Download Author Version (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Download Author Version (PDF) RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 27 RSC Advances The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in an SBR S.T. Wang*a, S.P. Li b, W.Q. Wang a and H. You c (a State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; b Environmental Monitoring Station of Guangzhou Military Region, Guangzhou 510517, P.R. China; c School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China) Manuscript *Corresponding author: S.T. Wang S.T. Wang (Shutao Wang): E-Mail: [email protected] Address: School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73, Huanghe Rd., Nangang Dist., Harbin 150090, China Accepted S.P. L (Suping Li): E-Mail: [email protected] Address: Environmental Monitoring Station of Guangzhou Military Region, Guangzhou 510517, P.R. China W.Q. Wang (Weiqing Wang): E-Mail: [email protected] Advances Address: School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73, Huanghe Rd., Nangang Dist., Harbin 150090, China H. You (Hong You): RSC E-Mail: [email protected] Address: School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China RSC Advances Page 2 of 27 1 The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in 2 an SBR 3 S.T. Wang,*a S.P. Li b , W.Q. Wang a and H. You c 4 Zinc oxide(ZnO) nanoparticles (NPs) have been reported to induce adverse effects on organisms. The 5 impacts of ZnO NPs on nitrification and the nitrobacteria community in activated sludge were investigated 6 in a simulated SBR. It revealed that ZnO NPs at low concentrations (5 and 10 mg/L) slightly inhibited 7 nitrification. At these concentrations the activity of ammonia monooxygenase (AMO) and nitrite 8 oxidoreductase (NOR) as well as the cell membrane integrity of nitrosomonas europaea were almost 9 unaffected. Concentrations of 20 mg/L and 50 mg/L ZnO NPs had significantly adverse effects on the Manuscript + - - - 10 activity of AMO and NOR and on the transformation of NH 4 -N to NO 2 -N and NO 2 -N to NO 3 -N. Analysis by 11 denaturing gradient gel electrophoresis (DGGE) revealed that higher concentrations of ZnO NPs significantly 12 inhibited the growth of the typical ammonia-oxidizing bacteria (AOB) that were mainly responsible for 13 oxidation of ammonia to nitrate. Moderate concentrations of ZnO NPs could accelerate the growth of some Accepted 14 types of denitrifying bacteria and promote the growth of some pathogenic bacteria. Moderate and high 15 concentrations of ZnO NPs could obviously destroy the integrity of the cell membrane of Nitrosomonas 16 europaea . These findings meaningfully assessed the adverse effects of ZnO NPs on activated sludge in 17 wastewater treatment. Advances 18 1. Introduction 19 The development and application of nanotechnology have raised significant concerns about the adverse RSC 20 effects of nanoparticles (NPs) on human health and the environment.1 NPs can be more toxic than larger 21 particles of the same composition because of their large specific surface area and unique size-effect.2,3 22 Many studies were thus conducted to predict their environmental concentrations and investigate the 23 behavior of NPs in the environment.4,5,6 The increasing utilization of products containing NPs, however, was 2 Page 3 of 27 RSC Advances 24 observed to result in the release of NPs into wastewater treatment plants (WWTPs).7,8,9 Large amounts of 25 zinc oxide nanoparticles (ZnO NPs) have been used in semiconductors, plastic additives, pigments and 26 cosmetics.10 A recent study confirmed that ZnO NPs were present in sewage sludge and effluents. 27 According to the report issued by the USEPA in 2009, an examination of 84 WWTPs showed that the zinc 28 content in WWTP biosolids was 8.55 g/kg-SS.11 The investigations in China in 2011 (139 WWTPs in total) 29 and in 2009 (107 WWTPs in total) showed that the average concentration of Zn in biosolids was 1.03 30 g/kg-SS and that the maximum concentration was 9.14 g/kg-SS.12,13,14 Concerns can therefore be raised 31 about whether the NPs in WWTPs have negative impacts on the microbial community in activated sludge, 32 which may eventually hamper the function of WWTPs in removing pollutants from wastewater, such as Manuscript 33 chemical oxygen demand (COD), nitrogen and phosphorous. 34 Recently, studies have started to address this issue. Zheng et al. 15 reported that the presence of 10 and 50 35 mg/L of ZnO NPs decreased the total nitrogen removal efficiencies from 81.5% to 75.6% and 70.8%, 36 respectively, compared with the absence of ZnO NPs. Additionally, several other publications indicated that Accepted 37 different NPs and exposure times showed different effects on biological nitrogen removal. For instance, 15 38 Zheng et al. reported that 1 mg/L of SiO 2 NPs caused no adverse acute and chronic effects on sludge 39 viability and wastewater nitrogen removal, while chronic exposure to 50 mg/L SiO 2 NPs depressed the total 40 nitrogen (TN) removal efficiency from 79.6% to 51.6% after a 70-day exposure. Chen et al. 16 found that Advances 41 short-term exposure to 1 and 50 mg/L Al 2O3 NPs induced only marginal influences on wastewater 42 nitrification and denitrification. Nevertheless, prolonged exposure to 50 mg/L Al 2O3 NPs was observed to RSC 43 decrease the TN removal efficiency from 80.4% to 62.5%. Ni et al. 17 found that the short-term presence of 44 50-200 mg/L of NPs decreased the TN removal efficiency resulting from the acute toxicity of a shock load of 45 magnetic NPs, while long-term exposure to 50 mg/L magnetic NPs was observed to significantly improve 7 46 the TN removal efficiency. Zheng et al. found that concentrations of 1 and 50 mg/L TiO 2 NPs had no acute 3 RSC Advances Page 4 of 27 47 effects on nitrogen removal from wastewater after a short-term exposure (1 day), while 50 mg/L TiO 2 NPs 48 (higher than its environmentally relevant concentration) was observed to significantly decrease the TN 49 removal efficiency from 80.3% to 24.4% after long-term exposure (70 days). Li et al. 18 found that 2-50 mg/L 50 of TiO 2 NPs did not adversely affect nitrogen removal, but when the activated sludge was exposed to 51 100-200 mg/L of TiO 2 NPs, the effluent TN removal efficiencies were 36.5% and 20.3%, respectively, which 52 were markedly lower than the values observed in the control test (80%). Most of the above studies 53 demonstrated that NPs hampered the function of the WWTP in removing nitrogen from wastewater. 54 However,it is still not well known how ZnO NPs affect nitrification in activated sludge and which step of 55 nitrification is more sensitive to ZnO NPs. Manuscript 56 As is well known, the biological removal of nitrogen in wastewater is achieved by complex microbial 57 populations that are responsible for nitrification and denitrification.7,19,20 Therefore, the diversity of the 58 microbial populations and a stable bacterial community structure both play important roles in achieving a 59 high efficiency of biological nitrogen removal. Previous publications noted that silver NPs could cause a 50% Accepted 60 inhibition of the respiration of nitrifying bacteria at a concentration of 0.14 mg/L, 21 whereas Cu NPs 22 61 showed no inhibitory effect on the respiration of ammonia-oxidizing bacteria at the level of 10 mg/L . 16 62 Chen et al. indicated that, compared with the control, 50 mg/L Al 2O3 NPs decreased the abundance of 63 denitrifying bacteria in activated sludge according to quantitative polymerase chain reaction (PCR) assays. Advances 64 Ni et al. 17 reported that a short-term exposure to 50 mg/L magnetic NPs led to the abatement of nitrifying 65 bacteria according to fluorescence in situ hybridization (FISH) assays. According to Zheng et al. 7, denaturing RSC 66 gradient gel electrophoresis (DGGE) profiles showed that 50 mg/L TiO 2 NPs clearly reduced the diversity of 67 the microbial community in activated sludge, and FISH analysis indicated that the abundance of nitrifying 68 bacteria, especially ammonia-oxidizing bacteria, was significantly decreased after long-term exposure to 50 18 69 mg/L TiO 2 NPs. Similarly, according to Li et al., the DGGE profiles showed that 200 mg/L of TiO 2 NPs 4 Page 5 of 27 RSC Advances 70 significantly reduced the microbial diversity in the activated sludge.
Recommended publications
  • Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-Oxidizing Microorganisms Naturally Associated with Wetland Plant Roots
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2015 Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-oxidizing Microorganisms Naturally Associated with Wetland Plant Roots Ke Qin Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Environmental Sciences Commons Repository Citation Qin, Ke, "Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-oxidizing Microorganisms Naturally Associated with Wetland Plant Roots" (2015). Browse all Theses and Dissertations. 1430. https://corescholar.libraries.wright.edu/etd_all/1430 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. COMETABOLIC BIODEGRADATION OF HALOGENATED ALIPHATIC HYDROCARBONS BY AMMONIA-OXIDIZING MICROORGANISMS NATURALLY ASSOCIATED WITH WETLAND PLANT ROOTS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By KE QIN MRes., University of York, 2008 2014 Wright State University i COPYRIGHT BY KE QIN 2014 ii WRIGHT STATE UNIVERSITY GRADUATE SCHOOL JANUARY 12, 2015 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Ke Qin ENTITLED Cometabolic Biodegradation of Halogenated Aliphatic Hydrocarbons by Ammonia-Oxidizing Microorganisms Naturally Associated with Wetland Plant Roots BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. ________________________________ Abinash Agrawal, Ph.D. Dissertation Director ________________________________ Donald Cipollini, Ph.D. Director, ES Ph.D. Program ________________________________ Committee on Robert E.W.
    [Show full text]
  • General Introduction
    Physiological Characteristics and Genomic Properties of Nitrosomonas mobilis Isolated from Nitrifying Granule of Wastewater Treatment Bioreactor December 2016 Soe Myat Thandar ソー ミャット サンダー Physiological Characteristics and Genomic Properties of Nitrosomonas mobilis Isolated from Nitrifying Granule of Wastewater Treatment Bioreactor December 2016 Waseda University Graduate School of Advanced Science and Engineering Department of Life Science and Medical Bioscience Research on Environmental Biotechnology Soe Myat Thandar ソー ミャット サンダー Contents Abbreviations ................................................................................................................... i Chapter 1-General introduction .................................................................................... 1 1.1. Nitrification and wastewater treatment system .......................................................... 3 1.2. Important of Nitrosomonas mobilis ........................................................................... 8 1.3. Objectives and outlines of this study ....................................................................... 12 1.4. Reference.................................................................................................................. 12 Chapter 2- Physiological characteristics of Nitrosomonas mobilis Ms1 ................... 17 2.1. Introduction .............................................................................................................. 19 2.2. Material and methods ..............................................................................................
    [Show full text]
  • Indications for Enzymatic Denitriication to N2O at Low Ph in an Ammonia
    The ISME Journal (2019) 13:2633–2638 https://doi.org/10.1038/s41396-019-0460-6 BRIEF COMMUNICATION Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon 1,2 1 3 4 1 4 Man-Young Jung ● Joo-Han Gwak ● Lena Rohe ● Anette Giesemann ● Jong-Geol Kim ● Reinhard Well ● 5 2,6 2,6,7 1 Eugene L. Madsen ● Craig W. Herbold ● Michael Wagner ● Sung-Keun Rhee Received: 19 February 2019 / Revised: 5 May 2019 / Accepted: 27 May 2019 / Published online: 21 June 2019 © The Author(s) 2019. This article is published with open access Abstract Nitrous oxide (N2O) is a key climate change gas and nitrifying microbes living in terrestrial ecosystems contribute significantly to its formation. Many soils are acidic and global change will cause acidification of aquatic and terrestrial ecosystems, but the effect of decreasing pH on N2O formation by nitrifiers is poorly understood. Here, we used isotope-ratio mass spectrometry to investigate the effect of acidification on production of N2O by pure cultures of two ammonia-oxidizing archaea (AOA; Nitrosocosmicus oleophilus and Nitrosotenuis chungbukensis) and an ammonia-oxidizing bacterium (AOB; Nitrosomonas 15 europaea). For all three strains acidification led to increased emission of N2O. However, changes of N site preference (SP) 1234567890();,: 1234567890();,: values within the N2O molecule (as indicators of pathways for N2O formation), caused by decreasing pH, were highly different between the tested AOA and AOB. While acidification decreased the SP value in the AOB strain, SP values increased to a maximum value of 29‰ in N. oleophilus. In addition, 15N-nitrite tracer experiments showed that acidification boosted nitrite transformation into N2O in all strains, but the incorporation rate was different for each ammonia oxidizer.
    [Show full text]
  • Nitrification 31
    NITROGEN IN SOILS/Nitrification 31 See also: Eutrophication; Greenhouse Gas Emis- Powlson DS (1993) Understanding the soil nitrogen cycle. sions; Isotopes in Soil and Plant Investigations; Soil Use and Management 9: 86–94. Nitrogen in Soils: Cycle; Nitrification; Plant Uptake; Powlson DS (1999) Fate of nitrogen from manufactured Symbiotic Fixation; Pollution: Groundwater fertilizers in agriculture. In: Wilson WS, Ball AS, and Hinton RH (eds) Managing Risks of Nitrates to Humans Further Reading and the Environment, pp. 42–57. Cambridge: Royal Society of Chemistry. Addiscott TM, Whitmore AP, and Powlson DS (1991) Powlson DS (1997) Integrating agricultural nutrient man- Farming, Fertilizers and the Nitrate Problem. Wallingford: agement with environmental objectives – current state CAB International. and future prospects. Proceedings No. 402. York: The Benjamin N (2000) Nitrates in the human diet – good or Fertiliser Society. bad? Annales de Zootechnologie 49: 207–216. Powlson DS, Hart PBS, Poulton PR, Johnston AE, and Catt JA et al. (1998) Strategies to decrease nitrate leaching Jenkinson DS (1986) Recovery of 15N-labelled fertilizer in the Brimstone Farm experiment, Oxfordshire, UK, applied in autumn to winter wheat at four sites in eastern 1988–1993: the effects of winter cover crops and England. Journal of Agricultural Science, Cambridge unfertilized grass leys. Plant and Soil 203: 57–69. 107: 611–620. Cheney K (1990) Effect of nitrogen fertilizer rate on soil Recous S, Fresnau C, Faurie G, and Mary B (1988) The fate nitrate nitrogen content after harvesting winter wheat. of labelled 15N urea and ammonium nitrate applied to a Journal of Agricultural Science, Cambridge 114: winter wheat crop.
    [Show full text]
  • The Impact of Nitrite on Aerobic Growth of Paracoccus Denitrificans PD1222
    Katherine Hartop | January 2014 The Impact of Nitrite on Aerobic Growth of Paracoccus denitrificans PD1222 Submitted for approval by Katherine Rachel Hartop BSc (Hons) For the qualification of Doctor of Philosophy University of East Anglia School of Biological Sciences January 2014 This copy of the thesis has been supplied on conditions that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Katherine Hartop | January 2014 Acknowledgments Utmost thanks go to my supervisors Professor David Richardson, Dr Andy Gates and Dr Tom Clarke for their continual support and boundless knowledge. I am also delighted to have been supported by the funding of the University of East Anglia for the length of my doctorial research. Thank you to the Richardson laboratory as well as those I have encountered and had the honour of collaborating with from the School of Biological Sciences. Thank you to Georgios Giannopoulos for your contribution to my research and support during the writing of this thesis. Thanks to my friends for their patience, care and editorial input. Deepest thanks to Dr Rosa María Martínez-Espinosa and Dr Gary Rowley for examining me and my research. This work is dedicated to my parents, Keith and Gill, and my family. ii Katherine Hartop | January 2014 Abstract The effect of nitrite stress induced in Paracoccus denitrificans PD1222 was examined using additions of sodium nitrite to an aerobic bacterial culture.
    [Show full text]
  • The Crystal Structure of Nitrosomonas Europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights Into the Sucrose Metabolism in Prokaryotes
    Loyola University Chicago Loyola eCommons Chemistry: Faculty Publications and Other Works Faculty Publications 5-2015 The Crystal Structure of Nitrosomonas Europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into the Sucrose Metabolism in Prokaryotes Rui Wu Matías D. Asención Diez Carlos M. Figueroa Loyola University Chicago Matías Machtey Alberto A. Iglesias Follow this and additional works at: https://ecommons.luc.edu/chemistry_facpubs See P nextart of page the forChemistr additionaly Commons authors Author Manuscript This is a pre-publication author manuscript of the final, published article. Recommended Citation Wu, Rui; Asención Diez, Matías D.; Figueroa, Carlos M.; Machtey, Matías; Iglesias, Alberto A.; Ballicora, Miguel; and Liu, Dali. The Crystal Structure of Nitrosomonas Europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into the Sucrose Metabolism in Prokaryotes. Journal of Bacteriology, , : 1-54, 2015. Retrieved from Loyola eCommons, Chemistry: Faculty Publications and Other Works, http://dx.doi.org/10.1128/JB.00110-15 This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Chemistry: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © American Society for Microbiology, 2015. Authors Rui Wu, Matías D. Asención Diez, Carlos M. Figueroa, Matías Machtey, Alberto A. Iglesias, Miguel Ballicora, and Dali Liu This article is available at Loyola eCommons: https://ecommons.luc.edu/chemistry_facpubs/75 JB Accepted Manuscript Posted Online 26 May 2015 J.
    [Show full text]
  • Ammonia-Oxidizing Archaea Possess a Wide Range of Cellular Ammonia Affinities ✉ ✉ Man-Young Jung 1,2,3,14 , Christopher J
    www.nature.com/ismej ARTICLE OPEN Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities ✉ ✉ Man-Young Jung 1,2,3,14 , Christopher J. Sedlacek 1,4,14 , K. Dimitri Kits1, Anna J. Mueller 1, Sung-Keun Rhee 5, Linda Hink6,12, Graeme W. Nicol 6, Barbara Bayer1,7,13, Laura Lehtovirta-Morley 8, Chloe Wright8, Jose R. de la Torre 9, Craig W. Herbold1, Petra Pjevac 1,10, Holger Daims 1,4 and Michael Wagner 1,4,11 © The Author(s) 2021 Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that—like for AOB—ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox.
    [Show full text]
  • Effects of Chlorinated Aliphatic Hydrocarbon Degradation on the Metabolic Enzymes in Nitrosomonas Europaea
    AN ABSTRACT OF THE THESIS OF Kimberly A. Fawcett for the degree of Masters of Science in Toxicology presented on January 12th, 1999. Title: Effects of Chlorinated Aliphatic Hydrocarbon Degradation on the Metabolic Enzymes in Nitrosomonas europaea. Abstract approved: Redacted for Privacy Kenne J. Williamson The toxic effects of degrading the chlorinated hydrocarbons trichloroethylene (TCE), chloroform (CF) and cis-1,2-dichloroethylene (cis-1,2- DCE) were studied in the bacterium Nitrosomonas europaea. N europaea is an ammonia-oxidizing bacterium that obtains all of its energy from the oxidation of ammonia to nitrite. This metabolic process involves two enzymes, ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). AMO has a broad substrate range and is also capable of oxidizing TCE, CF, and cis-1,2-DCE. Effects of degrading these chlorinated compounds on both AMO and HAO were studied. Cells were inactivated with known inhibitors of both AMO (light) and HAO (hydrogen peroxide) to provide comparison studies. Oxidation of the three chlorinated hydrocarbons did not always result in similar toxic effects to the cells. Whole cell studies indicated that oxidation of TCE and CF resulted in a loss of both N114+- and N2H4- dependent 02 uptake rates, while in vitro studies indicated that at lower concentrations of both TCE 0.05 mM) and CF ( < 0.10 mM) neither AMO or HAO appear to be the primary sites of inactivation. The oxidation of cis-1,2-DCE appeared to specifically inactivate AMO both in in vivo and in vitro assays. N europaea cells were also pretreated with the AMO inhibitor acetylene and incubated with the chlorinated hydrocarbons.
    [Show full text]
  • Degradation of Halogenated Aliphaticcompounds by The
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1990, p. 1169-1171 Vol. 56, No. 4 0099-2240/90/041169-03$02.00/0 Copyright © 1990, American Society for Microbiology Degradation of Halogenated Aliphatic Compounds by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea TODD VANNELLI, MYKE LOGAN, DAVID M. ARCIERO, AND ALAN B. HOOPER* Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota 55108 Received 3 October 1989/Accepted 12 January 1990 Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bro- moethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochlo- roethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethyl- ene (perchloroethylene), and trans-dibromoethylene were not degraded. The ubiquitous soil- and water-dwelling nitrifying bacte- pounds, except tetrachloromethane, tetrachloroethylene, ria, exemplified by Nitrosomonas europaea, are obligate and trans-dibromoethylene, were degraded (Table 1). The autotrophic aerobes which depend for growth on the oxida- change in substrate during the first 30 or 60 min of incubation tion of ammonia by ammonia monoxygenase, as shown by indicates a substantial rate of degradation at the concentra- the following equation: 2H+ + 2e- + 02 + NH3 -> NH2OH tion of cells, ammonia, and halogenated hydrocarbon uti- + H2O. Two electrons for the reaction originate in the lized. The conditions for optimum activity have not yet been subsequent reaction of hydroxylamine oxidoreductase, as determined; therefore, the rates given in Table 1 are mini- shown by the following equation: H2O + NH2OH - 4e- + mum values.
    [Show full text]
  • Transcriptomic Response of Nitrosomonas Europaea Transitioned From
    bioRxiv preprint doi: https://doi.org/10.1101/765727; this version posted September 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Transcriptomic response of Nitrosomonas europaea transitioned from 2 ammonia- to oxygen-limited steady-state growth 3 4 Christopher J. Sedlacek1,2*,#, Andrew T. Giguere1,3,7*, Michael D. Dobie4, Brett L. Mellbye4, Rebecca V 5 Ferrell5, Dagmar Woebken1, Luis A. Sayavedra-Soto6, Peter J. Bottomley3,4, Holger Daims1,2, Michael 6 Wagner1,2,7, Petra Pjevac1,8 7 1University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial 8 Ecology, Vienna, 1090, Austria. 9 2University of Vienna, The Comammox Research Platform, Vienna, 1090 Austria. 10 3Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA. 11 4Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA. 12 5Department of Biology, Metropolitan State University of Denver, Denver, CO 80217, USA 13 6Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA 14 7Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 15 Denmark 16 8Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, 17 Austria 18 19 Keywords: 20 Transcriptome, ammonia and oxygen limitation, chemostat, ammonia-oxidizing bacteria, Nitrosomonas 21 europaea 22 23 *These authors contributed equally 24 Running Title: Oxygen-limited growth of Nitrosomonas europaea 1 bioRxiv preprint doi: https://doi.org/10.1101/765727; this version posted September 11, 2019.
    [Show full text]
  • Application of Hierarchical Oligonucleotide Primer Extension (HOPE) to Assess Relative Abundances of Ammonia- and Nitrite-Oxidiz
    Scarascia et al. BMC Microbiology (2017) 17:85 DOI 10.1186/s12866-017-0998-2 RESEARCH ARTICLE Open Access Application of hierarchical oligonucleotide primer extension (HOPE) to assess relative abundances of ammonia- and nitrite-oxidizing bacteria Giantommaso Scarascia, Hong Cheng, Moustapha Harb and Pei-Ying Hong* Abstract Background: Establishing an optimal proportion of nitrifying microbial populations, including ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), complete nitrite oxidizers (comammox) and ammonia-oxidizing archaea (AOA), is important for ensuring the efficiency of nitrification in water treatment systems. Hierarchical oligonucleotide primer extension (HOPE), previously developed to rapidly quantify relative abundances of specific microbial groups of interest, was applied in this study to track the abundances of the important nitrifying bacterial populations. Results: The method was tested against biomass obtained from a laboratory-scale biofilm-based trickling reactor, and the findings were validated against those obtained by 16S rRNA gene-based amplicon sequencing. Our findings indicated a good correlation between the relative abundance of nitrifying bacterial populations obtained using both HOPE and amplicon sequencing. HOPE showed a significant increase in the relative abundance of AOB, specifically Nitrosomonas, with increasing ammonium content and shock loading (p < 0.001). In contrast, Nitrosospira remained stable in its relative abundance against the total community throughout the operational phases. There was a corresponding significant decrease in the relative abundance of NOB, specifically Nitrospira and those affiliated to comammox, during the shock loading. Based on the relative abundance of AOB and NOB (including commamox) obtained from HOPE, it was determined that the optimal ratio of AOB against NOB ranged from 0.2 to 2.5 during stable reactor performance.
    [Show full text]
  • Nitrosomonas Europaea: Operational Improvement of Standard Culture Medium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Journal of Soil Science and Plant Nutrition https://doi.org/10.1007/s42729-019-00023-0 SHORT COMMUNICATION Nitrifying Soil Bacterium Nitrosomonas europaea: Operational Improvement of Standard Culture Medium Jorge Padrão1 & Gonzalo Tortella2,3 & Susana Cortez1 & Nicolina Dias1 & Ana Nicolau1 & Manuel Mota1 Received: 27 July 2018 /Accepted: 17 October 2018 # Sociedad Chilena de la Ciencia del Suelo 2019 Abstract Nitrosomonas europaea is the most extensively studied ammonia-oxidizing bacterium (AOB), being a ubiquitous player in the conversion of ammonia in the soil environment. The precipitation of constituents of the standard culture medium, American Type Culture Collection (ATCC) #2265, further hinders both the study of N. europaea vital role in the nitrogen cycle and the development of biotechnological applications, as the presence of inorganic debris severely compromises scale-up procedures and downstream processing. The standard formulation was analyzed; the precipitate was identified as being struvite. Struvite is spontaneously formed when magnesium, phosphate, and ammonium are available in a high pH solution. This combination is common and transversal to a series of AOB media formulations. Therefore, a non-precipitating medium was developed. The modified medium does not require filter sterilization, which reduces 99% of its production cost. The kinetic performance of N. europaea was evaluated in the standard and modified medium. A precise and direct quantification of the bacterium cell growth profile was achieved using fluorescent in situ hybridization (FISH) and flow cytometry, which was correlated with other metabolic parameters. The performance of N.
    [Show full text]