy E is associated with the frequency of electromagnetic wave, namely E = ~! = ~2πf = hf (38.1.1) where ~ is now known as the Planck constant and ~ = h=2π = 6:626 × 10−34 J·s (Joule- second). Since ~ is very small, this packet of energy is very small unless ! is large. So it is no surprise that the quantization of electromagnetic field is first associated with light, a very high frequency electromagnetic radiation. A red-light photon at a wavelength of 700 −19 nm corresponds to an energy of approximately 2 eV ≈ 3 × 10 J ≈ 75 kBT , where kBT denotes the thermal energy.
    [Show full text]
  • Psychoacoustic Foundations of Contextual Harmonic Stability in Jazz Piano Voicings
    Journal of Jazz Studies vol. 7, no. 2, pp. 156–191 (Fall 2011) Psychoacoustic Foundations Of Contextual Harmonic Stability In Jazz Piano Voicings James McGowan Considerable harmonic variation of both chord types and specific voicings is available to the jazz pianist, even when playing stable, tonic-functioned chords. Of course non-tonic chords also accommodate extensive harmonic variety, but they generally cannot provide structural stability beyond the musical surface. Many instances of tonic chords, however, also provide little or no sense of structural repose when found in the middle of a phrase or subjected to some other kind of “dissonance.” The inclusion of the word “stable” is therefore important, because while many sources are implicitly aware of the fundamental differences between stable and unstable chords, little significant work explicitly accounts for an impro- vising pianist’s harmonic options as associated specifically with harmonic stability— or harmonic “consonance”—in tonal jazz. The ramifications are profound, as the very question of what constitutes a stable tonic sonority in jazz suggests that underlying precepts of tonality function differ- ently in improvised jazz and common-practice music. While some jazz pedagogical publications attempt to account for the diverse chord types and specific voicings employed as tonic chords, these sources have not provided a distinct conceptual framework that explains what criteria link these harmonic options. Some music theorists, meanwhile, have provided valuable analytical models to account for the sense of resolution to stable harmonic entities. These models, however, are largely designed for “classical” music and are problematic in that they tend to explain pervasive non-triadic harmonies as aberrant in some way.1 1 Representative sources that address “classical” models of jazz harmony include Steve Larson, Analyzing Jazz: A Schenkerian Approach, Harmonologia: studies in music theory, no.
    [Show full text]
  • Thomas Young and Eighteenth-Century Tempi Peter Pesic St
    Performance Practice Review Volume 18 | Number 1 Article 2 Thomas Young and Eighteenth-Century Tempi Peter Pesic St. John's College, Santa Fe, New Mexico Follow this and additional works at: http://scholarship.claremont.edu/ppr Pesic, Peter (2013) "Thomas Young and Eighteenth-Century Tempi," Performance Practice Review: Vol. 18: No. 1, Article 2. DOI: 10.5642/perfpr.201318.01.02 Available at: http://scholarship.claremont.edu/ppr/vol18/iss1/2 This Article is brought to you for free and open access by the Journals at Claremont at Scholarship @ Claremont. It has been accepted for inclusion in Performance Practice Review by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Thomas Young and Eighteenth-Century Tempi Dedicated to the memory of Ralph Berkowitz (1910–2011), a great pianist, teacher, and master of tempo. The uthora would like to thank the John Simon Guggenheim Memorial Foundation for its support as well as Alexei Pesic for kindly photographing a rare copy of Crotch’s Specimens of Various Styles of Music. This article is available in Performance Practice Review: http://scholarship.claremont.edu/ppr/vol18/iss1/2 Thomas Young and Eighteenth-Century Tempi Peter Pesic In trying to determine musical tempi, we often lack exact and authoritative sources, especially from the eighteenth century, before composers began to indicate metronome markings. Accordingly, any independent accounts are of great value, such as were collected in Ralph Kirkpatrick’s pioneering article (1938) and most recently sur- veyed in this journal by Beverly Jerold (2012).1 This paper brings forward a new source in the writings of the English polymath Thomas Young (1773–1829), which has been overlooked by musicologists because its author’s best-known work was in other fields.
    [Show full text]